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Abstract

Active reinforcement learning enables dynamic prediction and control, where one should

not only maximize rewards but also minimize costs such as of inference, decisions, actions,

and time. For an embodied agent such as a human, decisions are also shaped by physical

aspects of actions. Beyond the effects of reward outcomes on learning processes, to what

extent can modeling of behavior in a reinforcement-learning task be complicated by other

sources of variance in sequential action choices? What of the effects of action bias (for

actions per se) and action hysteresis determined by the history of actions chosen previ-

ously? The present study addressed these questions with incremental assembly of models

for the sequential choice data from a task with hierarchical structure for additional complex-

ity in learning. With systematic comparison and falsification of computational models,

human choices were tested for signatures of parallel modules representing not only an

enhanced form of generalized reinforcement learning but also action bias and hysteresis.

We found evidence for substantial differences in bias and hysteresis across participants—

even comparable in magnitude to the individual differences in learning. Individuals who did

not learn well revealed the greatest biases, but those who did learn accurately were also sig-

nificantly biased. The direction of hysteresis varied among individuals as repetition or, more

commonly, alternation biases persisting from multiple previous actions. Considering that

these actions were button presses with trivial motor demands, the idiosyncratic forces bias-

ing sequences of action choices were robust enough to suggest ubiquity across individuals

and across tasks requiring various actions. In light of how bias and hysteresis function as a

heuristic for efficient control that adapts to uncertainty or low motivation by minimizing the

cost of effort, these phenomena broaden the consilient theory of a mixture of experts to

encompass a mixture of expert and nonexpert controllers of behavior.
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Author summary

Reinforcement learning unifies neuroscience and AI with a universal computational

framework for motivated behavior. Humans and robots alike are active and embodied

agents who physically interact with the world and learn from feedback to guide future

actions while weighing costs of time and energy. Initially, the modeling here attempted to

identify learning algorithms for an interactive environment structured with patterns in

counterfactual information that a human brain could learn to generalize. However, behav-

ioral analysis revealed that a wider scope was necessary to identify individual differences

in not only complex learning but also action bias and hysteresis. Sequential choices in the

pursuit of rewards were clearly influenced by endogenous action preferences and persis-

tent bias effects from action history causing repetition or alternation of previous actions.

By modeling a modular brain as a mixture of expert and nonexpert systems for behavioral

control, a distinct profile could be characterized for each individual attempting the experi-

ment. Even for actions as simple as button pressing, effects specific to actions were as sub-

stantial as the effects from reward outcomes that decisions were supposed to follow from.

Bias and hysteresis are concluded to be ubiquitous and intertwined with processes of

active reinforcement learning for efficiency in behavior.

Introduction

Whether in machine learning and artificial intelligence or in animal learning and neural intel-

ligence, the most crucial portion of reinforcement learning (RL) [1–3] is not passive, offline, or

observational but instead active and online with a challenge of not only prediction but also

real-time control. In the real world, resources for activity are finite, and much of active RL is

also embodied RL. Whether robot or human, the embodied agent learns from feedback to

make decisions and select physical actions that maximize future reward while minimizing vari-

ous costs of energy as well as time.

The RL framework has appreciable predictive validity [4,5] when accounting for human

choices and learning behavior in a variety of settings [6–8]—let alone the power of extensions

of RL [9–12]. However, such models sometimes fail to account well for an individual’s behav-

ior even in a relatively simple task that should be amenable to RL in principle [13]. An open

question concerns whether other components of variance not based on learning also exist

alongside RL so as to collectively provide a better account of motivated behavior and even

learning itself within a more comprehensive model. The present study focuses on the contribu-

tions of other elements of active learning that are also essential in their own way: action bias—

specifically for actions per se—and action hysteresis, which is determined by the history of pre-

viously selected actions (Fig 1A).

The present case of two available actions (one per hand) reduces the first component of

action bias to a single bidirectional constant for left versus right [14–16]. Hysteresis is bidirec-

tional as well and adds dynamics in the form of either repetition or alternation of previous

actions, which may also manifest for a horizon beyond just the most recent action [17–20].

Despite at least some precedent for either action bias or action hysteresis (more so the latter),

the combination of both bias and hysteresis has even less precedent for RL [12,21].

The standard setup for fitting RL to behavior (e.g., [22]) begins with a 2-parameter model

tuned for the learning rate and the softmax temperature, where the latter represents stochasti-

city [3,23–25]. This base model is then built upon with additional free parameters to test for

more complex learning phenomena, which should include the due diligence of model
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comparison and qualitative falsification [26–28]. However, an alternative line of questioning

could instead begin with asking whether more parsimonious and perhaps more substantial

sources of variance merit prioritization before making any new assumptions about complexi-

ties within learning. The emphasis can also be shifted away from the prescriptive (i.e., “Accord-

ing to some notion of ‘optimality’, what should a person do here?”) in favor of the descriptive

(“What do people actually do here?”) while creating an opportunity to circle back from empiri-

cal findings to a new perspective on different aspects of optimality in behavior.

In practice, model fitting is nontrivial with a sequence of choices typically limited to hun-

dreds or even just dozens of observations. Adding to this challenge, increasingly complex

behavior under study imposes greater demands for accommodating multidimensional individ-

ual differences and optimizing individual fits without hierarchical Bayesian fitting [13,29] and

its disadvantage of estimation bias [30–35]. (For a random grouping of independent data sets,

even hierarchical fitting compromises their independence with the strong assumption of a

Fig 1. Action bias and hysteresis for the “generalized reinforcement learning” (GRL) model. (a) Each trial of the

structured reward-learning task was initiated with an image cue symbolizing the state of the environment (e.g., “A” or

“B”), where the optimal action given the state was a button press with either the left (“L”) or right (“R”) hand. In

contrast to the expert control of GRL for mapping state-action pairs to rewards, the nonexpert forces of action bias and

hysteresis were modeled as leftward or rightward bias and repetition or alternation bias. These action-specific effects

manifest independently of the external state and reward history. (b) What matters for the present purposes is that,

while a model with GRL adds complexity to basic RL, even more complexity must be accommodated for action bias

and hysteresis. The agent’s mixture policy πt(st,a*) is probabilistic over available actions a* in state st. The action

selection of this mixture policy is determined by not only learned value for state-action pairsQt(st,a*) but also constant

bias B(a*) and dynamic hysteretic biasHt(a*) with an exponentially decaying hysteresis trace. The outcome of the

chosen action at is a reward rt+1 that updatesQt(st,at) via the reward-prediction error (RPE) δt+1 weighted by a learning

rate α. For GRL specifically, this RPE signal is generalized to representations of other state-action pairs according to

extra parameters for action generalization (gA) and state generalization (gS). See Figs 8 and 13 for details of the plots

representing individual differences in constant lateral bias (left versus right) and the exponential hysteresis trace

(repeat versus alternate). See also the original report of this study with additional details about the paradigm and GRL

per se [12].

https://doi.org/10.1371/journal.pcbi.1011950.g001
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common distribution for every individual based on the ecological fallacy [36–38].) Both within

and between individual sequences, sources of variance other than RL may be crucial to com-

plement an RL model despite the costs of additional degrees of freedom. In other words,

including modules beyond RL in a model of actual behavior can alleviate estimation bias and

other distortions of learning parameters that would otherwise be forced to simultaneously fit

other phenomena with omitted variables.

In the present study, we hypothesize that behavior during active learning is determined not

only by RL and stochasticity but also by action bias and hysteresis, which are independent of

the current state of the external environment and its reward history (Fig 1). This state-inde-

pendent hysteresis in particular makes actions depend on previous actions regardless of states,

but state-dependent hysteresis was also considered later (Table 1). The interplay of these dif-

ferent forces was investigated for human behavior in a task that in one sense is a hierarchical

reversal-learning task but in another sense is a sequential button-pressing task (Fig A in S1

Text). Hence the behavioral data of a multisite neuroimaging study reported previously [12]

were reanalyzed with further model comparison from this bias-centric perspective.

Too often, such action-specific effects have been overlooked altogether or given only cur-

sory mention as if they were inconsequential in the context of a learning model. If considered

at all, the scope of hysteresis has also usually been limited to only one trial back. (To address

this issue here, we modeled hysteresis over a time horizon longer than one trial.) Moreover,

because repetition tends to predominate in aggregate behavior for RL and other sequential

paradigms, manifestations of hysteresis have mostly been framed so as to deemphasize or

entirely disregard alternation biases in favor of repetition biases. Autocorrelational effects have

thus been referred to in the literature with unidirectional and often imprecise terminology

such as “perseveration”, “perseverance” (a misnomer), “persistence”, “habit”, “choice sticki-

ness”, “choice consistency”, “repetition priming”, “response inertia”, or “behavioral momen-

tum”. Semantics of interpretation aside, the common thread for hysteresis is a past action’s

influence on an upcoming action with independence from learnable external feedback and

typically, albeit not necessarily, from external states as well.

A more comprehensive model of action selection can also enhance identifiability with

respect to actual learning (or lack thereof) as opposed to other components of variance that

may mimic or otherwise obscure signatures of learning with spurious correlations across the

finite sequence of actions [17,18,27,28,39–47]. As external reinforcement promotes consistent

repetition of responses within a state, so too can action bias, and both repetition and alterna-

tion from hysteresis can coincidentally align with the reward contingencies of the sequence of

states. Whereas preexisting constant biases interact with learning when base rates for actions

are unbalanced in sequence, hysteretic biases can further complicate action sequences with not

only intrinsic dynamics but also more possibilities for interactions across any sequential pat-

terns in the environment and the dynamics of learning.

Perhaps surprisingly, the hypothesis for hysteresis in the present experiment was that alter-

nation would predominate rather than repetition. An action policy biased toward alternation

would follow from the fact that, by design, choosing actions optimally in response to the rotat-

ing states of this environment would result in alternating more frequently. Yet, by design, this

perseverative alternation that is characteristically independent of learned external value was

therefore not conducive to obtaining more rewards from this environment.

The primary model comparison here (Table 2 and Table A in S1 Text) exhaustively tested

various combinations of action-specific effects as well as “generalized reinforcement learning”

(GRL), which is a quasi-model-based extension of model-free RL that can flexibly generalize

value information across states and actions (Fig 1B and Fig B in S1 Text) [12]. GRL per se is

somewhat incidental for the present purposes, but what matters as far as a test case here is that
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a model incorporating the complexities of bias and hysteresis should still be amenable to

exploring complex learning algorithms beyond the most basic RL. GRL is especially complicat-

ing in this regard because it introduces high-frequency dynamics to learning with counterfac-

tual updates of multiple value representations in parallel.

Previously, the GRL model was built with fixed prior assumptions for another three free

parameters representing action bias and hysteresis. One of these parameters specifies the constant

lateral bias; the other two specify a decaying exponential function for the hysteresis trace extend-

ing backward across the sequence. This particular configuration of constant bias and exponential

hysteresis was initially arrived at intuitively more so than empirically [12,21] while drawing ele-

ments from earlier models [17,18]. Now, the 3-parameter adjunct was to actually be tested against

GRL alone as well as both simpler and more complex variations for bias and (state-independent)

hysteresis. Subsequent testing also proceeded to alternative model features that could be other

sources of action repetition or alternation, including state-dependent hysteresis, state-indepen-

dent action value, confirmation bias in learning, or asymmetric learning rates more generally.

Abiding by Occam’s razor [48], the more parsimonious factors of action bias and hysteresis

should be granted first priority for inclusion if they are sufficiently substantial, but testing

empirical data was necessary to verify practical feasibility in consideration of the compounded

complexity with different forms of learning. Individuals found to not learn well were expected

to reveal the greatest effects of bias and hysteresis. Yet those who learned accurately were also

hypothesized to exhibit biases that would account for significant variance (even if this were to

amount to less variance than that from learning).

To the end of establishing guidelines for behavioral modeling in general, there were further

questions concerning how exactly these directional biases would manifest and how substantial

they would be for the experimenter’s default choice of pressing a button, which is a simple and

familiar action with trivial motor demands. For proof of concept, the present paradigm can

query not only the suitability of these particular forms of biases for button presses but also the

viability of these factors as additional complexities while learning theory is advanced. With ref-

erence to analogous architectures in machine learning [49–54] as well as with general appeal

to modular parallelism and conditional computation for balancing versatility and efficiency in

optimal control, the consilient theory of a mixture of experts [6–8,55–57] can be broadened

further for a mixture of expert and nonexpert controllers of behavior (see Discussion). This

contrast of expertise versus efficiency is represented here by different types of expert RL versus

nonexpert bias and hysteresis.

Table 1. Variables for basic forms of RL, bias, and hysteresis. Fundamentally for even basic RL, the possibilities for variables in a more comprehensive behavioral

model can be classified according to dependence on (or independence of) states, actions. previous actions, and reward outcomes. In principle, whereas action value is out-

come-dependent, action hysteresis is outcome-independent. However, when modeling actual behavior, this conceptual independence does not guarantee statistical inde-

pendence because of incidental correlations in finite sequences of action choices. For the present study, the primary model comparison focuses on the three variables

(marked with an asterisk) that are the most fundamental and typically the most dissociable—namely, constant bias B(a), state-independent action hysteresisH(a), and

state-dependent action value Q(s,a). The extended model comparison also incorporates state-dependent action hysteresisH(s,a) and state-independent action value Q(a).
Note that state value V(s) is generally relevant in RL but is not considered here. The abbreviations “PrevAction”, “dep.”, and “indep.” correspond to “previous action”,

“dependent”, and “independent”, respectively.

Variable Term Action- PrevAction- State- Outcome-

Constant action bias* B(a) dep. indep. indep. indep.

State-independent action hysteresis* H(a) dep. dep. indep. indep.

State-dependent action hysteresis H(s,a) dep. dep. dep. indep.

State-independent action value Q(a) dep. indep. indep. dep.

State-dependent action value* Q(s,a) dep. indep. dep. dep.

State value V(s) indep. indep. dep. dep.

https://doi.org/10.1371/journal.pcbi.1011950.t001
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Results

Paradigm

Additional details of the study and previous results can be found in the original report for

these data sets [12]. The hierarchical reversal-learning task delivered probabilistic outcomes

for combinations of categorized states and contingent actions with reward distributions

changing across 12 blocks of trials (Figs A and B in S1 Text). Suitably for first testing GRL, the

state (or context) of each trial represented a two-armed contextual bandit belonging to one of

two categories (e.g., faces or houses) with two anticorrelated states per category and two antic-

orrelated actions per state (i.e., left-hand button press or right-hand button press). For an opti-

mal learner, the counterfactual information in this anticorrelational structure could be

leveraged with the discriminative generalization of GRL. The action-generalization weight gA

Table 2. Model parameters (condensed). Free parameters are listed for the 72 behavioral models in ascending order of complexity within and across classes. The models

are coded with the first letter of the label referring to four possibilities: an absence of learning (“X”), reinforcement learning (RL) without generalization (“0”), generalized

reinforcement learning (GRL) with one shared generalization parameter g1 (“1”), or GRL with two separate generalization parameters g1 and g2 (“2”). RL itself required

free parameters for the learning rate α and the softmax temperature τ. Models labeled with “C” for the second letter included a constant lateral bias, which was arbitrarily

designated as a rightward bias βR (where βR< 0 is leftward). The list is condensed with bracket notation to represent the range for the n-back horizons of each successive

model within a hysteresis category (e.g., “2CE[1–3]” for models 2CE1, 2CE2, and 2CE3). Models labeled with”N” and ending with a positive integer (from the range in

brackets) included n-back hysteresis with free parameters βn for repetition (βn> 0) or alternation (βn< 0) of each previous action represented—up to 4 trials back (β4)
with learning and up to 8 trials back (β8) without learning. Models labeled with “E” and ending with a positive integerN (from the range in brackets) included exponential

hysteresis with inverse decay rate λH taking effectN+1 trials back. Exponential models could also be both parametric and nonparametric withN free parameters βn for ini-

tial n-back hysteresis up to 3 trials back (β3), where the final βN is the initial magnitude of the exponential component. “df” stands for degrees of freedom. See also Table A

in S1 Text for the unrolled version of the list. This ordering of the models corresponds to the ordering in Figs 2 and 3.

RL GRL Bias Hysteresis

Model df α τ g1 g2 βR λH β1 β2 β3 β4 β5 β6 β7 β8

X 0 - - - - - - - - - - - - - -

XC 1 - - - - βR - - - - - - - - -

XN[1–8] 1–8 - - - - - - β1 β2 β3 β4 β5 β6 β7 β8
XCN[1–8] 2–9 - - - - βR - β1 β2 β3 β4 β5 β6 β7 β8
XE[1–3] 2–4 - - - - - λH β1 β2 β3 - - - - -

XCE[1–3] 3–5 - - - - βR λH β1 β2 β3 - - - - -

0 2 α τ - - - - - - - - - - - -

0C 3 α τ - - βR - - - - - - - - -

0N[1–4] 3–6 α τ - - - - β1 β2 β3 β4 - - - -

0CN[1–4] 4–7 α τ - - βR - β1 β2 β3 β4 - - - -

0E[1–3] 4–6 α τ - - - λH β1 β2 β3 - - - - -

0CE[1–3] 5–7 α τ - - βR λH β1 β2 β3 - - - - -

1 3 α τ g1 - - - - - - - - - - -

1C 4 α τ g1 - βR - - - - - - - - -

1N[1–4] 4–7 α τ g1 - - - β1 β2 β3 β4 - - - -

1CN[1–4] 5–8 α τ g1 - βR - β1 β2 β3 β4 - - - -

1E[1–3] 5–7 α τ g1 - - λH β1 β2 β3 - - - - -

1CE[1–3] 6–8 α τ g1 - βR λH β1 β2 β3 - - - - -

2 4 α τ g1 g2 - - - - - - - - - -

2C 5 α τ g1 g2 βR - - - - - - - - -

2N[1–4] 5–8 α τ g1 g2 - - β1 β2 β3 β4 - - - -

2CN[1–4] 6–9 α τ g1 g2 βR - β1 β2 β3 β4 - - - -

2E[1–3] 6–8 α τ g1 g2 - λH β1 β2 β3 - - - - -

2CE[1–3] 7–9 α τ g1 g2 βR λH β1 β2 β3 - - - - -

https://doi.org/10.1371/journal.pcbi.1011950.t002
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and state-generalization weight gS, which would ideally both be negative for discriminative

generalization, govern the relaying of the reward-prediction error across state-dependent

actions or across states within a category, respectively.

For standard behavioral RL (with or without an extension such as GRL), the state-depen-

dent action values Qt(s,a) that are learned over time would be the only inputs to a probabilistic

action-selection policy πt(s,a) characterized by a softmax function with temperature τ:

pt st; að Þ ¼ P at ¼ ajstð Þ ¼
expfQtðst; aÞ=tgP
a∗expfQtðst; a∗Þ=tg

As the scope of the model is expanded, the present study emphasizes that the action policy

is a function of not only action value Qt(s,a) but also constant bias B(a) and dynamic hysteretic

biasHt(a) as modules within a mixture of experts and nonexperts (Fig 1) [12,21]. Constant

bias B(a) becomes a lateral bias between left and right actions in this case, whereas the dynamic

hysteretic biasHt(a)maps repetition and alternation to positive and negative signs, respec-

tively. To represent these action-specific biases that are independent of external state and

reward history, the equation for the mixture policy incorporates additional terms like so:

pt st; að Þ ¼
expfðQtðst; aÞ þ HtðaÞ þ BðaÞÞ=tgP
a∗expfðQtðst; a∗Þ þ Htða∗Þ þ Bða∗ÞÞ=tg

Adding complexity in both learning and action bias and hysteresis

The primary model comparison here crossed factors for value-based learning (with first char-

acter “X”, “0”, “1”, or “2” for the model label), constant bias (“C”), n-back hysteresis (“N”), and

exponential hysteresis (“E”) to incrementally build 72 models that were tested for each par-

ticipant as an individual (Table 2 and Table A in S1 Text). Note that, in the original model

comparison [12], the final 7-parameter model “2CE1” was built with two generalization

parameters (gA and gS) added to an initial 5-parameter base model “0CE1” (first adding βR,

β1, and λH to the standard 2-parameter base model “0” with only learning rate α and tem-

perature τ). Unlike the original factorial model comparison, the present model comparison

was more exhaustive for biases rather than reduced variants of GRL or alternative learning

algorithms. Hence the bias and hysteresis factors were presently crossed with the limited

cases of no learning (“X”) (α = gA = gS = 0), basic RL (“0”) (gA = gS = 0), 1-parameter GRL

(“1”) (gA = min{0, gS}, -1 � gS � 1), and 2-parameter GRL (“2”) (-1 � gA� 0, -1 � gS� 1).

The binary factor of constant bias was implemented as a lateral bias βR (where a positive

sign is arbitrarily rightward). Hysteresis, the next main factor, was further subdivided between

exponential and n-back hysteresis as parametric and nonparametric alternatives, respectively.

A model with N-back hysteresis included independent weights βn for each of N total previous

actions (the final number in the label such as the “1” in 2CN1 for 1-back), where each signed

weight corresponds to a bias in favor of repetition (βn> 0) or alternation (βn< 0) of the

respective previous action. The alternative of parametric hysteresis featured exponential decay

(e.g., 2CE1) but could also include up to two additional degrees of freedom (e.g., up to 2CE3)

for nonparametric weights on the most recent previous actions—that is, n-back and exponen-

tial hysteresis combined (cf. regression analyses in [17,20,58–61]).

Within each data set (i.e., the 3-T Face/House (“FH”) version or the 7-T Color/Motion

(“CM”) version), the first step of the original analysis [12] entailed dividing participants into

three subgroups according to model-independent performance on the task [18] as well as the

results of model fitting [21]. A subset of participants was initially set aside as the “Good

learner” (“G”) group (FH: n = 31/47, CM: n = 16/22) if choice accuracy was significantly

greater than the chance level of 50% for a given individual (p< 0.05). The remaining
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participants—for whom the null hypothesis of chance accuracy could not be rejected at the

individual level (p> 0.05)—were further subdivided between the “Poor learner” (“P”) group

(FH: n = 9/47, CM: n = 5/22) and the “Nonlearner” (“N”) group (FH: n = 7/47, CM: n = 1/22)

according to whether or not an RL or GRL model (including bias and hysteresis) could yield a

significant improvement in goodness of fit relative to the pure bias-and-hysteresis model

XCE1, which is nested within the full 2CE1 model adding GRL but has no sensitivity to reward

or its omission.

Whereas the original model comparison [12] emphasized variants of GRL with associative

or discriminative generalization and permuted these factors accordingly, the presently empha-

sized factors of action bias and hysteresis had been assumed a priori and fixed with three

parameters for constant bias and exponential decay of the hysteresis trace. Although the origi-

nal results were in favor of the 7-parameter 2CE1 model, these conclusions were drawn from

only one perspective with fixed assumptions for action bias and hysteresis. That is, two new

parameters for action and state generalization (gA, gS) were previously justified as additions to

a 5-parameter base model 0CE1 starting with two parameters for basic RL (α, τ), one for con-

stant bias (βR), and two for exponential hysteresis (β1, λH). The 3-parameter adjunct (“-CE1”)

was hypothesized to retain the most explanatory power post-correction in the present model

comparison as well—even as various simpler and more complex alternatives were now being

tested for due diligence.

Across all five participant groups from both data sets, the model comparison here estab-

lished that the best-performing models featured not only GRL (for actual learners) but also

constant bias and exponential hysteresis (FH-G: 2CE1, FH-P: 1CE3, FH-N: XCE2, CM-G:

2CE1, CM-P: 1CE2)—even after correcting for model complexity according to the Akaike

information criterion with correction for finite sample size (AICc) [62,63] (Figs 2A and 3A

and Tables B-F in S1 Text). Furthermore, at the individual level, 87% of participants exhibited

significant effects of some kind of action-specific bias or hysteresis (FH: n = 41/47, CM:

n = 19/22) (Figs 2B and 3B and Figs Kd and Ld in S1 Text).

With regard to correspondence between this bias-centric model comparison and the origi-

nal learning-centric model comparison [12], individual Good learners were again always best

fitted by a learning model (FH: n = 31/31, CM: n = 16/16), whereas Nonlearners were again

always best fitted by a nonlearning model with nothing more than action bias or hysteresis

(FH: n = 0/7, CM: n = 0/1). The boundary case of the Poor-learner group was mostly but not

always in the direction of a learning model as opposed to a nonlearning model (FH: n = 6/9,

CM: n = 4/5). Nevertheless, the original group assignments were retained here not only for

consistency but also in consideration of the lack of a full factorial design with respect to GRL

here (originally 11 models rather than 3).

As hypothesized for bias and hysteresis parameters, Nonlearners and even Poor learners

showed greater gains in model performance than Good learners, but Good learners still

benefited significantly as well. The Poor-learner and Nonlearner groups actually suggested

greater explanatory power from additional hysteresis parameters (even over a third learning

parameter): The best fits were from the 1CE3 and 1CE2 models for Poor learners and XCE2

for Nonlearners. Yet, in the interest of a universal model that is both parsimonious and

straightforward, the 2CE1 model and the CE1 adjunct remained preferred overall for the pres-

ent purposes because the Good-learner groups, which both favored 2CE1, are more reliable

and more essential as evidence for a mixture of experts and nonexperts. These results and

many others that follow confirmed that the original group assignments from the learning-cen-

tric model comparison remain applicable with reanalysis from this bias-centric perspective.

Although a simpler alternative nested within the 7-parameter 2CE1 model may provide a

decent account for some individuals, this moderately complex model in itself provided the
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most parsimonious account for the greatest proportion of heterogeneous participants—and

especially so among those who learned well. Conversely, the lesser overall performance of the

8- and 9-parameter models argues against an explanation reduced to mere overfitting. While

omitting additional n-back degrees of freedom, the 2-parameter specification for exponential

hysteresis was sufficiently flexible to best fit (post-correction) 64% of the heterogeneity across

participants with nested models (FH: n = 28/47, CM: n = 16/22). As for the nonparametric

equivalent in total degrees of freedom, substituting 2-back hysteresis (i.e., 2CN2) in lieu of the

decay parameter would accommodate only 54% of this heterogeneity (FH: n = 24/47, CM:

n = 13/22) in addition to providing a worse fit overall.

Having selected 2CE1 (and XCE1) with a large-scale comparison of 72 models, the most rel-

evant subsets of eight models were rearranged for a follow-up comparison—namely, 2, 2N1,

2N2, 2E1, 2C, 2CN1, 2CN2, and 2CE1 (4 to 7 parameters) for the two learner groups and X,

XN1, XN2, XE1, XC, XCN1, XCN2, and XCE1 (0 to 3 parameters) for the Nonlearner group

Fig 2. Model comparison: 3-T Face/House version. The ordering of the models here corresponds to the ordering in

Table 2 and Table A in S1 Text. As before, the model begins with “X-”, “0-”, “1-”, or “2-” for no learning, basic RL,

1-parameter GRL, or 2-parameter GRL. A subsequent “C” denotes constant bias, and “N” or “E” represents n-back or

exponential hysteresis, respectively, while incrementally adding a step back to the n-back horizon with each successive

model within a hysteresis category (e.g., the rightmost models 2CE1, 2CE2, and 2CE3). (a) Shown for each model is

average goodness of fit relative to the null chance model (“X”) with (light bars) and without (light and dark bars

combined) a penalty for model complexity according to the corrected Akaike information criterion (AICc). With the

addition of action bias and hysteresis parameters alongside GRL, Poor learners (blue bars) and Nonlearners (red bars)

revealed the greatest gains in model performance, but Good learners (green bars) benefited significantly as well. The

best-performing models (written above each plot) featured not only GRL for the actual learners but also constant bias

and exponential hysteresis for all (FH-G: 2CE1, FH-P: 1CE3, FH-N: XCE2; see Fig 3 for CM-G: 2CE1, CM-P: 1CE2).

For the most essential Good-learner group, the originally preferred 2CE1 model was validated as preferable to both

simpler and more complex alternatives for the specification of bias and hysteresis or lack thereof. A more positive

residual corresponds to a superior fit. (b) Counts of the participants best fitted by each model according to the AICc

are plotted with separation of Good learners, Poor learners, and Nonlearners. At the individual level, 87% of

participants across both data sets exhibited significant effects of some kind of action bias or hysteresis. The

7-parameter 2CE1 model—complementing 2-parameter GRL with constant bias and 2-parameter exponential

hysteresis—accommodates heterogeneity in both learning and action-specific effects across individuals, leaving 64%

best fit by 2CE1 or one of its nested models rather than other n-back or n-back-plus-exponential models.

https://doi.org/10.1371/journal.pcbi.1011950.g002
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(Figs 4 and 5 and Figs Ka and La in S1 Text). Between the edge cases of the no-bias model

“2” and the full model 2CE1 were another six intermediate models—that is, four nested within

2CE1 featuring exponential hysteresis (2N1, 2E1, 2C, 2CN1) and two substituting 2-back

Fig 3. Model comparison: 7-T Color/Motion version. Compare to Fig 2. Results were replicated in the 7-T

Color/Motion version of the experiment with a nearly identical experimental design.

https://doi.org/10.1371/journal.pcbi.1011950.g003

Fig 4. Reduced model comparison: 3-T Face/House version. Compare to Fig 2. The next round of comparisons

focused on subsets of eight models building up to constant bias and exponential hysteresis (“-CE1”). The baseline

models were 2-parameter GRL (“2”) for Good and Poor learners or a random policy (“X”) for Nonlearners. The

evidence for best fit with the 2CE1 model is more visibly salient here (FH-G: 2CE1, FH-P: 2CE1, FH-N: XCE1; see Fig

5 for CM-G: 2CE1, CM-P: 2CN2).

https://doi.org/10.1371/journal.pcbi.1011950.g004
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hysteresis (2N2, 2CN2) with an equivalent number of degrees of freedom. The evidence for

best fit with the 2CE1 model was more salient in this subset (FH-G: 2CE1, FH-P: 2CE1, FH-N:

XCE1, CM-G: 2CE1, CM-P: 2CN2).

To again affirm the discriminability of the preferred 2CE1 model among both simpler and

more complex alternatives ranging from 0 to 9 free parameters, simulated data sets were yoked

to their respective empirical data sets but instead derived from individually fitted instantiations

of this generative model. The simulated agent would receive input in silico according to what

the respective human participant actually encountered in the session. When substituting simu-

lated data generated by the instantiations of the 2CE1 model fitted to empirical data, the pat-

tern of results could be replicated as expected (Figs C, D, G, H, Kb/e, Lb/e, and M and Tables

G-K in S1 Text). Conversely, yoked simulations generated by the no-bias model “2” with only

GRL—that is, a reduced model still biased toward reward maximization but unbiased with

respect to action bias and hysteresis—shifted the fitting results to instead align with a learning-

sans-bias model as expected (Figs E, F, I, J, Kc/Kf, Lc/Lf, and M and Tables L-P in S1 Text).

In other words, the more complex model could be recovered from itself, and the simpler

model could be recovered from itself, ruling out overfitting.

With the model comparison again (cf. [12]) pointing to the 7-parameter 2CE1 model, the

individually fitted parameters of this model were verified and interpreted with reference to

model-independent metrics for either action bias or learning performance (Table 3). The con-

stant lateral bias βR could be either leftward (βR< 0) or rightward (βR> 0), and its absolute

value |βR| represents the weight of constant bias independent of direction—thereby resolving

ambiguity between truly zero bias in the aggregate versus a distribution of substantial nonzero

biases that are both positive and negative among individuals so as to cancel each other out.

The initial magnitude of the exponential hysteresis bias β1 could accommodate both repetition

(β1> 0) and alternation (β1< 0), where the unsigned weight |β1| represents either form in the

1-back hysteretic bias. Furthermore, the model’s overall level of bias—or at least 0-back and

Fig 5. Reduced model comparison: 7-T Color/Motion version. Compare to Figs 3 and 4.

https://doi.org/10.1371/journal.pcbi.1011950.g005
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1-back bias while overlooking the decaying remainder—could be quantified as |βR|+|β1| for a

metric.

To more rigorously test for effects of action bias and hysteresis even in the presence of com-

peting effects of value-based learning, Nonlearners are excluded from many of the analyses

that follow. Confirming parameter validity across both Good and Poor learners, the rightward

bias βR was correlated with the probability of performing the right-hand action (FH: r = 0.556,

t38 = 4.13, p< 10−4; CM: r = 0.640, t19 = 3.63, p< 10−3). Likewise, the repetition bias β1 was

correlated with the probability of repeating the previous action regardless of state (FH:

r = 0.769, t38 = 7.40, p< 10−8; CM: r = 0.660, t19 = 3.83, p< 10−3). Given the exclusively right-

handed participants in this study, the majority were expected to exhibit a net rightward bias

(βR> 0) like that even captured within the subgroups based on learning performance (FH-G:

M = 0.113, t30 = 1.78, p = 0.043; FH-P:M = 0.160, t8 = 2.60, p = 0.016; FH-N:M = 0.391, t6 =

1.21, p = 0.136; CM-G:M = 0.167, t15 = 2.78, p = 0.007; CM-P:M = 0.245, t4 = 1.52, p = 0.102).

Table 3. Parameters of the 2CE1 model. Fitted parameters for the preferred 2CE1 model are listed for each participant group based on learning performance. To charac-

terize the dimensions of distinct behavioral profiles for each participant, the signs of individual fits are categorized as “discriminative” (-1� gA< 0) or “none” (gA = 0) for

action generalization; “discriminative” (-1� gS< 0), “none” (gS = 0), or “associative” (0< gS� 1) for state generalization; “leftward” or (βR< 0) “rightward” (βR> 0) for

constant bias; and “alternation” (β1< 0) or “repetition” (β1> 0) for hysteretic bias. Also listed are metrics for absolute constant bias |βR|, absolute hysteretic bias |β1|, and

overall bias |βR|+|β1|, which is inversely related to the probability of a correct response (p< 0.05). The residual devianceDdf (with degrees of freedom in the subscript) cor-

responds to the 2CE1 model’s improvement in fit relative to either the XC model with only constant bias or the complete nonlearning model XCE1 adding exponential

hysteresis. Standard deviations are listed in parentheses below corresponding means.

3-T Face/House 7-T Color/Motion

2D GRL + Con + Exp

(2CE1)

Good

learner

Poor

learner

Non-

learner

Good

learner

Poor

learner

Non-

learner

n 31 9 7 16 5 1

Learning rate α 0.517

(0.242)

0.269

(0.339)

0.483

(0.345)

0.555

(0.345)

0.540

(0.353)

0.372

Action generalization gA -0.355

(0.367)

-0.321

(0.376)

-0.787

(0.357)

-0.535

(0.393)

-0.551

(0.482)

-1.000

Discriminative : None 21 : 10 6 : 3 7 : 0 13 : 3 4 : 1 1 : 0

State generalization gS -0.184

(0.344)

0.367

(0.535)

0.359

(0.887)

-0.239

(0.390)

0.257

(0.819)

1.000

Disc. : None : Associative 18 : 9 : 4 1 : 2 : 6 2 : 0 : 5 11 : 1 : 4 1 : 1 : 3 0 : 0 : 1

Softmax temperature τ 0.698

(0.464)

0.737

(0.565)

3.066

(0.724)

0.700

(0.343)

1.298

(0.782)

2.157

Rightward bias βR 0.113

(0.354)

0.160

(0.185)

0.391

(0.855)

0.167

(0.240)

0.245

(0.360)

-0.435

Leftward : Rightward 12 : 19 2 : 7 2 : 5 2 : 14 1 : 4 1 : 0

Repetition bias:

Initial magnitude β1
-0.066

(0.235)

-0.133

(0.438)

-0.169

(1.034)

-0.130

(0.153)

-0.393

(0.949)

-1.278

Alternation : Repetition 21 : 10 4 : 5 4 : 3 13 : 3 3 : 2 1 : 0

Repetition bias:

Inverse decay rate λH
0.543

(0.371)

0.578

(0.404)

0.456

(0.421)

0.659

(0.318)

0.485

(0.403)

0.000

Constant bias |βR| 0.196

(0.314)

0.191

(0.149)

0.714

(0.561)

0.207

(0.204)

0.305

(0.298)

0.435

Hysteretic bias |β1| 0.171

(0.172)

0.228

(0.392)

0.868

(0.472)

0.152

(0.130)

0.717

(0.672)

1.278

Overall bias |βR|+|β1| 0.367

(0.449)

0.419

(0.396)

1.582

(0.969)

0.358

(0.276)

1.021

(0.584)

1.713

Constant (XC): Res. dev. D6 78.56 48.67 16.75 73.97 42.15 22.28

C + Exponential (XCE1): D4 70.55 28.94 1.46 64.82 10.31 1.51

https://doi.org/10.1371/journal.pcbi.1011950.t003
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If action bias and hysteresis were omitted as is typically the case, estimation bias and other

distortions of learning parameters would arise when forced to simultaneously fit these parallel

phenomena that are otherwise unaccounted for. The necessity of the extra parameters could

also be validated in silico with parameter recovery or lack thereof when simulating with or

without bias parameters, respectively (Fig N in S1 Text). As compared with successfully recov-

ering parameters of the full bias-and-hysteresis model 2CE1 (FH-G: α: r = 0.759, p< 10−6; gA:

r = 0.731, p = 10−6; gS: r = 0.725, p =< 10−5; τ: r = 0.668, p< 10−4; βR: r = 0.624, p = 10−4; β1:

r = 0.876, p< 10−10; λH: r = 0.463, p = 0.004; FH-P: α: r = 0.841, p = 0.002; gA: r = 0.853,

p = 0.002; gS: r = 0.819, p = 0.003; τ: r = 0.306, p = 0.212; βR: r = 0.824, p = 0.003; β1: r = 0.725,

p = 0.014; λH: r = 0.666, p = 0.025; CM-G: α: r = 0.638, p = 0.004; gA: r = 0.472, p = 0.033; gS:

r = 0.621, p = 0.005; τ: r = 0.697, p = 10−3; βR: r = 0.717, p< 10−3; β1: r = 0.588, p = 0.008; λH:

r = 0.448, p = 0.041; CM-P: α: r = 0.786, p = 0.058; gA: r = 0.866, p = 0.029; gS: r = 0.891,

p = 0.021; τ: r = 0.885, p = 0.023; βR: r = 0.974, p = 0.003; β1: r = 0.856, p = 0.032; λH: r = 0.996,

p< 10−3), recovery of the learning parameters from 2CE1 with the no-bias model “2” was gen-

erally less robust for all learners and especially insufficient—even failing to recover—for the

Poor-learner group more characterized by action biases that outweigh and obscure con-

founded learning processes (FH-G: α: r = 0.291, p = 0.056; gA: r = 0.535, p = 10−3; gS: r = 0.744,

p< 10−6; τ: r = 0.658, p< 10−4; FH-P: α: r = 0.430, p = 0.124; gA: r = 0.172, p = 0.329; gS:

r = 0.418, p = 0.131; τ: r = 0.374, p = 0.161; CM-G: α: r = 0.683, p = 0.002; gA: r = 0.592,

p = 0.008; gS: r = 0.604, p = 0.007; τ: r = 0.690, p = 0.002; CM-P: α: r = 0.716, p = 0.087; gA:

r = 0.631, p = 0.127; gS: r = 0.995, p< 10−3; τ: r = 0.796, p = 0.054).

The deficiencies of a model limited to only learning are especially noteworthy in this con-

trived environment with experimental controls regulating the reward schedule such that spuri-

ous confounds between effects of learning and effects of bias and hysteresis have been

mitigated by design. The proof of concept in this extreme case with unnatural controls suggests

an even more pressing need for this framework for applications in less controlled laboratory

settings as well as natural settings in the real world. Elsewhere without such experimental con-

trol via deliberate counterbalancing that would otherwise impose symmetric structure in the

environment as well as individual trajectories within it, there would be even greater suscepti-

bility to parameter distortion if bias parameters were omitted.

Action bias and hysteresis versus learning performance

In keeping with the previous point about idiosyncratic environments, the statistics of a given

task environment must be considered to set reference points for quantifying and interpreting

truly action-specific components of variance. While triple dissociation of bias, hysteresis, and

learning is generally nontrivial for a short sequence of active states, this challenge can be exac-

erbated even more so by class imbalance depending on the temporal statistics of states, actions,

and rewards. In arriving at a fully interpretable quantitative model amenable to individual dif-

ferences, the challenge was first met here by a hierarchically counterbalanced experimental

design that was tightly controlled within and across sessions.

Regarding the constant lateral bias, available rewards were thus evenly distributed between

left-hand and right-hand actions all throughout the experiment. Hence an omniscient optimal

agent with perfect 100% accuracy would be guaranteed to produce an even 50% probability of

a left- or right-hand action. This was not the case for hysteresis, however.

In contrast, that same agent would produce an uneven 66.7% probability of action alterna-

tion as a byproduct of choosing the optimal actions here. This incidental asymmetry can

superficially mimic an internal alternation bias while a learner actually responds to the external

structured sequence of four randomly rotating states. (States were never repeated in
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consecutive trials, and of the three remaining states, only one from the complementary cate-

gory would reward the action just performed in a given state for the block—resulting in two-

thirds or 66.7% alternation.) Note that a naïve policy with a 100% probability of alternation

irrespective of state would nonetheless produce chance accuracy at 50% by design. Such ambi-

guity for a raw, model-independent measure again underscores the need for comprehensive

computational modeling that accounts for multiple implicit effects simultaneously.

To the extent that the forces of bias and learning compete with each other to drive behavior,

an inverse relation was expected between learning performance and the weight of action bias

and hysteresis. Again omitting Nonlearners, overall bias |βR|+|β1| in actual learners was

inversely correlated with accuracy as the probability of choosing the correct action (FH: r =

-0.290, t38 = 1.87, p = 0.035, rS = -0.374, p = 0.009 for monotonicity; CM: r = -0.472, t19 = 2.33,

p = 0.015, rS = -0.605, p = 0.002 for monotonicity). This inverse relation between modeled bias

and objective performance was monotonic across not only all learners but also the alternation-

bias group specifically (FH: r = -0.383, t23 = 1.99, p = 0.029, rS = -0.475, p = 0.009 for monoto-

nicity; CM: r = -0.453, t14 = 1.90, p = 0.039, rS = -0.618, p = 0.006 for monotonicity), demon-

strating that bias as extracted with modeling was not confounded with alternation that may

incidentally result from pursuing reward. (See next section for more detail about the alterna-

tion-bias group.)

To complement the initial quantitative model comparison for overall goodness of fit, a

series of posterior predictive checks followed for evidence of bias and hysteresis with qualita-

tive falsification of the null hypotheses in nested models [26–28]. The same technique had

been used previously to falsify basic RL against GRL [12]. Each check entailed juxtaposition of

empirical behavior and the behavior simulated by GRL models that, while holding a fixed

assumption of two new learning parameters for generalization, are incrementally tested with

up to three more action-bias parameters.

First separating groups on the basis of learning performance, a binary model comparison

could illustrate some fundamental limitations of the pure GRL model “2” with no bias as

opposed to the final 2CE1 model with three parameters for constant bias and exponential hys-

teresis. (The intermediate models between these 4- and 7-parameter end points are investi-

gated in greater depth later.) Posterior predictive checks for these two models were tested

against empirical results for not only the probability of a correct (versus incorrect) action—as

is standard for a learning paradigm—but also the probability of a right-hand (versus left-hand)

action and the probability of a repeated (versus alternated) action independent of state.

From a naïve perspective it would appear that, by qualitatively capturing the probability of

a correct choice across levels of learning performance (FH-G:M = 12.8%, t30 = 13.13,

p< 10−13; FH-P:M = 0.1%, p> 0.05; FH-N:M = 0.1%, p> 0.05; CM-G:M = 12.3%, t15 = 8.75,

p = 10−7; CM-P:M = -0.2%, p> 0.05) in silico as well (FH-G: p< 0.05; FH-P: p> 0.05; FH-N:

p> 0.05; CM-G: p< 0.05; CM-P: p> 0.05) (Figs 6A/6D and 7A/7D and Fig Oa/d in S1

Text), the 4-parameter GRL model “2” with no bias seemingly accounts for human behavior

comparably to the 7-parameter 2CE1 model expanded with action bias and hysteresis. How-

ever, the shortcomings of a purely learning-based account can be revealed even in 0-back

and 1-back action-specific effects. Remarkably, these action-specific effects (Figs 6E–6F and

7E–7F) are quite substantial in effect size as compared with the value-based effects (Figs 6D

and 7D) typically and most intuitively emphasized in a paradigm for active learning.

Across these right-handed participants, all five groups in the aggregate performed the right-

hand action more often (FH-G:M = 1.8%, t30 = 2.11, p = 0.022; FH-P:M = 9.3%, t8 = 3.99,

p = 0.002; FH-N:M = 5.1, t6 = 1.54, p = 0.088; CM-G:M = 4.8%, t15 = 3.21, p = 0.003; CM-P:

M = 9.9%, t4 = 2.36, p = 0.039) (Figs 6B/6E and 7B/7E and Fig Ob/Oe in S1 Text), and greater

or marginally greater rightward bias was observed in Poor learners and Nonlearners relative to
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Good learners (FH-PG:M = 7.6%, t38 = 3.80, p< 10−3; FH-NG:M = 3.3%, t36 = 1.43,

p = 0.081; CM-PG:M = 5.2%, t19 = 1.47, p = 0.079). Hence this measure of absolute lateral bias

|P(Right)-50%| was also greater in Poor learners and Nonlearners (FH-PG:M = 6.0%, t38 =

3.81, p< 10−3; FH-NG:M = 3.7%, t36 = 2.14, p = 0.020; CM-PG:M = 4.8%, t19 = 1.51,

p = 0.074), which likewise held true when correlating across the continuous measure of accu-

racy rather than discrete participant groups (FH: r = -0.544, t38 = 4.00, p = 10−4; CM: r =

-0.540, t19 = 2.80, p = 0.006). Whereas the full 2CE1 model could replicate all of these effects

(p< 0.05), the reduced GRL model could not (p> 0.05). As a reflection of individual-specific

class imbalance or overfitting in the absence of constant bias, a roughly 2% margin was appar-

ent in the absolute difference between the reduced model’s right-hand probability and the

chance level of 50% (Figs 6E and 7E). Yet this margin was insubstantial in comparison to the

true effect sizes of constant bias that were quantitatively matched by only the full model.

Note again that 100% accuracy in this contrived environment would produce 66.7% alterna-

tion because of rotating states, but 100% alternation would produce 50% accuracy. The interpre-

tation of this raw measure is thus confounded between effects of reward and hysteresis, but in

keeping with the statistics of the environment, the Good-learner groups did exhibit a tendency to

Fig 6. Action bias and hysteresis versus learning performance: 3-T Face/House version. To compare the pure GRL

model (“2”) with the final 2CE1 model adding three parameters for constant bias and exponential hysteresis, simulated

data sets from each model were yoked to their respective empirical data sets. Posterior predictive checks were tested for

the probability of a correct action, the probability of a right-hand action, or the probability of a repeated action

independent of state. (a) If only examining accuracy in terms of correct choices for maximizing reward, the

shortcomings of the reduced model without bias are not so obviously apparent at first. (b) Upon considering action

bias, these right-handed individuals mostly had a tendency to select the right-hand action (p< 0.05). Whereas the

2CE1 model could account for this effect with a constant lateral bias (p< 0.05), the reduced model could not

(p> 0.05). (c) Regarding the probability of repetition versus alternation, note that 100% accuracy would produce

66.7% alternation for the present experimental design, but 100% alternation would still produce 50% accuracy. The

Good-learner group exhibited a tendency to alternate in the aggregate as expected (p< 0.05), whereas the Poor-learner

and Nonlearner groups did not (p> 0.05). Only the 2CE1 model featuring exponential hysteresis could match this

pattern with quantitative precision. (d-f) Independent of direction, absolute differences from the chance level of 50%

reveal the full extent of the action-specific components of variance, which are as substantial as the effects of reward

typically emphasized in active learning. For fitting the probability of a right-hand action or a repeated action, a margin

of roughly 2% for pure GRL was insubstantial in comparison. Error bars indicate standard errors of the means.

https://doi.org/10.1371/journal.pcbi.1011950.g006
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alternate in the aggregate while the Poor-learner and Nonlearner groups did not (FH-G:M =

-2.9%, t30 = 2.94, p = 0.003; FH-P:M = 1.5%, p> 0.05; FH-N:M = 0.8%, p> 0.05; CM-G:M =

-4.2%, t15 = 4.34, p< 10−3; CM-P:M = 3.5%, p> 0.05) (Figs 6C/6F and 7C/7F and Fig Oc/f in

S1 Text). In contrast, the absolute repetition-or-alternation frequency |P(Repeat)-50%|was signif-

icantly greater than chance for all subgroups (FH-G:M = 5.0%, t30 = 8.11, p< 10−8; FH-P:

M = 5.5%, t8 = 3.73, p = 0.003; FH-N:M = 8.2%, t6 = 3.84, p = 0.004; CM-G:M = 4.8%, t15 = 6.15,

p< 10−5; CM-P:M = 13.8%, t4 = 2.60, p = 0.030). Relative to Good learners, Nonlearners exhib-

ited even greater deviation from chance with repetition or alternation (M = 3.2%, t36 = 1.97,

p = 0.028), as did the Poor learners of at least the second data set (M = 9.1%, t19 = 2.89,

p = 0.005). The latter trend held true for the second data set with marginal significance for the

continuous measure of accuracy as well (r = -0.312, t19 = 1.43, p = 0.084). Only the 7-parameter

model could match net 1-back effects with quantitative precision (FH-G: p< 0.05; FH-P:

p> 0.05; FH-N: p> 0.05; CM-G: p< 0.05; CM-P: p> 0.05), and qualitative falsification of the

pure GRL model for such hysteretic effects was to be found in follow-up analyses disambiguat-

ing effects of reward and hysteresis. Owing to this disambiguation, the model-based results that

follow are more reliable than these model-independent measures for inference about actual hys-

teresis per se.

Different forms of action bias and hysteresis

The 2CE1 model should accommodate the idiosyncrasies of individual participants with

respect to not only GRL, which has already been demonstrated [12], but also action bias and

hysteresis. Based on parameter fits, Good and Poor learners were combined and then reclassi-

fied according to the directionality of either constant bias or hysteretic bias—that is, leftward

(βR< 0) versus rightward (βR> 0) or alternation (β1< 0) versus repetition (β1> 0). Nonlear-

ners were again omitted for more rigorous testing of biases in the presence of actual learning.

Each posterior predictive check was extended to the eight models previously highlighted in the

Fig 7. Action bias and hysteresis versus learning performance: 7-T Color/Motion version. Compare to Fig 6.

Results were replicated in the 7-T Color/Motion version of the experiment.

https://doi.org/10.1371/journal.pcbi.1011950.g007
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reduced model comparison—that is, incrementally building up from the no-bias model “2”

with only GRL (4 parameters) to the full 2CE1 model (7 parameters). Necessity could thus be

verified for every single parameter of the 2CE1 model.

Among these right-handed learners, 28% exhibited a contrary leftward bias (FH: n = 14/40;

CM: n = 3/21). Those with leftward bias (FH:M = -2.0%, t13 = 2.29, p = 0.020; CM:M = -2.3%,

t2 = 3.12, p = 0.045) exhibited a smaller (or marginally smaller) absolute magnitude of bias

(FH:M = 4.2%, t38 = 2.84, p = 0.004; CM:M = 5.1%, t19 = 1.31, p = 0.103) relative to the right-

ward-bias group (FH:M = 6.4%, t25 = 6.30, p< 10−6; CM:M = 7.4%, t17 = 4.73, p< 10−4)

(Fig 8), but the existence of so many leftward biases among right-handed individuals is note-

worthy. The models with a parameter for constant bias (2C through 2CE1) could replicate

these effects (p< 0.05), whereas those without the parameter could not at all (p> 0.05). These

findings falsify the naïve hypothesis that handedness might determine the direction of constant

bias invariably. The unpredictable distribution of an effect as simple as laterality stands among

the evidence that, in general, individual differences must be modeled without a-priori distribu-

tional assumptions—whether about a random sample of individuals or about the population

from which they are drawn (see Discussion).

Bear in mind that optimal behavior results in more frequent alternation of actions in this

particular setting. Conversely, naïve alternation does not result in above-chance performance

for the aforementioned reasons. Despite the latter fact, behavior was hypothesized to be predis-

posed to alternation that is independent of states and outcomes after an agent has been

Fig 8. Constant bias. (a) Based on individual fits of the 2CE1 model, Good and Poor learners were combined and then

reclassified according to whether the constant lateral bias was a leftward bias (βR< 0) (magenta bars) or a rightward

bias (βR> 0) (cyan bars). The model comparison extended this posterior predictive check and others to another six

intermediate models—four models nested within the 2CE1 model featuring exponential hysteresis (2N1, 2E1, 2C,

2CN1) and two models substituting 2-back hysteresis (2N2, 2CN2) but matched for degrees of freedom. For the

probabilities of left or right actions, some of these right-handed people actually exhibited a contrary leftward bias; those

who did exhibited a smaller absolute magnitude of bias than that of the rightward-bias group (p< 0.05). The models

with a parameter for constant bias (2C through 2CE1) could replicate these effects (p< 0.05), falsifying the models that

could not at all for lack of this parameter (p> 0.05). (b) Results were replicated in the 7-T Color/Motion version of the

experiment.

https://doi.org/10.1371/journal.pcbi.1011950.g008
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alternating actions at the appropriate times due to learning that is dependent on states and out-

comes. This hypothesis might initially appear at odds with the typical narrative in the RL litera-

ture emphasizing perseveration as naïve action repetition, but here, that would only represent

first-order perseveration at the level of actions. At the level of policies, second-order persevera-

tion suggests that a learner in such an environment perseverates from an expert reward-seek-

ing policy of optimal alternation when appropriate to a nonexpert default policy of

perseverative alternation whenever.

In keeping with this hypothesis, the alternation-bias group (FH: n = 25/40; CM: n = 16/21)

was expected to outnumber the repetition-bias group (FH: n = 15/40; CM: n = 5/21) as well as

exhibit an effect on the raw probability of alternation (FH:M = -5.0%, t24 = 7.32, p< 10−7;

CM:M = -5.4%, t15 = 4.93, p< 10−4) (Fig 9). Yet reward-maximizing accuracy was not signifi-

cantly higher for the alternation-bias group than for the repetition-bias group (FH:M = 3.2%,

p> 0.05; CM:M = 2.2%, p> 0.05), confirming the action-specific nature of this bias as a non-

expert heuristic. The arrow of causality for the hypothesis of second-order perseveration pri-

marily points from optimal alternation to perseverative alternation rather than vice versa.

These results lend themselves to an analogy with the previously described cohort that was left-

biased despite being right-handed, whereas there was still also a sizable repetition-bias group

in which some learners instead adhered to a more intrinsic first-order perseveration effect like

what has typically been reported in the literature. That is, this learning cohort could sometimes

Fig 9. Hysteresis represented by the previous trial. The learners were next reclassified according to whether the

hysteretic bias was an alternation bias (β1< 0) (violet bars) or a repetition bias (β1> 0) (orange bars). With some

adhering to a more typical profile of first-order perseveration, the repetition-bias group did retain a substantial effect

on the probability of repeating an action independent of state (p< 0.05). However, in keeping with second-order

perseveration, the alternation-bias group actually outnumbered and outweighed in effect size the repetition-bias group

(p< 0.05). That is, extra alternation could follow from the design feature whereby optimal behavior would more

frequently result in alternating actions. In contrast to optimal alternation when appropriate for a given state, this

perseverative alternation was action-specific so as to not actually improve reward-maximizing accuracy for the

alternation-bias group (p> 0.05). The models with at least one parameter for hysteretic bias could replicate these

1-back effects (p< 0.05). Although the 2C model with constant bias could partially mimic action repetition with a

nonsignificant trend, the models without any hysteresis parameters (2 and 2C) could not properly match the empirical

1-back effect (p> 0.05).

https://doi.org/10.1371/journal.pcbi.1011950.g009
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alternate to exploit actions with high estimated reward when appropriate but still perseverated

so as to repeat actions according to a more robust default repetition bias (FH:M = 3.3%, t14 =

2.24, p = 0.021; CM:M = 7.4%, t4 = 1.06, p = 0.175; nonsignificant, but versus alternation-bias

group:M = 12.9%, t19 = 3.06, p = 0.003). Whereas the models with at least one parameter for

hysteretic bias (including the simplest 2N1 model) could replicate these 1-back effects

(p< 0.05), the models with no such parameter could not (p> 0.05).

Notably, the 2C model with constant bias but no hysteresis could partially mimic the rep-

etition effect observed in the repetition-bias group (with a trending but nonsignificant

result, p> 0.05). That is, a true action-repetition effect could be overfitted to some extent by

instead representing only imbalanced base rates for actions. Although this reduced con-

stant-only model fails to match the empirical repetition result quantitatively, there is cause

for alarm in the qualitative trend that spuriously arises in both data sets. As discussed previ-

ously, the present environment represents a distinct active-learning paradigm in which

such class imbalance is actually minimized—unlike most other environments with greater

confounding in distributions for classes such as those of the actions per se or repetitions

versus alternations. In general, omission of repetition bias may inflate estimates of constant

bias with limited data if there is insufficient opportunity for repetition to be demonstrated

across multiple actions. Likewise, omission of constant bias may inflate estimates of a con-

founded repetition effect. Conversely, omission of alternation bias may deflate estimates of

constant bias because this alternation counteracts the incidental repetition of an action with

a greater base rate. The different forms of bias and hysteresis all need to be accounted for

comprehensively.

Psychometric modeling of the mixture policy

More quantitatively precise modeling of psychometric functions followed to examine the

interface of value-based learning, action-specific effects, and the softmax function determining

the mixture policy for action selection. The breadth of this mixture of experts and nonexperts

integrated modular elements of basic RL, generalized RL, constant bias, hysteretic bias, and

stochasticity from exploration as well as noise. As expected across all subgroups of learners,

the probability of an action increased with the difference between the state-dependent action

values Qt(st,a) learned by the GRL component of the 2CE1 model as fitted to empirical behav-

ior (FH-L: β = 1.544, t13 = 6.38, p = 10−5; FH-R: β = 2.084, t25 = 6.74, p< 10−6; FH-A: β =

1.682, t24 = 9.60, p< 10−9; FH-P: β = 2.316, t14 = 4.61, p< 10−3; CM-L: β = 0.938, t2 = 2.67,

p = 0.058; CM-R: β = 1.494, t17 = 7.20, p< 10−6; CM-A: β = 1.443, t15 = 7.20, p< 10−5; CM-P:

β = 1.76, t4 = 2.97, p = 0.021) (Figs 10 and 11).

In determining the probability of left-hand versus right-hand actions, constant bias was

derived from the logistic model in the appropriate directions for both the leftward-bias (FH: β
= -0.113, t13 = 2.93, p = 0.006; CM: β = -0.103, t2 = 2.97, p = 0.049) and rightward-bias (FH: β =

0.265, t25 = 6.98, p = 10−7; CM: β = 0.302, t17 = 5.08, p< 10−4) groups (Fig 10). The models fea-

turing constant bias could replicate these effects with comparable psychometric functions

(p< 0.05), whereas models without the parameter could not (p> 0.05).

For instead the probability of repeated versus alternated actions independent of state, hys-

teretic bias was derived from the logistic model in the appropriate directions for both the alter-

nation-bias (FH: β = -0.178, t24 = 5.21, p = 10−5; CM: β = -0.220, t15 = 5.31, p< 10−4) and

repetition-bias (FH: β = 0.218, t14 = 4.79, p = 10−4; CM: β = 0.462, t4 = 1.35, p = 0.124; nonsig-

nificant, but versus alternation-bias group:M = 0.682, t19 = 3.51, p = 0.001) groups (Fig 11).

The models featuring at least one parameter for hysteretic bias could replicate these 1-back

effects with comparable psychometric functions (p< 0.05), and while models without the
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parameter could not (p> 0.05), the solitary constant bias of the 2C model does deceptively

mimic repetition with a nonsignificant trend.

Dynamics of action hysteresis

The hysteresis trace of the 2CE1 model extends its temporal horizon beyond the 1-back effects

examined thus far. For the preceding posterior predictive checks, the extra parameter for expo-

nential decay could not explicitly show the full extent of its impact—showing instead only sub-

tle quantitative improvement. If this costly free parameter were to be justified, its

improvement for the model would need to also be qualitative and substantial. Considering

that the 2CE1 model has already been shown to outperform both simpler and more complex

implementations of hysteresis overall, the assumption of two parameters for exponential hys-

teresis must provide a superior parsimonious fit for effects of action history ranging from

2-back onward with an indefinite horizon. Moreover, 2-parameter exponential hysteresis out-

performed n-back models for not only n = 1 but also n = 2 (2CN1 and 2CN2), establishing that

it must not be only the 2-back effects but rather also 3-back and beyond that have significant

weight beyond 1-back. Accordingly, hysteretic effects were explored directly up to eight trials

back.

The probability of a repeated action was now conditioned on each respective action from

the eight most recent trials (Fig 12; see Fig P in S1 Text for distributions of runs of consecutive

repeats). As expected for the repetition-bias group, this probability of repeating a previous

action (FH:M = 3.3%, t14 = 2.24, p = 0.021; CM:M = 7.4%, t4 = 1.06, p = 0.175; nonsignificant,

Fig 10. Psychometric modeling of constant bias. The probability of an action increased with the difference between

action valuesQt(st,a) derived from the GRL component of the 2CE1 model as fitted to empirical behavior (p< 0.05).

Constant bias was derived from a logistic model in the appropriate directions for both the leftward-bias and rightward-

bias groups (p< 0.05). The models featuring constant bias could replicate these effects with quantitative precision as

well (p< 0.05), whereas models without the parameter could not (p> 0.05). The nine plots per row each have an

identical x-axis despite omission of tick labels from every other plot for readability. Error bars indicate standard errors

of the means.

https://doi.org/10.1371/journal.pcbi.1011950.g010

PLOS COMPUTATIONAL BIOLOGY Reinforcement learning versus bias and hysteresis: a mixture of experts and nonexperts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011950 March 29, 2024 20 / 70

https://doi.org/10.1371/journal.pcbi.1011950.g010
https://doi.org/10.1371/journal.pcbi.1011950


but versus alternation-bias group:M = 12.9%, t19 = 3.06, p = 0.003) was elevated above chance

prior to 1-back as well (FH:M = 4.1%, t14 = 3.39, p = 0.002; CM:M = 8.3%, t4 = 1.83, p = 0.070

with marginal significance) and remained elevated. Conversely, for the alternation-bias group,

this probability returned from a 1-back alternation effect (FH:M = -5.0%, t24 = 7.32, p< 10−7;

CM:M = -5.4%, t15 = 4.93, p< 10−4) to the chance level prior to 1-back (FH:M = -0.3%,

p> 0.05; CM:M = -0.4%, p> 0.05) as it increased slightly thereafter. Only the models with

exponential hysteresis (2E1 and 2CE1) could match the shapes of the action-history curves,

and the addition of constant bias made the correspondence even more precise. Concerning its

pitfall of mimicry, constant bias alone (2C) manifests as an across-trial increase in the proba-

bility of repetition that superficially resembles the multitrial signature of an extended hysteresis

trace.

To better interpret the preceding model-independent time courses, the fitted parameters of

the GRL model with either exponential or n-back (i.e., 4-back) hysteresis provide context by

explicitly factoring out confounds in constant bias as well as the effects of value-based learning

(Fig 13). (The selection of 4-back is only for comparison of action-history curves, as the cor-

rected fit of the 9-parameter 2CN4 model was actually worse than that of 2CN2 after adding

two more free parameters.) This juxtaposition of parametric and nonparametric implementa-

tions of hysteresis revealed notably close correspondence for at least the first two trials back.

However subtle the correspondence may be for decaying 3-back and 4-back effects, the supe-

rior overall fit of the exponential model relative to a simpler 2-back model (2CN2) already

indicated the persistence of collectively significant cumulative effects from 3-back and beyond.

Moreover, omission of constant bias (2E1 or 2N4) consistently inflated all of the modeled rep-

etition weights, revealing the source of the mimicry between constant bias and repetition—

Fig 11. Psychometric modeling of hysteresis represented by the previous trial. For instead the probabilities of

alternated or repeated actions, hysteretic bias was likewise derived from a GRL-based logistic model in the appropriate

directions for both the alternation-bias and repetition-bias groups (p< 0.05). The models featuring at least one

parameter for hysteretic bias could replicate these 1-back effects with comparable psychometric functions (p< 0.05),

and while models without the parameter could not (p> 0.05), the 2C model could again deceptively mimic repetition

with a nonsignificant trend.

https://doi.org/10.1371/journal.pcbi.1011950.g011
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especially in the persistent exponential form—that was alluded to with posterior predictive

checks. The 3-parameter adjunct of constant bias and exponential hysteresis proves necessary

as well as largely sufficient to distill the action-specific aspects of individual behavioral profiles.

Different forms of bias and hysteresis versus learning performance

The first set of analyses originally split the three levels of learning performance without split-

ting directions of action biases, whereas the second split directions of bias across Good and

Poor learners without splitting levels of learning performance. For this final stage, participants

were further divided into six subgroups that separated the two directions of either form of bias

as well as the three levels of learning performance—this time also plotting the two directions

for previously omitted Nonlearners. There are statistical limitations with this next degree of

granularity, which left some of the subgroups with a small sample, but these intersectional sub-

groups are worth consideration even if only to verify that the main effects essentially extend to

this level as well.

With respect to the first set of original findings, action bias and hysteresis were significant

for Good learners but even more pronounced for Poor learners and Nonlearners (Figs 6 and

7). Second, 2CE1 simulations modeled with constant bias and exponential hysteresis could

replicate the directions and magnitudes of empirical action-specific effects both qualitatively

and quantitively (Figs 8 and 9). Notwithstanding the lack of statistical significance in a few of

Fig 12. Hysteresis represented across multiple trials. Here the scope of hysteresis was extended to previous actions

up to eight trials back. For the repetition-bias group, this probability of repeating a previous action remained elevated

above chance prior to 1-back (p< 0.05). For the alternation-bias group, this probability instead returned from a 1-back

alternation effect (p< 0.05) to chance prior to 1-back as it increases backward (p> 0.05). Only the models with

exponential hysteresis could properly match the shapes of the action-history curves, and the addition of constant bias

made the correspondence even more precise. With regard to mimicry, an upward shift in the curve from constant bias

in the 2C model superficially resembles the autocorrelational signature of repetition across multiple trials with

exponential hysteresis. The nine plots per row each have an identical x-axis despite omission of tick labels from every

other plot for readability. Error bars indicate standard errors of the means.

https://doi.org/10.1371/journal.pcbi.1011950.g012
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the smallest samples, these trends from either two or three groups consistently held true with

the scrutiny of their interface within the six subgroups (Figs Q and R in S1 Text).

Alternatives to state-independent action hysteresis

With the primary model comparison establishing that the 2CE1 model has the ideal architec-

ture among the 72 models compared thus far, what follows are other possibilities that could be

considered instead of or in addition to state-independent action hysteresis for comparable

effects and possible confounds. In other words, these factors could ultimately relate to some

form of repetition or alternation across the sequence of action choices. The list of alternative

features includes state-dependent action hysteresis Ht(st,a) (cf. [21]), state-independent action

value Qt(a), confirmation bias in learning that weighs positive outcomes over negative with the

constraint αN< αP (i.e., only optimism), or asymmetric learning rates with flexibility in the

possibilities for αN 6¼ αP (i.e., optimism or pessimism).

Parsimony is paramount here, and none of these alternatives are as parsimonious as basic

hysteresis that is both outcome-independent and state-independent. Take, for example, certain

instances of action repetition: Rather than default attribution to a more general optimistic con-

firmation bias for learning [64–68], first-order perseveration may offer a more parsimonious

explanation for some observations. As mentioned for RL, confirmation bias can translate to an

asymmetry in learning rates favoring positive over negative outcomes [69–78]—but at the cost

Fig 13. Hysteresis parameters with exponential or nonparametric models. The fitted parameters of the GRL model

with either exponential or 4-back hysteresis are plotted as repetition weights (or alternation if negative)—simply βn for

n-back models or the corresponding weights β1λH
n-1 in the exponential function. Action-specific effects are better

illuminated here by explicitly factoring out effects of RL and GRL within the comprehensive model. There is close

correspondence between these parametric (2E1 and 2CE1) and nonparametric (2N4 and 2CN4) implementations of

hysteresis for at least the first two trials back. The need for a scope extending beyond 1-back demands more than one

free parameter, and a proper hysteresis trace with exponential decay yields an even better fit than a scope of 2-back due

to subtle effects from 3-back and beyond. As further evidence of interactions among parameters, omission of constant

bias (2E1 or 2N4) consistently inflated the modeled repetition weights as they were forced to attempt to mimic the

necessary third parameter for constant bias. Altogether, the CE1 adjunct is essential. Error bars indicate standard

errors of the means.

https://doi.org/10.1371/journal.pcbi.1011950.g013
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of greater susceptibility to overfitting relative to state-dependent or state-independent hystere-

sis [42,44,46,79–81], which can manifest its own sort of outcome-independent confirmation

bias (see Discussion). (Moreover, as option values become relative in the action policy, the

action generalization of GRL can also achieve effects comparable to what asymmetric learning

rates might otherwise produce. This point is beyond the present scope but illustrates the

broader issue of compounding complexity across the many possibilities that a model could

incorporate.)

The initial round of analyses for this extended model comparison began with substitutions

of the factors of interest so as to test—and presumably falsify—their alternative hypotheses for

the origins of repetition and alternation biases that state-independent hysteresis has been

shown to account for with the posterior predictive checks above. Qualitative falsification was

indeed robust for all four alternatives, such that none of these model features were capable of

generating the original action-history curves that only state-independent action hysteresis

could produce (Fig 14 and Fig S in S1 Text). These falsifications were hypothesized a priori in

consideration of the following conceptual distinctions.

First, state-dependent hysteresis (“sE1+2” or “2sE1”) would not align with state-indepen-

dent hysteresis because the four states were rotated in sequence such that there were variable

numbers of trials between the origins and consequences of state-dependent effects. In keeping

with this point, only a subtle repetition effect emerged after two trials back. For the original

repetition-bias group, the effect sizes were nonexistent for one trial back and quantitatively

insufficient from two trials back onward. Furthermore, for the original alternation-bias group,

the emergent repetition effect was actually counterproductive such that it pointed in the oppo-

site direction.

Fig 14. Alternatives to state-independent action hysteresis. Compare to Fig 12. To falsify alternative hypotheses

concerning the origins of the apparent effects of state-independent action hysteresisHt(a) (“2CE1”), the model

comparison was first extended to test substitution of state-dependent action hysteresisHt(st,a) (“sE1+2C”), state-

independent action value Qt(a) (“Qa+2C”), confirmation bias in learning with the constraint αN< αP (“cLR+2C”), or

asymmetric learning rates with no constraint for αN 6¼ αP (“LR+2C”). As expected, none of these alternatives were

capable of generating the original action-history curves that only state-independent action hysteresis could produce.

https://doi.org/10.1371/journal.pcbi.1011950.g014
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Second, state-independent action value (“Qa+2”) is unlike state-independent action hyster-

esis inasmuch as action value is outcome-dependent while action hysteresis is outcome-inde-

pendent. In principle, there is potential for some degree of confounding if actions that are

rewarded consistently end up being repeated consistently. However, in this controlled envi-

ronment, state-independent action value had little impact on the action-history curves. For the

second data set at least, there was a subtle alternation effect in both the original alternation-

bias group and the original repetition-bias group—counterproductively for the latter.

Third, confirmation bias in learning (“cLR+2”) is generally limited to action repetition and

is not only outcome-dependent but also state-dependent in the presence of rotating states

here. Like with state-dependent hysteresis, there was only a subtle repetition effect from two

trials back onward. However, unlike with state-dependent hysteresis, model simulations for

the alternation-bias group did not exhibit a contrary repetition bias.

Fourth, a more flexible asymmetry in learning rates (“LR+2”), including either an optimis-

tic confirmation bias or a pessimistic doubt bias, is again state- and outcome-dependent in the

presence of rotating states here. Notably, not all participants in the repetition-bias group

adhered to the rule of αN< αP in the absence of the constraint forcing confirmation bias.

Hence the action-history curve for the repetition-bias group was not elevated above chance

beyond 2-back as before with the constrained “cLR+2” result. Instead, the unconstrained

asymmetry of “LR+2” produced a 1-back alternation effect for both groups—that is, also coun-

terproductively for the repetition-bias group. With respect to the alternation-bias group, the

model’s effect was insufficient in magnitude to quantitatively account for the actual effect

observed.

Extended model comparison

At this stage, each of the four alternatives had been falsified against state-independent hystere-

sis with its parsimonious account of the origin of the repetition and alternation effects of inter-

est. The next issue to investigate was the extent to which an alternative feature might instead

complement state-independent hysteresis for an even more complex model. Accordingly, the

extended model comparison not only substituted these features—namely, state-dependent

action hysteresis, state-independent action value, confirmation bias, and asymmetric learning

rates—but also added them while crossing with constant bias and 1-back, 2-back, or exponen-

tial state-independent hysteresis (e.g., “sE1+2C”, “sE1+2CN1”, “sE1+2CN2”, “sE1+2CE1”) in

subsets of eight models per alternative (Table 4 and Figs S-W and Tables Q-U in S1 Text).

The eight models crossed with each alternative feature mirrored the previous reduction of the

primary model comparison.

The extended model comparison was applied both within and across the six subsets of

eight models (with 44 models in total for the omnibus comparison). The first two subsets

built up to constant bias and exponential hysteresis but distinguished the original subset

with state-independent hysteresis (e.g., “2CE1”) from a new subset with state-dependent

hysteresis (e.g., “2CsE1”). The remaining four subsets added each of the four alternative fea-

tures as a fixed component crossed with the original subset of eight models building up to

2CE1 (e.g., “sE1+2CE1”, “Qa+2CE1”, “cLR+2CE1”, “LR+2CE1”).

Within every one of the model subsets, the group-level fitting results consistently favored

the addition of the CE1 adjunct with all three of its parameters. In other words, the effects of

state-independent hysteresis are indeed substantial, and these specific effects are not con-

founded with those of any of the alternative features because no alternative could eliminate the

need for including state-independent hysteresis in order to adequately fit even the Good-

learner groups.
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Next comparing all 44 models across the six subsets at once, there actually was a notable

improvement in overall quantitative fit with the addition of state-dependent hysteresis in partic-

ular (FH-G: sE1+2CE1, FH-P: sE1+2CN1, FH-N: 2CE1, CM-G: sE1+2CE1, CM-P: Qa+2CN2).

Table 4. Extended model comparison. Additional models were constructed with substitution or addition of the alter-

native features that might be expected to interact with effects of state-independent action hysteresis. Each alternative

was fixed within a new subset of eight models building up to constant bias and exponential state-independent hystere-

sis (“-CE1”). Variations on substitution of state-dependent hysteresis in particular were also tested up to two parame-

ters. Listed for each participant group are the best-fitting models (per AICc score) among each subset of eight models

as well as the full set of 44 models. Although there appears to be some quantitative evidence suggesting state-dependent

hysteresis in addition to state-independent hysteresis, the lack of qualitative validation with falsification leaves this

quantitative result inconclusive. Hence the 2CE1 model remains preferred for a final model. “df” stands for degrees of

freedom. See also Figs S-W and Tables Q-U in S1 Text.

Model comparison df Best fit df AICc

3FH: Good learner (n = 31) sE1+2CE1 9 71.13

State-independent action hysteresis 7 2CE1 7 67.69

State-dependent action hysteresis 7 2CsE1 7 67.47

State-indep. + State-dep. action hysteresis 9 sE1+2CE1 9 71.13

State-indep. hysteresis + State-indep. action value 9 Qa+2CE1 9 64.92

State-indep. hysteresis + Confirmation bias 8 cLR+2CE1 8 68.32

State-indep. hysteresis + Asymmetric learning rates 8 LR+2CE1 8 69.57

3FH: Poor learner (n = 9) sE1+2CN1 8 65.50

State-independent action hysteresis 7 2CE1 7 54.06

State-dependent action hysteresis 7 2CsE1 7 62.40

State-indep. + State-dep. action hysteresis 9 sE1+2CN1 8 65.50

State-indep. hysteresis + State-indep. action value 9 Qa+2CE1 9 50.32

State-indep. hysteresis + Confirmation bias 8 cLR+2CE1 8 54.67

State-indep. hysteresis + Asymmetric learning rates 8 LR+2CE1 8 54.73

3FH: Nonlearner (n = 7) 2CE1 7 16.04

State-independent action hysteresis 7 2CE1 7 16.04

State-dependent action hysteresis 7 2CsE1 7 5.94

State-indep. + State-dep. action hysteresis 9 sE1+2CE1 9 15.96

State-indep. hysteresis + State-indep. action value 9 Qa+2CE1 9 14.82

State-indep. hysteresis + Confirmation bias 8 cLR+2CE1 8 14.43

State-indep. hysteresis + Asymmetric learning rates 8 LR+2CE1 8 14.72

7CM: Good learner (n = 16) sE1+2CE1 9 72.64

State-independent action hysteresis 7 2CE1 7 67.62

State-dependent action hysteresis 7 2CsE1 7 69.93

State-indep. + State-dep. action hysteresis 9 sE1+2CE1 9 72.64

State-indep. hysteresis + State-indep. action value 9 Qa+2CE1 9 66.07

State-indep. hysteresis + Confirmation bias 8 cLR+2CE1 8 67.07

State-indep. hysteresis + Asymmetric learning rates 8 LR+2CE1 8 67.55

7CM: Poor learner (n = 5) Qa+2CN2 9 50.02

State-independent action hysteresis 7 2CN2 7 48.15

State-dependent action hysteresis 7 2CsE1 7 23.02

State-indep. + State-dep. action hysteresis 9 sE1+2CN2 9 49.30

State-indep. hysteresis + State-indep. action value 9 Qa+2CN2 9 50.02

State-indep. hysteresis + Confirmation bias 8 cLR+2CN2 8 46.05

State-indep. hysteresis + Asymmetric learning rates 8 LR+2CN2 8 46.78

https://doi.org/10.1371/journal.pcbi.1011950.t004
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Thus, among the four candidates, state-dependent hysteresis could merit highest priority as the

next feature to explore as a possibility for an even larger 9-parameter model. However, despite

quantitative gains for state-dependent hysteresis as well as other alternatives, there were still no

qualitative improvements in any model-specific effect as would be necessary to falsify a base

model having only state-independent hysteresis (Figs T-W in S1 Text).

With respect to the otherwise best candidate of state-dependent hysteresis, the absence of

qualitative falsification means that its quantitative improvement in fit might actually reflect a

spurious relation with residual nonlinearities in the dynamics of learning processes that, unlike

hysteresis, are both state-dependent and outcome-dependent. Inevitably, learning is modeled

less than perfectly with the current specification of GRL; to take but one example, there are

necessary simplifications of a static rather than dynamic learning rate (cf. [81–93]) as well as

static generalization weights [12]. The presently inconclusive evidence for state-dependent

hysteresis is nevertheless suggestive of the possibility of qualitative validation in future para-

digms designed to address follow-up questions about this and other plausible factors directly.

However, the most definitive qualitative evidence here is limited to concluding that the final

model remains the parsimonious 2CE1 model prioritizing state-independent hysteresis.

Discussion

Summary

These findings have illuminated action bias and hysteresis in the context of active RL so as to

suggest that any such study of sequential behavior would benefit from due consideration of

these essential variables. Even for some who learn properly, action-specific effects can be so

substantial as to actually outweigh the learning effects under primary focus. The modeling

inquired beyond basic RL, but two-dimensional GRL as well as constant bias and state-inde-

pendent hysteresis (2CE1) could all be validated collectively for both quantitative and qualita-

tive individual differences in highly idiosyncratic human behavior. Simpler alternatives to the

3-parameter CE1 adjunct for bias and hysteresis were systematically falsified with factorial

model comparison and posterior predictive checks. Conversely, hysteresis models more com-

plex than the 2-parameter exponential function of the CE1 adjunct were susceptible to overfit-

ting. Moreover, an extended model comparison eliminated possible confounds in the form of

state-dependent action hysteresis, state-independent action value, confirmation bias in learn-

ing, or asymmetric learning rates.

Recognizing each action-bias parameter as fundamental to the core modules of the mixture

of experts and nonexperts, the practical costs of these degrees of freedom do not preclude par-

allel development of learning algorithms and theory. On the contrary, accounting for bias and

hysteresis as sources of variance within and between individuals enhances the interpretability

of finite behavioral data, which need to be modeled with the independence of each participant

preserved. In environments without the symmetric counterbalancing of the present experi-

ment, the limitations of a model with only learning can be even more substantial from spuri-

ous correlations between signatures of learning and nonlearning processes. To the extent that

the action-specific aspects of bias and hysteresis would also be even more prominent in tasks

with more engaging motor responses, proof of concept in this case of trivial motor demands

suggests that these effects on choices and actions are as ubiquitous as they are parsimonious

and should always be accounted for as a first priority—even with relevance to efficient artificial

intelligence as a feature rather than a bug. While fitting at the level of individuals, building

from the foundation of this base model—with at least five free parameters for basic RL (0CE1)

—is critical to precisely test for whether and how each individual is learning as but a part of

interacting with the environment.
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Constant bias and lateral bias

Here, the scope for cognitive modeling of motivated behavior is expanded beyond the abstrac-

tion of a disembodied brain. Considering that the motor system is the ultimate interface for

the actions to be optimized, even low-level sensorimotor processes can constrain the embodied

learner. This special case of a binary, bimanual choice task also translates constant bias to a lat-

eral bias.

Although mostly overlooked as part of models of value-based learning, constant bias has

occasionally been reported—with and without laterality [12,14–17,21,91,94–99] as well as

between acting and not acting for a go/no-go task [100–105]. Even decision making that is not

defined by learning—whether value-based [106] or perceptual [80,86,88–90,92,107–112]—can

be affected by such stimulus-independent biases with a less obvious role for bias than would be

assumed for skillful action-based decision making where physical aspects of action per se have

explicit relevance [113].

The decision cost and action cost implicit in such a bias may reflect more than effector-spe-

cific motor bias—for example, not only selecting the left hand but also pressing the left button,

engaging the left side of abstractly represented egocentric space, attending to the left hemifield

of visual space, or embedding a chosen action within subsequences of left and right actions.

Asymmetric costs and biases can be considered at all levels of sensorimotor perception, plan-

ning, preparation, and execution. Every participant in this neuroimaging study was right-

handed for consistency, such that the coexistence of some leftward biases along with the right-

ward majority demonstrates the significance of not just handedness [114–118] but also a mix-

ture of different levels of representation for nonexpert control.

Lateral biases, for example, can have diverse origins as well. For this sample of Westernized

Americans—who are left-to-right readers, for example—eye-tracking studies have demon-

strated that people with this cultural background share a propensity for attending to the left

side of a display first [106,119–121]. Even more generally, low-level overrepresentation of the

left hemifield has been implicated in tasks as basic as line bisection [122]. These biases are in

keeping with the innate right-hemispheric dominance of visuospatial attention in the human

brain [123–126]. Yet right-to-left (e.g., Hebrew) readers still learn through experience so as to

instead exhibit rightward biases [127–129].

In essence, endogenous and exogenous sensorimotor biases are ubiquitous but not always

straightforwardly interpretable beyond net effects reflecting a mixture of factors. For example,

a leftward visuospatial bias might be at odds with a rightward motor bias in right-handed indi-

viduals performing this visuomotor task. There remains substantial ambiguity concerning the

distributions of such biases and the relative influences of personal traits (such as handedness)

or environmental factors (such as visuospatial cueing). Nevertheless, the key point established

here is the need for flexible and fine-grained modeling of the possibilities for biases at the level

of individuals.

Bidirectional hysteretic bias

Maintaining the neutral terminology of “hysteresis” as “repetition” versus “alternation”, the

model here begins with behavioral phenomenology before elaborating on broad unifying the-

ory. That being said, the theoretical construct most often cited with respect to such hysteresis

is perseveration, which describes how past responses are repeated regardless of whether or not

it is beneficial to do so according to feedback for a new state of the environment [130–135].

Perseveration is linked with the conceptual umbrella of habit to some extent in not being goal-

directed. However, habitual phenomena also tend to be more state-dependent, reward-depen-

dent, time-dependent, and intentional than perseverative phenomena [6,136–144]. The
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literature has emphasized repetition over alternation as far back as the classic “law of effect”,

which postulates repetition of rewarded responses but was also complemented by the “law of

exercise” that postulates the repetition of past responses regardless of reward outcomes

[64,65,137]. Yet an inverted sort of antiperseveration can also manifest with similarly inflexible

tendencies toward rhythmic patterns of alternating responses [145–148].

The present study operationalizes perseveration at two levels: first-order, action-level per-

severation for repetition of what an agent just did and second-order, policy-level perseveration

for what an agent has been doing—either repetition or alternation depending on the circum-

stances. First-order perseveration aligns with the conventional usage of the term “persevera-

tion” for action repetition in the context of RL, whereas the second-order perseveration

emphasized here is less constrained and can result in action alternation as well for an environ-

ment such as the controlled one here. The present paradigm did not actually favor alternation

per se but nonetheless facilitated it, such that a reward-maximizing policy would incidentally

result in more frequent alternation but without any advantage in reward for arbitrary alterna-

tion. The hypothesis of second-order perseveration was apparently confirmed in the majority

of participants with alternation biases rather than the default repetition biases more often

mentioned in the RL literature. Yet, considered further, net effects in output frequencies can

also reflect choice and action biases at different levels of representation.

Relatively low-level properties of the motor system can also contribute to alternation more

so than repetition. More nonspecific alternation biases can manifest even in perceptual deci-

sion making, including neural correlates localized to motor cortex [147]. Whereas motor

priming could favor repetition [149–155], motor fatigue could favor alternation if only for an

opportunity to rest an effector and recover energy. The general phenomenon of repetition sup-

pression [156,157] extends to the attenuation of signals in the brain’s motor areas—and espe-

cially premotor cortex—when actions are repeated [158–160]. Such effects may in part reflect

the post-movement rebound of beta-band oscillations [161], which are also perhaps analogous

to inhibition of return in sensory systems [162–164]. Tendencies toward alternating can also

be apparent in arbitrary free choices made without the feedback of any outcome. Whether in

expectation of statistical regularities or merely because of limitations in capacity for short-term

memory or cognitive control, counterproductive repetition and alternation biases alike can

even persist when a person is explicitly instructed to generate maximally random sequences as

simple as mental coin flips [165–175].

Perseveration and action repetition in this context have been related to the functions of

dopamine [20,144,176–181] (but see [101,182]) as well as perhaps serotonin [177,183] (but see

[101]). The theory here can take into account the roles of dopaminergic systems for not only

computations such as the reward-prediction error [184–186] but also motivation, vigor, effort,

and skillful execution of movement [187–192].

Multiple expert, semiexpert, and nonexpert controllers

The key dynamic variables in the present model are state- and outcome-dependent action value

Qt(st,a) and state- and outcome-independent hysteretic biasHt(a). Having justified these two

fundamental modules as a first priority with constant bias, there are then further possibilities to

consider for additions to the mixture of expert and nonexpert controllers. As per the extended

model comparison,Ht(a) andQt(st,a) could in principle be complemented by state-dependent,

outcome-independent hysteretic biasHt(st,a) (cf. [21]) or state-independent, outcome-depen-

dent action value Qt(a). However, taking the qualitatively inconclusive gains in model fit

observed here as an example, disentangling nonlinear dynamics for multiple types of learning

and hysteresis at different levels of representation is nontrivial in practice.
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Regarding Ht(st,a) for hysteresis that is outcome-independent but instead conditioned on

the current external state, there can be an analogous conceptualization of a choice or action

itself as a state-dependent reinforcer (i.e., autoreinforcer) motivating repetition in another pos-

itive-feedback loop—or a punisher motivating alternation for exploration. LikeHt(a), its coun-

terpartHt(st,a) can also be modeled with the accumulating hysteresis trace [21]. Along with

the alternative of a replacing trace (see Methods), another more constrained implementation

of hysteretic accumulation could be based on an action-prediction error (or choice-prediction

error) with analogy to the reward-prediction error [40,42–47,96,143,144,178,181]. The action-

prediction error has been framed as “value-free”, but this label and that ofHt(st,a) as “habit

strength” (cf. [143]) may fail to represent a more endogenous form of subjective value such as

with internal positive feedback for repetition (i.e., autoreinforcement) or negative feedback for

alternation. The more neutral and bidirectional label of “hysteresis” is preferred here because

“habit” not only overemphasizes repetition but also has more specific connotations of stimu-

lus-response associations that may be more semiexpert than truly nonexpert—translating to

biases made inflexibly persistent through reinforcement via the reward-prediction error as

well [6,135–141,143,144]. Phenomena in the direction of state-dependent and state-indepen-

dent repetition alike could also be relatable to choice-induced preference change as a reflection

of a type of confirmation bias that resolves cognitive dissonance by disregarding feedback alto-

gether [193–199], producing downstream effects comparable to those of confirmation bias

with asymmetric learning rates. As discussed in the Results, there is considerable potential for

confounds between Ht(st,a) and Qt(st,a) as rewarded actions are appropriately repeated within

a state, and likewise forHt(st,a) and Ht(a) if different states have overlap in sequences of

actions and outcomes.

Regarding state-independent action value Qt(a), this construct is conceptually constrained

to align with repetition of rewarded actions. The most obvious interpretation conflates actions

with low-level motor output—in contrast to the high-level goals of actions directed toward

external stimuli [95,97,200–203]—but, under the proper circumstances, there could be cogni-

tive and even strategic aspects to state-independent representations as well for semiexpert con-

trol. Sequential action representation under uncertainty can be more abstract than just motor

control, such as with action chunking in response to working-memory load [204–206]. Con-

cerning the challenge of adding Qt(a) to the mixture, a confound with Ht(a) can ensue as

rewarded actions are more often chosen. Moreover, a confound with Qt(st,a) can also ensue if

actions are rewarded similarly across different states.

Levels of representation for decisions, choices, actions, and hysteresis

In contrast to biases more directly linked to motor representations, more abstract cognitive

biases may impact sequential behavior as well. Higher-order choice-level biases—as opposed

to action-level—can produce comparable effects of sequential dependence in paradigms where

motor output is decoupled from perceptual [163,207–213] or value-based [214–217] decisions

that do not require learning (i.e., choice hysteresis as opposed to action hysteresis). Complicat-

ing interpretation of choice bias or response bias yet further, effects of response history have

been shown to parallel, interact with, and even conflict with effects of stimulus history at lower

levels of representation in perceptual decision making [81,89,209,211,213,218–225].

For the phenomenology explored here, questions arise as to the contributions of different

levels of representation and their integration in the parallelized modularity of the nervous sys-

tem—ranging from the most abstract level of option choices to the most concrete level of phys-

ical motor output. With respect to constant bias B(a), grounding the observed phenomena in

the topology of visuospatial and motor representations is more immediately obvious because
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intrinsic action cost naturally corresponds to a bias that is both state-independent and

sequence-independent. Hence an initial hypothesis here was that rightward biases would be

more common among the exclusively right-handed participants, for example.

Whereas constant bias is more straightforward, the origins of even the basic hysteresis

emphasized here are more nuanced. Yet that argument also primarily, albeit not exclusively,

points to action-based representations—unlike with choice hysteresis as opposed to action

hysteresis. First, there is the distinction between state-independent hysteresisHt(a) and state-

dependent hysteresis Ht(st,a), which have crucial differences between them despite both being

outcome-independent. Whereas state-independent hysteresis may be primarily action-based,

this may be less the case for state-dependent hysteresis.

As states of the task environment were rotating while the binary set of actions remained

fixed (and time pressure was imposed), a state-independent action representation with tangi-

ble visuospatial and motor mapping is unlikely to entail as much abstract representation in

terms of a high-level choice rather than action planning and execution. That is, the task

incentivizes immediately mapping decisions directly to the space of actions and affordances

[226–229], incurring no cost in doing so as long as the motor component of the task is simple

and predictable.

In contrast, a state-dependent action representation would more plausibly invoke abstract

choice representation to a substantial degree. Insofar as abstraction can be inherent to learning to

map an action to the context of an arbitrary state with this sort of instrumental (or operant) con-

ditioning [136,137], a state-aware controller would be making more of an abstract choice about

the action than a state-blind controller would. Thus, state-dependent hysteresis could be less con-

tained within action space and instead entail more abstract representation in choice space.

For other situations in which actions might not be as tangible and well-defined as they are

in the present setting, greater degrees of abstraction away from action space and into choice

space can become more plausible even for state-independent choice hysteresis. Further investi-

gation will be needed for task demands across the spectrum ranging from the present extreme

—that of the simplest one-to-one binary mapping across choices and actions as well as effec-

tors and spatial locations—to the opposite extreme of a symbolic choice that must be made

either in the absence of any information about subsequent action mapping or in the absence of

action altogether (i.e., if only relevant for later actions). Yet the evidence herein is compatible

with the majority of active-learning paradigms, where choices typically translate to actions

directly and in a straightforward manner.

Dynamics of hysteresis

The specific dynamics of choice or action hysteresis beyond 1-back have typically not been

given consideration in previous empirical work with RL and hysteresis for behavior (cf.

[79,80,94,95,97,98,101,203,230–242]). Thus far, some computational modeling

[12,18,19,21,43,44,46,47,96,181,201,243,244] as well as simpler regression analyses with an

autoregressive choice kernel or action kernel [17,20,58–61,245,246] have yielded differing time

courses for hysteretic effects, but such findings tend to not be reported in detail.

Following the trends of artificial neural networks, deep learning [247–251], and deep RL

[252–260], recent approaches to cognitive modeling have begun to utilize machine learning

via the architecture of a recurrent neural network (RNN) [261–263]—such as with a long

short-term memory (LSTM) unit [264] or a simpler gated recurrent unit (GRU) [265]—in an

attempt to understand core computations for learning (i.e., beyond just nonlinear function

approximation for state representation) [266–279]. Whereas such efforts pursue a data-centric

approach leveraging predictive power as opposed to the present theory-centric approach
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leveraging explanatory power, it is the latter that has so far proven more effective for inference

about empirical behavior (but see [87,280]). The mechanistic interpretability of a standard

deep-learning approach (cf. [281–292]) is limited with nearly a black box and one typically not

amenable to the individual differences here given model demands for data and dimensionality

that are orders of magnitude larger. Hence, despite general merits of deep learning, the prom-

ise here is confronted by formidable challenges both practical and epistemological. At the very

least, deep autoregressive neural networks with inputs for action or choice history—as well as

state and reward histories—have begun to speak to not only the degree of nonlinear dynamical

complexity but also the significance of sequential hysteresis across longer time scales in parallel

with RL [267,270,271,274,277–279].

As part of the motivation for testing different hysteresis traces in the large-scale model com-

parison here, regression analyses without computational modeling have suggested possibilities

for nonmonotonic reversals between short-term alternation and long-term repetition

[17,20,58–60] or vice versa [20,61]. Although the dynamics of hysteresis may not always be so

complex, sequential patterns can emerge from more than just neural activity persisting from

previous trials. On the one hand, amplification of hysteresis over time is possible and can be

attributed to working memory and its maintenance of past information [211] or instead to

accumulating urgency signals [293] and their baseline activation for a response [294]. On the

other hand, phenomena such as the diminishing of hysteresis with longer temporal intervals

resonate with an account of sustained residual activity [214,216,295–301]. The exponential

function evidenced here is a logical means to monotonic decay and also apt as a matched con-

trol against the similarly decaying effects of reinforcement across nonreinforced observations

over time [12,18,19,21,43,47,96,243,244].

The primacy of bias and hysteresis as well as individual differences

That the effects illuminated herein are so parsimonious and demonstrably extractable means

that comparable studies of RL and other sequential tasks generally stand to benefit from con-

sidering bias and hysteresis as part of due diligence—even if the main focus of inquiry is

directed elsewhere. Being more representative of actual behavior, the expanded 5-parameter

base model 0CE1 aims to enhance parameter identifiability with respect to actual RL as

opposed to action-specific components of variance that may mimic or otherwise obscure sig-

natures of learning with spurious correlations [17,18,27,28,39–47]. Before making additional

assumptions, parsimoniously imposing action-specific parameters with first priority can be

beneficial as a sort of regularization for learning parameters that in practice are nontrivial to

extract and estimate.

The present solution of a more comprehensive yet parsimonious model avoids compromis-

ing the independence of separate data sets, making it preferable to alternative small-data solu-

tions finding recourse in regularization via fully group-level estimation (i.e., concatenating

data sets or averaging parameters) or the intermediate approaches of empirical priors and hier-

archical Bayesian modeling across participants [13,29,79,302–305]. From an idealized Bayes-

ian-statistical perspective, compromising independence between individuals in this way

mitigates putative measurement error from limited data. From a realistic perspective, however,

measurement error and test-retest reliability are irrelevant and ill-defined here: A session of an

experiment for a person and their internal state at the moment is a unique, nonrepeatable

event—especially for dynamic learning, where model parameters are guaranteed to change

over long timespans [47,105,306–320]. Across time, both learning and nonlearning modes for

behavior can evolve or discretely alternate with dynamics that are as enigmatic as they are idio-

syncratic [81,86,88–93]. In any case, anything resembling measurement error in behavior that
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is fitted with an incomplete model is not necessarily more substantial than modeling error

[32], including that from omitted variables such as action bias and hysteresis.

As per the bias-variance tradeoff for the nonconvex optimization problem of model fitting,

a reduction of variance in parameter fits with the group-level constraints of hierarchical Bayes-

ian estimation necessarily incurs undesirable estimation bias both toward averages across indi-

viduals (i.e., shrinkage) and toward the specifications of parametric probability distributions

[30–35,321,322]. Whereas a biased estimator will be guaranteed to show greater stability than

an unbiased estimator, this property becomes disadvantageous when the biased estimator is

less veridical. In a multidimensional parameter space, this estimation bias is exacerbated and

can not only underestimate but also overestimate individual differences along a given dimen-

sion as a result of complex interactions among parameters constrained by outside data—for

example, mimicry of a more constrained parameter by a less constrained one.

There is a more general epistemological problem with inference predicated on the strong

assumptions of model validity and a common distribution for every individual from a random

grouping of independent data sets, thereby speciously invoking the ecological fallacy [36–38].

The ecological (or population) fallacy is characterized by the principle that, even if a group in

the aggregate is representative of the majority of the individuals within said group, any given

individual or subgroup is not necessarily representative of the group at all. Hence, when

assumed for the individual, assumptions based on group-level or hierarchical inference are

inherently fallacious and invalidate potential conclusions about individual differences, includ-

ing those applied in computational psychiatry and neurology [323–325] for computational

phenotyping [29,316,318,319,326–328]. This point is missed in a cognitive-modeling literature

now widely and unquestioningly adopting hierarchical Bayesian fitting—a trend motivated by

the allure of results that, being biased, merely appear to be cleaner because of unverifiable

assumptions about the unknowns of diverse brain states.

With independence instead preserved for each participant, the power of individual differ-

ences in computational modeling includes the means to model-based classification of individu-

als for hypothesis testing within, between, or across subgroups defined qualitatively and

quantitatively by various dimensions of a model validated with posterior predictive checks

[12,21]. Furthermore, if participants are grouped in advance—as with clinical studies, for exam-

ple—this approach can address the initial classification in relation to model-based classification

as well as model-based metrics across a continuum. More precise individual-level interpretabil-

ity also extends to model-based analysis of neurophysiological data [329–331], including better

estimation of computational signal dynamics within and between individual brains [12,21].

The optimality of nonexpert control with lessons for ML and AI

From an apparently intuitive perspective, any bias or hysteresis in general might be viewed as

interference that needs to be mitigated for optimal reward maximization with expert control.

Perseveration in particular has a legacy of association with pathologized traits of compulsive

behavior, brain lesions, and neurological disorders [20,97,130–132,233,332]. In a somewhat

similar vein for the present study, the learners who performed best were not unbiased in this

regard but did characteristically exhibit the least bias. Likewise, in experiments with extended

training, the relative weight of choice biases tends to decline as learning performance improves

over time [333,334]. Both repetition and alternation biases tend to be most robust when evi-

dence is uncertain, confidence is low, and difficulty is high [207,224,238,333,335,336]. Among

these factors, that of difficulty is most directly accounted for by the present model with point

estimates for action values because these value estimates are rescaled by the nonlinearity of the
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softmax policy. That is, bias has greatest impact in the most locally linear vicinity of the inter-

cept of the sigmoid psychometric curve as a function of value difference.

From another perspective, however, nonexpert biases are not suboptimal as part of a trade-

off for optimizing in favor of minimal cost, including computational costs of cognitive

demands and motor control as well as sheer time. If uncertainty, unfamiliarity, or irrelevance

trivialize a given decision, then choosing quickly according to low-cost biases by default would

be optimal to mitigate energy expenditure and fatigue—even if fast responses could not affect

the reward rate. Although additional complexities of dynamical decision making [293,337–341]

are presently abstracted away for tractability, a speed-accuracy tradeoff [342,343] was evident

both within and between participants in the data sets here [12]: More difficult decisions were

slower, and across individuals, decisions made by better learners were slower as well. Alto-

gether, the effortful aspects of task engagement can be integrated into the common currency of

the cost of control [344–356]. Internal cost-benefit analysis also weighs these costs against

reward incentives to determine the level of motivation to effortfully leverage expertise rather

than defer to more efficient nonexpert control. Aside from the uncertainty in learning, the mon-

etary incentivization in an experiment tends to be low in subjective value and can be reflected

in low levels of motivation and arousal as well as effort and attention.

In contrast to its associations with suboptimality, perseveration has also been framed as adap-

tive policy compression amid a tradeoff between maximizing expected reward and minimizing

the information-theoretic complexity of an action policy [135,176,179,205,206,357–359]. This

principle can be extended to higher-order perseveration as well as action or choice bias in gen-

eral. The dimensions exemplified here reflect how a more state- and outcome-dependent policy

trades off being more rewarding for being more complex than a more state- and outcome-inde-

pendent policy. In addition to undirected exploration with bias rather than variance (i.e., policy

stochasticity for the latter), even exploitation can be achieved both more efficiently and more

effectively with choice bias as a semi-optimal heuristic for strategic satisficing [360–362] if appro-

priate for a given environment [81,277,363–365]. In other words, nonexpert biases can even be

leveraged in a semiexpert fashion. Such a reward-compressibility tradeoff may offer an analogy

with other biases of perceptual stability [208,213,221,223,366,367] or cognitive anchoring

[368,369]: Both similarly leverage heuristics for efficiency—whether at the expense of veridical

sensory representation or at the expense of precise statistical estimation.

Even low-level motor biases, which if disregarding their benefits in lower internal cost might

otherwise be considered a disadvantage of embodiment, may also not be so disruptive as part of a

tradeoff for which an embodied RL policy has greater potential for robustness in learning per se.

Indeed, embodied RL for concrete actions can achieve greater fluency than disembodied RL for

symbolic choices abstracted away from motor output [95,99,202]. Benefits of embodied learning

may be facilitated by lesser working-memory demands and lesser overall demands from the topol-

ogy of the action space as a cognitive map [370–373] more amenable to spatial and embodied rep-

resentations in the neural circuitry of the basal ganglia and cortex [8,21,22,374–378].

In addition to endogenous choice and action biases, exogenous factors can also shape biases

over time. For example, the environment here was structured to be conducive to an alternation

bias via second-order perseveration. Adaptive bias has been suggested for actions, effectors, or

spatial locations in experimental paradigms delivering rewards asymmetrically with distribu-

tions that are congruent or incongruent with respect to particular biases

[99,106,111,210,212,213,300,301,333,379]. Adaptive control with the heuristics of a mixture

policy would entail flexible leveraging or suppressing of action bias and hysteresis to strike a

balance among various tradeoffs of bias and variance, speed and accuracy, energy and effort,

benefit and cost, reward and compressibility, expertise and efficiency, or exploration and

exploitation.
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With analogies between animal learning [6–8,55–57,380–382] and machine learning

[49–54,288,291,383–396], the theory of a mixture of experts is based on advantages of mod-

ular parallelism and conditional computation for balancing versatility and efficiency in

optimal control. As with the mixture-of-experts (MoE) architecture per se (which has also

proven effective for sparse scaling of a deep neural network), the scope of this consilient the-

ory can be extended to systems of varying levels of expertise as well as nonexpert controllers

and their numerous choice and action biases (cf. [12,21,81,86,88–92,94–96,98,99,143,144]).

Benefiting from distributed control of decisions and actions across diverse levels of repre-

sentation in the networks of the nervous system [227–229], a mixture of experts and nonex-

perts can dynamically mediate distinct subpolicies with the metacontrol of a manager for

arbitration over the gated ensemble of modular learning and nonlearning processes. With

adaptive computation for a given subpolicy, semiexpert or nonexpert controllers could be

upweighted for conserving time and energy when incentivized, whereas expert learning

algorithms could be downweighted for being evaluated as too costly to compute or insuffi-

ciently reliable for lack of information or fidelity at any given moment.

Reverse engineering such manifestations of the implicit wisdom of evolution yields a well-

spring of inspiration for designing artificial intelligence. Although this computational model-

ing has primarily been tailored to human behavior and its neural substrates, the fundamental

concepts are well-suited for interdisciplinary triangulation across the consilience of RL. With

respect to an embodied robotic system, cost and reliability can be factored in for the state of

the plant with its physical constraints in action sequences as well as demands for inference and

decisions with minimal latency [256,258,260,397–404]—all with analogy to a nervous system

characterized by not only metabolic constraints and memory constraints but also motor con-

straints and embodied cognition [226–229,405,406]. More generally, these insights extend well

beyond robotics into all of control theory, machine learning, and artificial intelligence. The

costs of time, energy, and computational resources are not limited to active RL and indeed can

be found in any system for inference or control. Considering their ubiquity, variants of bias

and hysteresis of any abstraction are essential to multiobjective optimization in a resource-lim-

ited but resourceful agent—one who is effectively a mixture of agents and at that a mixture of

experts and nonexperts.

Methods

Ethics statement

Including functional MRI (fMRI), participants provided informed written consent according

to protocols approved by the Institutional Review Board of each of six scanning sites—namely,

the California Institute of Technology; Columbia University; New York University; the Uni-

versity of Pennsylvania; the University of California, Santa Barbara; and the University of

Southern California.

Preface

In this second report, only the details most relevant for the present purposes are included here. Addi-

tional details of the study, including neuroimaging, can be found in the original report for these data

sets [12]. Incidentally, “3 T” and “7 T” refer to field strength for the respective MRI scanners.

Participants

Forty-seven (male:female = 27:20; age:M = 25.5 y, SD = 4.9 y) and twenty-two (male:female

= 12:10; age:M = 28.0 y, SD = 6.0 y) human participants volunteered for the 3-T Face/House
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and 7-T Color/Motion versions of the study, respectively. The 3-T Face/House version was

itself multisite, being conducted at five separate facilities for magnetic-resonance imaging

(MRI) where participants were recruited from the respective universities and local communi-

ties of each laboratory. All participants were screened for MRI contraindications; all were

right-handed and generally healthy adults between 18 and 43 years old. Participants in the 7-T

Color/Motion version were also screened for color blindness. Upon completing the study, par-

ticipants were paid $10 for minimizing head movement plus the amount of money earned

within the task as the main incentive.

Experimental procedures

A hierarchical reversal-learning task [12] delivered probabilistic outcomes for combinations of

categorized states and conditional actions with reward distributions changing across 12 blocks

of trials. Note that Fig 1A (showing only one state category) does not actually represent a pos-

sible sequence of trials (see Figs A and B in S1 Text) because the purpose of the figure is

instead to conceptually illustrate action bias and hysteresis. To represent each active state (a

two-armed contextual bandit), four new cues were assigned randomly every run with two

pairs of images each respectively drawn from two state categories. In the version of the experi-

ment incidentally conducted with a 3-T MRI scanner, these categories were faces and houses

(images in Fig 1 courtesy of [407]).

At the onset of each episodic (i.e., separate) trial, one of four predictive cues was presented

with equal probability, but trials were also ordered in a series of randomized and counterbal-

anced quartets that each included four cues representing separate states. These quartets were

constrained such that a cue never appeared in consecutive trials. The onset of a trial was

marked by a face or house image appearing. The participant was allotted 2 s to respond to this

active state by pressing one of two buttons with the corresponding index finger of either the

left or right hand. A fixed interstimulus interval (ISI) of 3 s separated the cue and the outcome.

The transition probabilities for the action given the state determined whether the outcome

following the ISI was a rewarded state or a nonrewarded state. Delivery of an actual reward of

$0.30 was symbolized by an image of a dollar sign for 1 s, whereas a scrambled dollar sign sig-

nified an absence of monetary reward for that trial. The duration of the jittered intertrial inter-

val (ITI) was drawn without replacement within a run from a discrete uniform distribution

ranging from 3 to 7 s in increments of 41.7 ms. If the participant failed to respond in time, the

nonrewarded outcome appeared immediately as the fixation cross turned red for 1 s; the ISI

would then be merged with the subsequent ITI.

Twelve blocks of trials were defined by permutations of three experimental conditions, The

first condition for category value had three possibilities also counterbalanced within a run.

This condition determined whether the face category had greater, lesser, or equivalent value

relative to the house category. For the unequal conditions, the category with greater value

included reward probabilities of 62.5% and 100%, whereas the category with lesser value

included reward probabilities of only 43.75%. For the equal condition, both categories

included reward probabilities of 43.75% and 81.25%. These exact probabilities were all divisi-

ble by sixteenths and so were evenly split between two 32-trial blocks with 8 trials per state.

(For the odd probabilities of 43.75% and 81.25%, the more-rewarded halves of the distribu-

tions were evenly distributed within a condition sampled across runs: The net probability of

43.75% (7/16) was the average of 37.5% (6/16) and 50% (8/16), and net 81.25% (13/16) was the

average of 75% (12/16) and 87.5% (14/16).) A nonzero reward probability was only assigned to

one action per state, always leaving an alternative action with zero probability of reward. This

complementarity between actions within a state was designed to reveal action generalization.
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The second condition for state value had two possibilities partially counterbalanced with a

2:1 ratio within a run. This condition concerned which state (arbitrarily “A” or “B”) had the

greater value within a category if the category included two different reward probabilities for a

given block.

The third condition for action mapping had four possibilities. This condition concerned

the mapping of a state category’s reward probabilities to actions, such that the two states (“A”

and “B”) within a category always symmetrically provided rewards for opposite actions. The

possibilities for this condition could be summarized across all four active states like so:

“LR&LR”, “LR&RL”, “RL&LR”, or “RL&RL”, where the example of “LR&RL” can be expanded

as “AL/BR & AR/BL” for the binary hierarchical metastates of the face and house categories,

respectively. That is, “LR&RL” (or “AL/BR & AR/BL”) would mean that the left action is

rewarded for face A and house B while the right action is rewarded for face B and house A.

This complementarity between states within a category was designed to reveal state

generalization.

Rather than sheer randomness in the design, which would especially limit interpretation of

individual differences, meticulously controlled counterbalancing was crucial for eliminating

confounds within and across individual sessions. For each participant, different conditions

were randomized and counterbalanced to evenly distribute rewards for categories, states, and

actions in a factorial design defining 12 blocks that included hierarchical reversals of instru-

mental learning. Four scanning runs including three blocks each and 32 trials per block

amounted to 384 trials in total. (Prior to the actual experiment, the participant completed

10-trial practice sessions with separate stimuli both outside and inside the scanner.)

Nearly attaining a 3 x 2 x 4 design (“category value” x “state value” x “action mapping”) for

the 12 blocks, the 3 x 2 and 3 x 4 crosses were fully counterbalanced while the 2 x 4 cross could

only be partially balanced given the number of blocks. By virtue of this counterbalancing,

choosing the same action for every single trial of the session was guaranteed to yield exactly

half of the available rewards. Likewise, each state category preceded exactly half of the available

rewards within each run. Moreover, with reward probabilities in units of sixteenths, each run

included exactly or nearly one quarter of the rewards for the entire session. Yet the reward

probabilities for state-action pairs fluctuated from block to block so as to facilitate variability

in the dynamics of neural signals of interest. Across the session, what remained constant amid

these fluctuations was the anticorrelational pattern between complementary actions within a

state and between complementary states within a category. The categories were independent

of each other without any such structured pattern between them.

Between blocks, the design was constrained for a single remapping to mark the onset of a

new block within a run, where reversals of rewarded actions occurred for only one category at

a time. The two categories were remapped in turn in a random order counterbalanced across

runs, such that each category had exactly one between-block remapping per run. Although the

participant was informed that the reward probabilities could change throughout the session,

no explicit indications were provided as to how or when such changes might occur.

Regarding the 7-T Color/Motion version conducted in parallel, this second version of the

experiment was mostly matched to the first but was not entirely identical. The main difference

was that the 7-T version substituted dynamic colors and directions of motion in lieu of faces

and houses as state categories. Moreover, these color and motion stimuli (4 in total) were not

replaced every run as with the 3-T version’s faces and houses (16 in total). Although the two

pairs of visual stimuli comprising the two categories instead remained constant across the

entire session, the counterbalanced factorial design of the 3-T version was preserved such that

the reward probabilities for the respective states still rotated as before.
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Computational modeling: Generalized reinforcement learning

Generalized reinforcement learning (GRL) [12] is a quasi-model-based extension of model-

free reinforcement learning (RL) [1–3]. The description of GRL that follows here is simplified

so as to shift the emphasis to details of action-specific bias and hysteresis in the model’s mix-

ture policy for action selection (Fig 1). Importantly for the present purposes, GRL adds even

more complexity to the mixture of experts and nonexperts. Incidentally, this complexity takes

the form of intersecting dichotomies for associative versus discriminative generalization and

state versus action generalization. This expansion of RL in parallel with the expansion of action

bias and hysteresis serves to demonstrate the practical feasibility of simultaneously investigat-

ing more complex learning theory despite the costly degrees of freedom inherent to the added

complexities of the nonlearning modules.

Neuroimaging analysis [329] and thus the original critic/Q-learner (CQ) model [12,21] are

presently set aside for this analysis of the single-step cue-outcome task. This simplified version

of the GRL model omits not only passive state-value learning—which would be via the critic

module of the actor/critic architecture [408–410]—but also the temporal-difference (TD) pre-

diction method [411–413]. Given the absence of the TD update here, the action-value learning

that remains also makes no distinction between off-policy and on-policy methods such as in

the Q-learning algorithm [414,415] and the state-action-reward-state-action (SARSA) algo-

rithm [416], respectively.

The beginning of a run marks initialization of action values Qt(s,a) for all novel state-action

pairs. As representing priors in the absence of previous associations would entail some kind of

internal model, a naïve model-free agent initializes to zero [417]:

8ðs; aÞ : Q0ðs; aÞ ¼ 0

The rotating active states were initiated with the onset of each trial. Upon transitioning

from an active state to an outcome state, a reward-prediction error (RPE) δt+1 is determined

by the discrepancy between the current action-value estimate Qt(st,at) and the subsequent

reward (or lack thereof) rt+1 presented in the binary outcome state. The RPE would obey the

same equation with any scalar reward as well:

dtþ1 ¼ rtþ1 � Qtðst; atÞ

As with any standard RL model, the value of the chosen state-action pair is updated accord-

ing to the following delta-learning rule with a fitted learning rate α (for 0� α� 1):

Qtþ1ðst; atÞ ¼ Qtðst; atÞ þ adtþ1

The equations thus far have described the basic RL model in its original form. In prepara-

tion for the following section on GRL, note again that the reward magnitude is fixed for this

paradigm. Hence the cached action value Qt(s,a) effectively corresponds to the estimated prob-

ability of reward. To prevent the duplicated and relayed prediction errors of GRL from pro-

ducing an illogical expected value for probabilistic binary outcomes (i.e., 0� P� 1), the

clipping function f(x) clips action value between zero and unity as an ad-hoc solution for this

particular case where subjective value represents probability. Although reference dependence

and normalization are mechanisms of relevance to value-based learning [418–421], the present

paradigm is not suitably amenable to these complexities. Possibilities for alternatives to clip-

ping are not considered for now inasmuch as a guaranteed improvement in fit in the absence

of this constraint would presently be uninterpretable: Probability estimates above unity or

below zero would be meaningless as probabilities per se, and a negative value would also corre-

spond to negative valence despite an absence of punishment. When this neural model is
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applied to (computational) model-based neuroimaging analysis [12], these simulated signals

have substantial implications for the interpretation of value signals in the brain, which would

be maximized with certain reward and range from neutral to appetitive rather than including

anything in the aversive range of valence. The x here refers to an updated value estimate prior

to transformation:

f ðxÞ ¼ clipfx; ½0; 1�g

In contrast to previous RL models, the GRL model introduced here additionally applies a

common RPE signal to learning about other state-action pairs within the same state as well as

the same state category. Aside from generalization, the value of any state-action pair not

encountered remains as is rather than being subject to decay or “forgetting” with potential for

overfitting [43,58,200,422–426]. (For future investigation elsewhere, there are intriguing paral-

lels to note in the mathematics of value decay versus counterfactual updating for non-encoun-

tered representations.) Presently, the two-alternative forced choice allows for a straightforward

model of discriminative action generalization, such that the nonchosen action a’t receives an

inverse value update as the complement of the chosen action at (where prime notation refers

to complementarity here). The variables aL and aR stand for the left and right actions:

a0t ¼
aR; at ¼ aL
aL; at ¼ aR

(

This counterfactual update is regulated by a negative parameter for the action-generaliza-

tion weight gA (for -1� gA� 0) that modulates the original learning rate. Although associative

action generalization is a possibility elsewhere, this parameter is not allowed to be positive

here because the effective input to the softmax function is the difference between two action

values—rendering overgeneralization across actions essentially indistinguishable from a mere

absence of learning. The constraint that absolute generalization weights do not exceed unity

first resolves the potential nonidentifiability issue of multiplied free parameters for generalized

delta learning. Conceptually, this constraint also reflects the assumption—one shared with the

eligibility trace of the “TD(λ)” algorithm [3,411–413,427,428]—that generalized RPE signals

would not be relayed with greater gain than the original RPE signal but rather with lesser or

equal gain. (In a different setting, this assumption might be relaxed under the appropriate cir-

cumstances.) As with the state generalization that follows, this action generalization is analo-

gous to the temporal generalization of TD(λ) (see [12]):

Qtþ1ðst; a
0

tÞ ¼ f ðQtðst; a
0

tÞ þ gAadtþ1Þ

With only two states per category, state generalization entails an analogous formula where

—in addition to the encountered state st—the other, complementary within-category state s’t
receives a relayed value update. The variables sA and sB refer to state A and state B (arbitrarily

designated as such):

s0t ¼
sB; st ¼ sA
sA; st ¼ sB

(

This update is regulated by a state-generalization weight gS (for -1� gS� 1) that modulates

the learning rate. Unlike overgeneralization across actions, overgeneralization across states

within a category can be detected here. That is, the agent could incorrectly operate as if the cat-

egory itself were assumed to be a unitary state (gS = 1), or the agent could at least partially con-

flate representations of exemplars within a category due to fuzzy boundaries (0< gS< 1). The

PLOS COMPUTATIONAL BIOLOGY Reinforcement learning versus bias and hysteresis: a mixture of experts and nonexperts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011950 March 29, 2024 39 / 70

https://doi.org/10.1371/journal.pcbi.1011950


present paradigm is characterized by anticorrelational linkage between states within a cate-

gory. Hence a negative sign for gS correctly produces discriminative generalization, while a

positive sign for gS incorrectly produces associative overgeneralization:

Qtþ1ðs
0

t; atÞ ¼ f ðQtðs
0

t; atÞ þ gSadtþ1Þ

The two factors of action generalization and state generalization interact multiplicatively to

also update the complementary action for the complementary state. In the optimal case com-

bining discriminative generalization across both dimensions (i.e., -1� gA< 0 and -1� gS<
0), this interactive state-action generalization weight would appropriately be associative (0<

gSgA� 1) for the one state-action pair that is correlated with the original pair rather than antic-

orrelated:

Qtþ1ðs
0

t; a
0

tÞ ¼ f ðQtðs
0

t; a
0

tÞ þ gSgAadtþ1Þ

Computational modeling: Mixture policy with bias and hysteresis

The learned Q values are inputs to a probabilistic action-selection policy πt(s,a) characterized

by the Boltzmann-Gibbs softmax function and the Shepard-Luce choice rule as a discrimina-

tive model of decision making [3,23–25] rather than a generative model. The approximation

of a softmax function—effectively with perfect subtraction between two alternatives here—has

some limitations in accounting for nonlinearities in actual behavior due to the dynamics of

underlying decision processes in the brain [340], but this simplification can suffice for the

present purposes as a standard assumption for active-learning models.

In addition to an essential module for action value, the mixture policy here also incorpo-

rates inputs from modules for action-specific bias and hysteresis (Fig 1) [12,21]. Constant bias

B(a) becomes a lateral bias between left and right actions in this case, whereas the dynamic

hysteretic biasHt(a) (cf. [17,18]) maps repetition and alternation to positive and negative

signs, respectively. These state- and outcome-independent action biases complemented the

state- and outcome-dependent action values to determine the mixture policy’s action probabil-

ities via the following softmax function with temperature τ (for τ> 0), which regulates the sto-

chasticity of choices reflecting noise as well as exploration against exploitation [3,429–435].

This policy equation also reduces to a logistic function in the present case of a two-alternative

forced choice:

pt st; að Þ ¼ P at ¼ ajstð Þ ¼
expfðQtðst; aÞ þHtðaÞ þ BðaÞÞ=tgP
a∗expfðQtðst; a∗Þ þHtða∗Þ þ Bða∗ÞÞ=tg

With n-1 parameters for n available actions, constant bias is reduced to a single parameter

for a binary action space such as the present one. The indicator function IR(a) is used for a lat-

eral bias with the arbitrary convention that a positive sign for the parameter βR corresponds to

a rightward bias while a negative sign corresponds to a leftward bias:

IRðaÞ ¼
0; a ¼ aL
1; a ¼ aR

(
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Avoiding the dummy-variable trap, the bias terms are then βR for the right-hand action and

null for the left-hand action:

BðaÞ ¼ bRIRðaÞ

Modeling action hysteresis in terms of the dynamics of integrated repetition or alternation

biases first requires an initialization of the hysteresis trace and its cumulative bias variable

Ht(a):

8a : H0ðaÞ ¼ 0

A counter variable Ct is initialized at the beginning of each run to index the total number of

actions performed within the run:

C0 ¼ 0

This action-counter variable is simply incremented with each action performed:

8at : Ct ¼ Ct� 1 þ 1

Using this action index throughout the run, the indicator function ICt(a) tracks action his-

tory:

ICtðaÞ ¼
0; a 6¼ at
1; a ¼ at

(

In its currently preferred form (“-E1” models such as 2CE1), the hysteretic bias is deter-

mined by its initial (i.e., 1-back) magnitude β1 and inverse decay rate λH (for 0� λH� 1),

where this base of the exponential function is notated as the complement of (i.e., unity minus)

the exponential decay rate. A positive magnitude for this autocorrelation (β1> 0) represents a

repetition bias in favor of repeating previous actions, whereas a negative magnitude (β1< 0)

represents an alternation bias in favor of switching between actions. By conventions with anal-

ogy to the eligibility trace of TD(λ) [3], the hysteresis trace (i.e., action kernel) is specified as an

accumulating trace rather than a replacing trace so as to not be overly constrained; the latter

instead has an upper bound at β1 and disregards consecutive repeats (cf. [18]). Yet it is ulti-

mately the difference between the cumulative hysteresis effects of competing actions that

determines their net weight in the action policy. An accumulating repetition bias (β1> 0, λH
> 0) means that a repeated action would become even more likely to be repeated again with

successive repetitions in a positive-feedback loop. Conversely, an accumulating alternation

bias (β1< 0, λH> 0) means that a second repetition would become even less likely. The expo-

nential decay of a given action’s bias proceeds indefinitely with each action executed as the

hysteresis trace is continually integrated into the cumulative hysteretic biasHt(a):

Htþ1ðaÞ ¼
XCt � 1

i¼0
b1l

i
HICt � iðaÞ

The label of the preferred 2CE1 model stands for 2-parameter GRL (“2”), constant bias

(“C”), and 1-back exponential hysteresis (“E1”)—that is, one degree of freedom preceding

exponential decay. This model described thus far includes seven free parameters altogether—

namely, learning rate α, action-generalization weight gA, state-generalization weight gS, soft-

max temperature τ, rightward (or leftward) bias βR, and initial magnitude β1 coupled with

inverse decay rate λH for the exponential decay of the repetition (or alternation) bias. An addi-

tional 23 models of the 72 in the primary model comparison (Table 2 and Table A in S1 Text)
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were also nested within the 2CE1 model: X, XC, XN1, XCN1, XE1, XCE1, 0, 0C, 0N1, 0CN1,

0E1, 0CE1, 1, 1C, 1N1, 1CN1, 1E1, 1CE1, 2, 2C, 2N1, 2CN1, and 2E1.

Beyond 1-back hysteresis, the remaining 48 models extended n-back hysteresis with N free

parameters βn for N total previous actions. With reference to statistical fundamentals of

generic sequence or time-series modeling, notation with “β” for bias reflects analogous nota-

tion for autoregressive and intercept terms corresponding to hysteresis and constant bias,

respectively. The signed individual weights βn each independently correspond to a bias in

favor of repetition (βn> 0) or alternation (βn< 0) of the respective previous action from n
actions back. The dynamic hysteretic biasHt(a) is more generally defined by this flexible equa-

tion to accommodate any combination of first n-back and then exponential hysteresis in series

—here the first and second terms, respectively, summing backward across time again:

Htþ1ðaÞ ¼
XN

n¼1
bnICt � nþ1ðaÞ þ

XCt

i¼Nþ1
bNl

i� N
H ICt � iþ1ðaÞ

Computational modeling (extended): Alternatives to state-independent

action hysteresis

At this point, the final 2CE1 model has been described in its entirety, and likewise for the

other 71 models included in the primary model comparison. What follows are the details of

models subsequently tested in an extended model comparison controlling for alternative fea-

tures that might be expected to interact with the effects of the state-independent action hyster-

esis presently emphasized (Table 1).

Computational modeling (extended): State-dependent action hysteresis

The first alternative feature considered as part of the extended model comparison was state-

dependent hysteresis Ht(st,a) (cf. [21]) in contrast to state-independent hysteresis Ht(a) as

described above. The mathematical specifications of the hysteresis trace are entirely analogous

with the incorporation of state dependence.

In this case, the cumulative bias variable is initialized for every state-action pair rather than

just actions:

8ðs; aÞ : H0ðs; aÞ ¼ 0

The counter variable becomes a vector Ct(st) that instead indexes action counts separately

for each state:

8s : C0ðsÞ ¼ 0

This action-counter variable is incremented with each action as before:

8at : CtðstÞ ¼ Ct� 1ðstÞ þ 1

The indicator function ICt(s)(s,a) then tracks action history within each state:

ICtðstÞðst; aÞ ¼
0; a 6¼ at
1; a ¼ at

(

In its pure exponential form (“sE1”), state-dependent hysteresis is determined by its initial

(i.e., 1-back) magnitude βS1 and inverse decay rate λS (for 0� λS� 1)—now for exponential
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decay across only the actions performed within a state:

Htþ1ðst; aÞ ¼
XCtðstÞ� 1

i¼0
b
S
1
l
i
SICtðstÞ� iðst; aÞ

In addition to the seven free parameters of the 2CE1 model, the extended “sE1+2CE1”

model adds two more—that is, βS1 and λS—for a maximum of nine parameters in total. How-

ever, in another subset of models matching the reduced model comparison (2sN1, 2sN2, 2sE1,

2CsN1, 2CsN2, and 2CsE1), state-dependent hysteresis was instead substituted for its state-

independent counterpart to remain at most seven free parameters for that subset. The general

equation for any combination of first n-back and then exponential state-dependent hysteresis

is the following:

Htþ1ðst; aÞ ¼
XN

n¼1
b
S
nICtðstÞ� nþ1ðst; aÞ þ

XCtðstÞ

i¼Nþ1
b
S
Nl
i� N
H ICtðstÞ� iþ1ðst; aÞ

The extended “sE1+2CE1” model thus adds yet another term to the mixture policy:

pt st; að Þ ¼
expfðQtðst; aÞ þHtðst; aÞ þHtðaÞ þ BðaÞÞ=tgP
a∗expfðQtðst; a∗Þ þHtðst; a∗Þ þHtða∗Þ þ Bða∗ÞÞ=tg

Computational modeling (extended): State-independent action value

In parallel along the dimension of state dependence, the next alternative feature was state-inde-

pendent action value Qt(a) in contrast to state-dependent action value Qt(s,a) as described

above. In this case, action values are initialized for not only state-action pairs but also actions

per se:

8a : Q0ðaÞ ¼ 0

An action-specific RPE δAt+1 is determined by the discrepancy between the state-indepen-

dent action-value estimate Qt(at) and the subsequent reward (or lack thereof) rt+1:

d
A
tþ1
¼ rtþ1 � QtðatÞ

Naturally, the value update for the chosen action follows an analogous delta-learning rule

with an action-specific learning rate αA (for 0� αA� 1):

Qtþ1ðatÞ ¼ QtðatÞ þ aAd
A
tþ1

In addition to the seven free parameters of the 2CE1 model, the extended “Qa+2CE1”

model adds two more—that is, action-specific learning rate αA (for 0� αA� 1) and action-

specific value weight wA (for 0� wA� 1)—to reach its maximum of nine parameters. (For the

sake of tractability here, action generalization is presently omitted for state-independent action

value, but either a shared or tenth parameter could have been added with a generalized RPE

updating the state-independent value representation for the nonchosen action.) The weighting

parameter between state-independent and state-dependent action value can be incorporated

into the mixture policy like so:

pt st; að Þ ¼
expfðwAQtðaÞ þ ð1 � wAÞQtðst; aÞ þ HtðaÞ þ BðaÞÞ=tgP
a∗expfðwAQtða∗Þ þ ð1 � wAÞQtðst; a∗Þ þHtða∗Þ þ Bða∗ÞÞ=tg
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Computational modeling (extended): Asymmetric learning rates and

confirmation bias

Rather than adding another module to the original mixture policy, another alternative feature

that could similarly relate to the repetition or alternations of actions is asymmetry in learning

rates between positive and negative RPE signals (αP and αN for 0� αP� 1 and 0� αN� 1).

One subset of eight models (“LR+”) flexibly allowed for either an optimistic confirmation

bias (αN< αP) or a pessimistic doubt bias (αP< αN), whereas another subset of eight models

(“cLR+”) was constrained with an assumption of only confirmation bias if any asymmetry

(αN� αP). Imposing the latter constraint was in keeping with precedent in the modeling lit-

erature that emphasizes choice or action repetition by way of optimism and confirmation

bias, implying that these forces would ultimately override pessimism and doubt. This modi-

fication entailed the addition of only one free parameter for a maximum of eight total in the

“LR+2CE1” and “cLR+2CE1” models.

With positive learning rate αP and negative learning rate αN, the delta-learning rule is bifur-

cated with a conditional rule separating positive and negative RPE signals in this new equa-

tion:

Qtþ1ðst; atÞ ¼
Qtðst; atÞ þ aPdtþ1; dtþ1 > 0

Qtðst; atÞ þ aNdtþ1; dtþ1 < 0

(

For the rewards of fixed magnitude here, the conditions of positive or negative RPE (δt+1>
0 or δt+1< 0) would be met in the presence or absence of reward (rt+1 = 1 or rt+1 = 0), respec-

tively. Furthermore, with the extension of GRL, these separate learning rates likewise take

effect for generalized RPE signals according to analogous conditional updates:

Qtþ1ðst; a
0

tÞ ¼
f ðQtðst; a0tÞ þ gAaPdtþ1Þ; dtþ1 > 0

f ðQtðst; a0tÞ þ gAaNdtþ1Þ; dtþ1 < 0

(

Qtþ1ðs
0

t; atÞ ¼
f ðQtðs0t; atÞ þ gSaPdtþ1Þ; dtþ1 > 0

f ðQtðs0t; atÞ þ gSaNdtþ1Þ; dtþ1 < 0

(

Qtþ1ðs
0

t; a
0

tÞ ¼
f ðQtðs0t; a

0
tÞ þ gSgAaPdtþ1Þ; dtþ1 > 0

f ðQtðs0t; a
0
tÞ þ gSgAaNdtþ1Þ; dtþ1 < 0

(

Model fitting and comparison

Whereas the original model comparison permuted models for all variants and reductions of

RL and GRL (or fully model-based learning algorithms) [12], the primary model comparison

here permuted fewer learning variants to instead combine these with varied implementations

of action bias and hysteresis for 72 models in total (Table 2 and Table A in S1 Text). Specifi-

cally, this model comparison crossed factors for value-based learning, constant bias, n-back

hysteresis, and exponential hysteresis. The first two factors for learning were limited to the

cases of no learning (“X”) (α = gA = gS = 0), basic RL (“0”) (gA = gS = 0), 1-parameter GRL (“1”)

(gA = min{0, gS}, -1� gS� 1), and 2-parameter GRL (“2”) (-1� gA� 0, -1� gS� 1). (Note

that 1-parameter GRL here still refers to two-dimensional GRL but with a shared single

parameter.)

With respect to bias and hysteresis, the first main factor was the inclusion (“C”) or exclusion

of the constant lateral bias βR, amounting to 36 models each for either possibility. The second
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main factor of hysteresis was further subdivided between n-back (“N”) hysteresis and exponen-

tial (“E”) hysteresis as nonparametric and parametric alternatives—but not mutually exclusive

alternatives—with 40 pure n-back models, 8 pure exponential models, and 16 hybrid models.

Nonparametric n-back hysteresis was tested up to 4 trials back in the presence of learning and

up to 8 trials back in the absence of learning. Parametric exponential hysteresis was defined by

exponential decay but, when hybridized, allowed up to 2 additional degrees of freedom for non-

parametric weights on the most recent previous actions. For example, considering 2-parameter

GRL models, n-back hysteresis was represented up to 4-back in pure form or 3-back in post-

exponential form as 2N2, 2N3, 2N4, 2CN2, 2CN3, 2CN4, 2E2, 2E3, 2CE2, and 2CE3. The 2CN4

and 2CE3 models had the greatest number of free parameters with nine in total.

The competing models were all fitted to empirical behavior via maximum-likelihood esti-

mation with independence maintained at the level of individual participants. Free parameters

were optimized for overall goodness of fit to a participant’s sequence of actions with randomly

seeded iterations of the Nelder-Mead simplex algorithm [436]. All modeling and fitting proce-

dures were programmed with Matlab. The Akaike information criterion with correction for

finite sample size (AICc) [62,63] provided a means to adjust for model complexity when com-

paring models that differ in degrees of freedom. Whereas the XCE1 model with constant bias

and exponential hysteresis functioned as the null model for the original model comparison val-

idating GRL [12], here the 0-parameter chance model “X” was used instead for the baseline

explanatory power of a completely random action policy. Each free parameter was thus added

incrementally with a requirement of statistical justification for every single one.

To further verify the discriminability of the preferred 2CE1 model with its seven free

parameters, each fitted instantiation of the model was subsequently used to simulate a data set

yoked to that of the respective participant. Another complete model comparison was con-

ducted for these simulated data as a test of model recovery that would indicate whether the

2CE1 model could be discriminated reliably among both simpler and more complex alterna-

tives. Tests of parameter recovery followed with the expectation that the fitted parameters for

the simulated data would be correlated with the original fitted parameters for the empirical

data that the simulations were derived from. For juxtaposition, these procedures were also

repeated with simulations generated by the no-bias model “2” with only GRL.

Following the primary model comparison with its 72 models was the extended model com-

parison with 44 models spanning six subsets of eight models each. Moreover, each subset of

eight models matched the original subset of eight initially highlighted within the primary model

comparison—namely, 2, 2N1, 2N2, 2E1, 2C, 2CN1, 2CN2, and 2CE1. The first subset was the

original subset itself. The second subset substituted state-dependent hysteresis in six of the origi-

nal eight models (e.g., “2CsN1”, “2CsN2”, “2CsE1”). The remaining four subsets added each of

the four alternative features—namely, state-dependent action hysteresis, state-independent

action value, confirmation bias, and asymmetric learning rates—as a fixed component crossed

with the original subset of eight models building up to 2CE1 (e.g., “sE1+2CE1”, “Qa+2CE1”,

“cLR+2CE1”, “LR+2CE1”). Comparisons were made both within and across the six subsets.

Data analysis

The group assignments for participants based on learning performance were maintained from

the original model comparison [12]. The first measure of performance began with calculating

overall accuracy as the proportion of actions for which the participant correctly chose the

option that could result in delivery of a reward, excluding choices made for initial encounters

with novel cues. Accuracy was compared with the chance level of 50% for each participant

using a one-tailed binomial test. A subset of participants was initially set aside as the “Good
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learner” group if the accuracy score was significantly greater than chance [18]; subsequent

modeling could also confirm that this label was appropriate for each individual within the

group. The remaining participants with chance accuracy were subsequently assigned to either

the “Poor learner” group or the “Nonlearner” group according to whether or not one of the

original learning models could yield a significant improvement in goodness of fit relative to

the XCE1 model, which was nested within each learning model while retaining bias and hys-

teresis but omitting any sensitivity to actual reward outcomes [21].

Individually fitted parameters of the 2CE1 model for action-specific effects were first tested

against empirical measures for validation. Omitting the Nonlearner group for additional rigor,

correlations were tested for between the rightward bias βR and the probability of a right-hand

action, between the repetition bias β1 and the probability of a repeated action, and between

overall bias |βR|+|β1| and the probability of a correct action (hypothesizing an inverse relation).

Linear regression was performed with one-tailed one-sample t tests and reported with the

Pearson correlation coefficient as well as the Spearman rank-correlation coefficient to test for

monotonicity. Given the exclusively right-handed participants, a net rightward bias (βR> 0)

was also tested for across each performance group with a one-tailed one-sample t test.

For the preferred 2CE1 model and the other 2-parameter GRL models nested within it (2,

2N1, 2N2, 2E1, 2C, 2CN1, and 2CN2), posterior predictive checks were conducted with simu-

lated data sets that were yoked to the empirical data sets and analyzed in the same fashion after

averaging across 1,000 simulations. For the first set of checks focusing on only pure GRL (“2”)

and the full 2CE1 model, participants were initially divided according to the three levels of

learning performance. Using one-tailed one-sample t tests, above-chance probabilities were

tested for with respect to correct actions, right-hand actions, and alternated actions. (By

design, alternation of actions was more frequent when actions were more correct.) The net

right-hand effects in the Poor-learner and Nonlearner groups were compared to those in

the Good-learner group with one-tailed independent-samples t tests. Analogous compari-

sons within and between groups were conducted for the raw measures of absolute lateral

bias |P(Right)-50%| and absolute repetition-or-alternation frequency |P(Repeat)-50%|.
Moreover, correlations were tested for across the continuous measure of accuracy rather

than discrete participant groups.

Individuals across the two learner groups were first reclassified according to the 2CE1 mod-

el’s fitted result of either leftward bias (βR< 0) or rightward bias (βR> 0). Above-chance prob-

abilities of either left-hand or right-hand actions were then tested for in empirical data as well

as simulated data from the eight 2-parameter GRL models. These individuals were next reclas-

sified according to the 2CE1 model’s fitted result of either alternation bias (β1< 0) or repeti-

tion bias (β1> 0). (Supplementary analyses further divided six intersectional subgroups as

well, crossing the three levels of learning performance with either leftward versus rightward or

alternation versus repetition.) The alternation-bias and repetition-bias groups were tested for

above-chance probabilities of alternated and repeated actions, respectively. Post-hoc tests fol-

lowed to check between groups in the event of trending but nonsignificant results within a

group—in this case using one-tailed independent-samples t tests. The probability of repeating

versus alternating was also conditioned on previous actions up to eight trials back. Posterior

predictive checks for these action-history curves were generated for both the primary model

comparison and the extended model comparison.

For psychometric functions, the first logistic-regression model represented the probability

of a right-hand action as a function of the difference between the state-dependent action values

Qt(st,aR) and Qt(st,aL) corresponding to right and left. The second model represented the prob-

ability of repeating the most recent action (independent of state) as a function of the difference

between action values that correspond to repetition and alternation. To accommodate
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interindividual variability in the range of estimated values, differences in action values were

normalized with respect to the maximum absolute value for each participant. Parameters for

these mixed-effects models were first estimated at the level of individual participants and then

assessed within each bias group by way of one-tailed one-sample t tests.

Supporting information

S1 Text. Fig A. Task. This schematic of the hierarchical reversal-learning task performed dur-

ing fMRI scanning includes the probabilities of a rewarded outcome in one of 12 blocks. Fol-

lowing an intertrial interval (ITI) with a fixation cross, one of four paired states (i.e., cues) was

presented with equal probability, prompting the participant to choose either the left-hand

action (“L”) or the right-hand action (“R”). Confirmation of the action at the reaction time

(RT) was followed by an interstimulus interval (ISI) and finally an outcome of either a mone-

tary reward or no reward as feedback. The paired state categories were faces and houses for the

3-T version or colors and directions of motion for the 7-T version. Dotted arrows symbolize

the two possible actions. Solid arrows represent equally or more likely state transitions,

whereas dashed arrows represent less likely transitions. Arrow thickness corresponds to the

weight of an outcome’s probability. (b) Only one action was rewarded per state, thereby facili-

tating discriminative action generalization. States were paired within a category as “state A”

and “state B” such that opposite actions were rewarded between the two states, thereby facili-

tating discriminative state generalization. One of two possible arrangements for hierarchical

reward structure (independent of probabilities) is shown here, corresponding to the face cate-

gory for this example block: The upper face is “state A”, and the lower face is “state B”. There

was no pairing between the independent categories. (c) The second possible arrangement is

also shown for comparison. The two possibilities alternated within categories as this anticorre-

lational rule remained constant through reversals that remapped categories between blocks.

For an optimal learner, this binary metastate determines the cognitive map or model of gener-

alizable task structure, which for a proper (cognitive) model-based algorithm is an explicit

model but for generalized reinforcement learning is an implicit model. This figure corre-

sponds to Fig 1 of the original report [12]: https://doi.org/10.1002/hbm.25988.

Fig B in S1 Text. The “generalized reinforcement learning” (GRL) model. Representative

dynamics of value signals and learning signals generated by the GRL model are shown for the

final participant in the Good-learner group of the 3-T Face/House data set. Parameters were

assigned as follows for this participant: α = 0.318, gA = -0.710, gS = -0.808, τ = 0.408, βR =

0.178, β1 = -0.067, and λH = 0.753. Tracking the probability of reward for the left and right

actions (blue and red lines, respectively) in each of four active states, the model’s estimates of

action values Qt(s,a) (solid lines) are plotted along with actual values (dashed lines) over the

course of 12 blocks. Plotted below these value signals are time courses of the corresponding

action-value-prediction error (AVPE) δQt+1 signals, which represent a distinct type of reward-

prediction error (RPE) along with the state-value-prediction error (SVPE) δVt+1 (cf. [12,21].

However, throughout this report, the usage of the generic term “RPE” and its variable “δt+1”
with no superscript—rather than “AVPE” and “δQt+1”—is due to omission of the neural mod-

el’s SVPE here. Discriminative state and action generalization are evident with counterfactual

updates of values for the three nonexperienced state-action pairs within a category. These

additional updates occur despite only one state-action pair being experienced with feedback.

Each colored tick mark denotes an occurrence of the respective action. This figure corresponds

to Fig 7A of the original report [12].

Table A in S1 Text. Model parameters (unrolled). See Table 2. Models are listed individually

here.
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Fig C in S1 Text. Discriminability of the 2CE1 model: 3-T Face/House version. Compare to

Fig 2. Each fitted instantiation of the preferred 2CE1 model was used to simulate a data set

yoked to that of the respective participant. The results from the empirical model comparison

were replicated in silico as a demonstration of the discriminability of this 7-parameter model

among both simpler and more complex alternatives ranging from 0 to 9 free parameters.

Model recovery succeeded inasmuch as the 2CE1 model remained preferred among Good

learners, and 2CE1 or its nonlearning analog XCE1 could be recovered for Poor learners or

Nonlearners as well. See also Tables G, H, and I.

Fig D in S1 Text. Discriminability of the 2CE1 model: 7-T Color/Motion version. Compare

to Fig 3 and Fig C. See also Tables J and K.

Fig E in S1 Text. Discriminability of the no-bias model “2” with only GRL: 3-T Face/House

version. Compare to Fig C. The no-bias model “2” was recovered in lieu of the bias-and-hys-

teresis model 2CE1 when substituting data simulated with the no-bias model. This converse

model recovery again demonstrates an absence of overfitting. See also Tables L, M, and N.

Fig F in S1 Text. Discriminability of the no-bias model “2” with only GRL: 7-T Color/Motion

version. Compare to Figs D and E. See also Tables O and P.

Fig G in S1 Text. Reduced model comparison for discriminability of the 2CE1 model: 3-T

Face/House version. Compare to Fig 4 and Fig C.

Fig H in S1 Text. Reduced model comparison for discriminability of the 2CE1 model: 7-T

Color/Motion version. Compare to Fig 5 and Figs D and G.

Fig I in S1 Text. Reduced model comparison for discriminability of the no-bias model “2”

with only GRL: 3-T Face/House version. Compare to Fig E.

Fig J in S1 Text. Reduced model comparison for discriminability of the no-bias model “2”

with only GRL: 7-T Color/Motion version. Compare to Figs F and I.

Fig K in S1 Text. Model comparison by bias category: 3-T Face/House version. Compare to

Figs 2 (panel d here) and 4 (a) and Figs C (e), E (f), G (b), and I (c). Participant counts for best-

fitting models can also be grouped according to four categories: no bias (e.g., “2”), constant bias

(e.g., 2C), hysteretic bias (e.g., 2E1), or both constant and hysteretic bias (e.g., 2CE1).

Fig L in S1 Text. Model comparison by bias category: 7-T Color/Motion version. Compare to

Figs 3 (panel d here) and 5 (a) and Figs D (e), F (f), H (b), J (c), and K.

Fig M in S1 Text. Confusion matrix and inverse-confusion matrix. Compare to Figs K and L.

The confusion matrix P(Fit | Simulation) corresponds to the probability (as a percentage) that

simulated data from a given model are best fitted by either the model that actually generated the

data or an alternative model. The inversion matrix P(Simulation | Fit) instead corresponds to the

probability that a model generated the simulated data given that either the same model or an

alternative model fitted the data best. (a) Limiting the model comparison to only the 2CE1 or

“2” models with or without bias and hysteresis, model confusion is minimal as expected. (b-c)

Expanding the model comparison with a binarized categorization of bias versus none for either

8 (b) or 72 (c) models does leave confusion less minimal as the models with bias outnumber the

models without bias, but the expected trend of model recovery still holds true. (d-f) Results were

replicated in the 7-T Color/Motion version of the experiment.

Fig N in S1 Text. Parameter recovery with the 2CE1 model more accurate than recovery

with the no-bias model “2” including only GRL. (a) As described previously, the 2CE1 model

was fitted to yoked simulated data that were generated with the 2CE1 parameters originally fitted

to empirical data. Parameter recovery was especially robust for the Good-learner group across all

seven free parameters, including βR, β1, and λH for action bias and hysteresis (p< 0.05).

Although somewhat less robust, recovery of 2CE1 parameters was also successful for the Poor-

learner group (p< 0.05 with the exception of τ from the first data set and p< 0.06 for α from

the second data set). (b) The relative significance of bias and hysteresis was found to be greatest
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among Poor learners. Hence, if instead fitting the no-bias model “2”, the remaining four parame-

ters needed for pure GRL (α, gA, gS, τ) were not significantly recoverable for the Poor-learner

group (p> 0.05 with one exception for gS from the second data set). (c) The p values for the cor-

relations are plotted separately for Good (“G”) and Poor (“P”) learners when using either the

7-parameter 2CE1 model or the 4-parameter model “2”. (d-f) Results were replicated in the 7-T

Color/Motion version of the experiment.

Fig O in S1 Text. Action bias and hysteresis versus learning performance: Individual results.

Compare to Figs 6 and 7.

Fig P in S1 Text. Hysteresis represented by sequences across trials. Compare to Fig 12. The

distribution of lengths of runs of consecutive repeated actions reveals hysteresis from another

perspective. Alternation and repetition biases should result in shorter and longer runs, respec-

tively, as only a model including hysteresis could replicate. Error bars indicate standard errors of

the means.

Fig Q in S1 Text. Constant bias and learning performance. Compare to Figs 6, 7, and 8. Partic-

ipants were further divided into six subgroups that separated the two directions of constant lat-

eral bias as well as the three levels of learning performance. Constant bias should still be

substantial for Good learners but should be even more pronounced for Poor learners and Non-

learners. Moreover, modeled bias in 2CE1 simulations should still both qualitatively and quanti-

tively replicate the directions and magnitudes of empirical effects of laterality.

Fig R in S1 Text. Hysteresis and learning performance. Compare to Figs 6, 7, and 9. Partici-

pants were next subdivided with the two directions of hysteretic bias as the first factor crossed

with learning performance. As with constant bias, hysteretic bias should still be substantial for

Good learners but should be even more pronounced for Poor learners and Nonlearners. Like-

wise, modeled bias in 2CE1 simulations should still replicate the directions and magnitudes of

empirical effects of hysteresis.

Fig S in S1 Text. Substitution of state-dependent action hysteresis. Compare to Figs 12 and

14. The alternative of state-dependent hysteresisHt(st,a) was first substituted in place of state-

independent hysteresisHt(a). Following the original reduced comparison of eight models, here

state-dependent action hysteresis was tested in its 1-back (2CsN1), 2-back (2CsN2) and expo-

nential (2CsE1) forms. As expected because the four states (which this hysteresis depends on)

were rotated in sequence, each form of state-dependent hysteresis by itself failed to match the

action-history curves here.

Fig T in S1 Text. Addition of state-dependent action hysteresis to state-independent action

hysteresis. Compare to Figs 12 and 14 and Fig S. State-dependent hysteresisHt(st,a) in exponen-

tial form (“sE1+”) was subsequently added to the eight models from the original reduced model

comparison with state-independent hysteresisHt(a) (2 through 2CE1). Considering that the 2CE1

model in its own right could parsimoniously account for all of these alternation and repetition

effects, the expanded sE1+2CE1 model was not justified by any qualitative improvement in fit.

Fig U in S1 Text. Addition of state-independent action value. Compare to Figs 12 and 14.

State-independent action valueQt(a)was added to the eight models from the original reduced

model comparison with only state-dependent action valueQt(st,a). Again, the expanded Qa+2CE1

model was not justified by any qualitative improvement in fit.

Fig V in S1 Text. Addition of confirmation bias. Compare to Figs 12 and 14. A second learning

rate was added to distinguish updates for positive and negative reward-prediction errors (αP and

αN). Models with confirmation bias (“cLR+”) in particular imposed the constraint αN< αPwith

an assumption of subjective optimism biased toward positive valence. The expanded cLR+2CE1

model was not justified by any qualitative improvement in fit.

Fig W in S1 Text. Addition of asymmetric learning rates. Compare to Figs 12 and 14 and Fig V.

As before, a second learning rate was added to distinguish updates for positive and negative
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reward-prediction errors, but here the asymmetric learning rates αN 6¼ αP had no constraint of

confirmation bias such that pessimistic doubt bias was also a possibility. Even in this uncon-

strained form, the expanded LR+2CE1 model still was not justified by any qualitative improve-

ment in fit.

Table B in S1 Text. Model comparison: 3-T Face/House version (Good-learner group). See

Fig 2. Listed first for the 72 models fitted to empirical data are absolute scores for deviance and

the corrected Akaike information criterion (AICc), where a lower score is better. These absolute

scores were translated to residual goodness of fit relative to the null chance model “X”, where a

higher score is better. Results with the best fit according to the AICc, which penalizes degrees of

freedom, are highlighted with boldface and italics. “df” stands for degrees of freedom. The conven-

tions for displaying this table also apply for Tables C-U.

Table C in S1 Text. Model comparison: 3-T Face/House version (Poor-learner group). See

Fig 2.

Table D in S1 Text. Model comparison: 3-T Face/House version (Nonlearner group). See

Fig 2.

Table E in S1 Text. Model comparison: 7-T Color/Motion version (Good-learner group). See

Fig 3.

Table F in S1 Text. Model comparison: 7-T Color/Motion version (Poor-learner group). See

Fig 3.

Table G in S1 Text. Discriminability of the 2CE1 model: 3-T Face/House version

(Good-learner group). See Fig C.

Table H in S1 Text. Discriminability of the 2CE1 model: 3-T Face/House version

(Poor-learner group). See Fig C.

Table I in S1 Text. Discriminability of the 2CE1 model: 3-T Face/House version

(Nonlearner group). See Fig C.

Table J in S1 Text. Discriminability of the 2CE1 model: 7-T Color/Motion version

(Good-learner group). See Fig D.

Table K in S1 Text. Discriminability of the 2CE1 model: 7-T Color/Motion version

(Poor-learner group). See Fig D.

Table L in S1 Text. Discriminability of the no-bias model “2” with only GRL: 3-T

Face/House version (Good-learner group). See Fig E.

Table M in S1 Text. Discriminability of the no-bias model “2” with only GRL: 3-T

Face/House version (Poor-learner group). See Fig E.

Table N in S1 Text. Discriminability of the no-bias model “2” with only GRL: 3-T

Face/House version (Nonlearner group). See Fig E.

Table O in S1 Text. Discriminability of the no-bias model “2” with only GRL: 7-T

Color/Motion version (Good-learner group). See Fig F.

Table P in S1 Text. Discriminability of the no-bias model “2” with only GRL: 7-T

Color/Motion version (Poor-learner group). See Fig F.

Table Q in S1 Text. Extended model comparison: 3-T Face/House version (Good-

learner group). See Table 4. Results with the best fit within each subset of 8 models are

highlighted with boldface and italics. Results with the best fit across all 44 models are also

marked with asterisks.

Table R in S1 Text. Extended model comparison: 3-T Face/House version (Poor-

learner group). See Table 4.

Table S in S1 Text. Extended model comparison: 3-T Face/House version (Nonlearner

group). See Table 4.

Table T in S1 Text. Extended model comparison: 7-T Color/Motion version

(Good-learner group). See Table 4.
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Table U in S1 Text. Extended model comparison: 7-T Color/Motion version

(Poor-learner group). See Table 4.
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16. Gläscher J, Hampton AN, O’Doherty JP. Determining a role for ventromedial prefrontal cortex in

encoding action-based value signals during reward-related decision making. Cereb Cortex. 2009; 19

(2): 483–495. https://doi.org/10.1093/cercor/bhn098 PMID: 18550593

17. Lau B, Glimcher PW. Dynamic response-by-response models of matching behavior in rhesus mon-

keys. J Exp Anal Behav. 2005; 84(3): 555–579. https://doi.org/10.1901/jeab.2005.110-04 PMID:

16596980

18. Schönberg T, Daw ND, Joel D, O’Doherty JP. Reinforcement learning signals in the human striatum

distinguish learners from nonlearners during reward-based decision making. J Neurosci. 2007; 27

(47): 12860–12867. https://doi.org/10.1523/JNEUROSCI.2496-07.2007 PMID: 18032658

19. Gershman SJ, Pesaran B, Daw ND. Human reinforcement learning subdivides structured action

spaces by learning effector-specific values. J Neurosci. 2009; 29(43): 13524–13531. https://doi.org/

10.1523/JNEUROSCI.2469-09.2009 PMID: 19864565

20. Rutledge RB, Lazzaro SC, Lau B, Myers CE, Gluck MA, Glimcher PW. Dopaminergic drugs modulate

learning rates and perseveration in Parkinson’s patients in a dynamic foraging task. J Neurosci. 2009;

29(48): 15104–15114. https://doi.org/10.1523/JNEUROSCI.3524-09.2009 PMID: 19955362

21. Colas JT, Pauli WM, Larsen T, Tyszka JM, O’Doherty JP. Distinct prediction errors in mesostriatal cir-

cuits of the human brain mediate learning about the values of both states and actions: evidence from

high-resolution fMRI. PLOS Comput Biol. 2017; 13(10): e1005810. https://doi.org/10.1371/journal.

pcbi.1005810 PMID: 29049406

22. O’Doherty JP, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. Dissociable roles of ventral and

dorsal striatum in instrumental conditioning. Science. 2004; 304(5669): 452–454. https://doi.org/10.

1126/science.1094285 PMID: 15087550

23. Shepard RN. Stimulus and response generalization: a stochastic model relating generalization to dis-

tance in psychological space. Psychometrika. 1957; 22(4): 325–345. https://doi.org/10.1007/

bf02288967

24. Luce RD. Individual choice behavior: a theoretical analysis. New York (NY): Wiley; 1959. https://doi.

org/10.1037/14396-000

25. Luce RD. The choice axiom after twenty years. J Math Psychol. 1977; 15(3): 215–233. https://doi.org/

10.1016/0022-2496(77)90032-3

26. Busemeyer JR, Diederich A. Cognitive modeling. Thousand Oaks (CA): Sage; 2010.

27. Palminteri S, Wyart V, Koechlin E. The importance of falsification in computational cognitive modeling.

Trends Cogn Sci. 2017; 21(6): 425–433. https://doi.org/10.1016/j.tics.2017.03.011 PMID: 28476348

28. Wilson RC, Collins AG. Ten simple rules for the computational modeling of behavioral data. eLife.

2019; 8: e49547. https://doi.org/10.7554/eLife.49547 PMID: 31769410

29. Wiecki TV, Poland J, Frank MJ. Model-based cognitive neuroscience approaches to computational

psychiatry: clustering and classification. Clinical Psychol Sci. 2015; 3(3): 378–399. https://doi.org/10.

1177/2167702614565359

30. Scheibehenne B, Pachur T. Hierarchical Bayesian modeling: does it improve parameter stability? In:

Knauff M, Pauen M, Sebanz N, Wachsmuth I, editors. Proceedings of the 35th Annual Conference of

the Cognitive Science Society. Austin (TX): Cognitive Science Society; 2013. p. 1277–1282.

31. Scheibehenne B, Pachur T. Using Bayesian hierarchical parameter estimation to assess the gener-

alizability of cognitive models of choice. Psychon Bull Rev. 2015; 22: 391–407. https://doi.org/10.

3758/s13423-014-0684-4 PMID: 25134469

PLOS COMPUTATIONAL BIOLOGY Reinforcement learning versus bias and hysteresis: a mixture of experts and nonexperts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011950 March 29, 2024 52 / 70

https://doi.org/10.1073/pnas.1912330117
https://doi.org/10.1073/pnas.1912330117
http://www.ncbi.nlm.nih.gov/pubmed/33229518
https://doi.org/10.1002/hbm.25988
https://doi.org/10.1093/acprof:oso/9780199600434.001.0001
https://doi.org/10.1523/JNEUROSCI.1010-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16899731
https://doi.org/10.1016/j.neuron.2007.07.022
https://doi.org/10.1016/j.neuron.2007.07.022
http://www.ncbi.nlm.nih.gov/pubmed/17698008
https://doi.org/10.1093/cercor/bhn098
http://www.ncbi.nlm.nih.gov/pubmed/18550593
https://doi.org/10.1901/jeab.2005.110-04
http://www.ncbi.nlm.nih.gov/pubmed/16596980
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18032658
https://doi.org/10.1523/JNEUROSCI.2469-09.2009
https://doi.org/10.1523/JNEUROSCI.2469-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19864565
https://doi.org/10.1523/JNEUROSCI.3524-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19955362
https://doi.org/10.1371/journal.pcbi.1005810
https://doi.org/10.1371/journal.pcbi.1005810
http://www.ncbi.nlm.nih.gov/pubmed/29049406
https://doi.org/10.1126/science.1094285
https://doi.org/10.1126/science.1094285
http://www.ncbi.nlm.nih.gov/pubmed/15087550
https://doi.org/10.1007/bf02288967
https://doi.org/10.1007/bf02288967
https://doi.org/10.1037/14396-000
https://doi.org/10.1037/14396-000
https://doi.org/10.1016/0022-2496(77)90032-3
https://doi.org/10.1016/0022-2496(77)90032-3
https://doi.org/10.1016/j.tics.2017.03.011
http://www.ncbi.nlm.nih.gov/pubmed/28476348
https://doi.org/10.7554/eLife.49547
http://www.ncbi.nlm.nih.gov/pubmed/31769410
https://doi.org/10.1177/2167702614565359
https://doi.org/10.1177/2167702614565359
https://doi.org/10.3758/s13423-014-0684-4
https://doi.org/10.3758/s13423-014-0684-4
http://www.ncbi.nlm.nih.gov/pubmed/25134469
https://doi.org/10.1371/journal.pcbi.1011950


32. Spektor MS, Kellen D. The relative merit of empirical priors in non-identifiable and sloppy models:

applications to models of learning and decision-making. Psychon Bull Rev. 2018; 25(6): 2047–2068.

https://doi.org/10.3758/s13423-018-1446-5

33. Ballard IC, McClure SM. Joint modeling of reaction times and choice improves parameter identifiability

in reinforcement learning models. J Neurosci Methods. 2019; 317: 37–44. https://doi.org/10.1016/j.

jneumeth.2019.01.006 PMID: 30664916

34. Katahira K, Oba T, Toyama A. Can reliability of computational models be truly improved by placing pri-

ors on parameters? PsyArXiv. 2022; 4e2d9. https://doi.org/10.31234/osf.io/4e2d9

35. Baribault B, Collins AG. Troubleshooting Bayesian cognitive models. Psychol Methods. 2023. https://

doi.org/10.1037/met0000554

36. Thorndike EL. On the fallacy of imputing the correlations found for groups to the individuals or smaller

groups composing them. Am J Psychol. 1939; 52(1): 122–124. https://doi.org/10.2307/1416673

37. Robinson WS. Ecological correlations and the behavior of individuals. Am Sociol Rev. 1950; 15(3):

351–357. https://doi.org/10.2307/2087176

38. Selvin HC. Durkheim’s Suicide and problems of empirical research. Am J Sociol. 1958; 63(6): 607–

619. https://doi.org/10.1086/222356

39. Corrado GS, Sugrue LP, Seung HS, Newsome WT. Linear-nonlinear-Poisson models of primate

choice dynamics. J Exp Anal Behav. 2005; 84(3): 581–617. https://doi.org/10.1901/jeab.2005.23-05

PMID: 16596981

40. Katahira K. The relation between reinforcement learning parameters and the influence of reinforce-

ment history on choice behavior. J Math Psychol. 2015; 66: 59–69. https://doi.org/10.1016/j.jmp.

2015.03.006

41. Katahira K, Bai Y, Nakao T. Pseudo-learning effects in reinforcement learning model-based analysis:

a problem of misspecification of initial preference. PsyArXiv. 2017; a6hzq. https://doi.org/10.31234/

osf.io/a6hzq

42. Katahira K. The statistical structures of reinforcement learning with asymmetric value updates. J Math

Psychol. 2018; 87: 31–45. https://doi.org/10.1016/j.jmp.2018.09.002

43. Toyama A, Katahira K, Ohira H. Biases in estimating the balance between model-free and model-

based learning systems due to model misspecification. J Math Psychol. 2019; 91: 88–102. https://doi.

org/10.1016/j.jmp.2019.03.007

44. Sugawara M, Katahira K. Dissociation between asymmetric value updating and perseverance in

human reinforcement learning. Sci Rep. 2021; 11: 3574. https://doi.org/10.1038/s41598-020-80593-7

PMID: 33574424

45. Katahira K, Kimura K. Influences of reinforcement and choice histories on choice behavior in actor-

critic learning. Comput Brain Behav. 2023; 6: 172–194. https://doi.org/10.1007/s42113-022-00145-2

46. Palminteri S. Choice-confirmation bias and gradual perseveration in human reinforcement learning.

Behav Neurosci. 2023; 137(1): 78–88. https://doi.org/10.1037/bne0000541 PMID: 36395020

47. Toyama A, Katahira K, Kunisato Y. Examinations of biases by model misspecification and parameter

reliability of reinforcement learning models. Comput Brain Behav. 2023; 6: 651–670. https://doi.org/

10.1007/s42113-023-00175-4

48. Myung IJ. The importance of complexity in model selection. J Math Psychol. 2000; 44(1): 190–204.

https://doi.org/10.1006/jmps.1999.1283 PMID: 10733864

49. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE. Adaptive mixtures of local experts. Neural Comput.

1991; 3(1): 79–87. https://doi.org/10.1162/neco.1991.3.1.79 PMID: 31141872

50. Doya K, Samejima K, Katagiri KI, Kawato M. Multiple model-based reinforcement learning. Neural

Comput. 2002; 14(6): 1347–1369. https://doi.org/10.1162/089976602753712972 PMID: 12020450

51. Yuksel SE, Wilson JN, Gader PD. Twenty years of mixture of experts. IEEE Trans Neural Netw Learn

Syst. 2012; 23(8): 1177–1193. https://doi.org/10.1109/TNNLS.2012.2200299 PMID: 24807516

52. Hamrick JB, Ballard AJ, Pascanu R, Vinyals O, Heess N, Battaglia PW. Metacontrol for adaptive imag-

ination-based optimization. arXiv. 2017; 1705.02670. https://doi.org/10.48550/arxiv.1705.02670

53. Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, Dean J. Outrageously large neural net-

works: the sparsely-gated mixture-of-experts layer. arXiv. 2017; 1701.06538. https://doi.org/10.

48550/arxiv.1701.06538

54. Fedus W, Dean J, Zoph B. A review of sparse expert models in deep learning. arXiv. 2022;

2209.01667. https://doi.org/10.48550/arxiv.2209.01667

55. Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Sci-

ence. 1994; 265(5180): 1826–1831. https://doi.org/10.1126/science.8091209 PMID: 8091209

PLOS COMPUTATIONAL BIOLOGY Reinforcement learning versus bias and hysteresis: a mixture of experts and nonexperts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011950 March 29, 2024 53 / 70

https://doi.org/10.3758/s13423-018-1446-5
https://doi.org/10.1016/j.jneumeth.2019.01.006
https://doi.org/10.1016/j.jneumeth.2019.01.006
http://www.ncbi.nlm.nih.gov/pubmed/30664916
https://doi.org/10.31234/osf.io/4e2d9
https://doi.org/10.1037/met0000554
https://doi.org/10.1037/met0000554
https://doi.org/10.2307/1416673
https://doi.org/10.2307/2087176
https://doi.org/10.1086/222356
https://doi.org/10.1901/jeab.2005.23-05
http://www.ncbi.nlm.nih.gov/pubmed/16596981
https://doi.org/10.1016/j.jmp.2015.03.006
https://doi.org/10.1016/j.jmp.2015.03.006
https://doi.org/10.31234/osf.io/a6hzq
https://doi.org/10.31234/osf.io/a6hzq
https://doi.org/10.1016/j.jmp.2018.09.002
https://doi.org/10.1016/j.jmp.2019.03.007
https://doi.org/10.1016/j.jmp.2019.03.007
https://doi.org/10.1038/s41598-020-80593-7
http://www.ncbi.nlm.nih.gov/pubmed/33574424
https://doi.org/10.1007/s42113-022-00145-2
https://doi.org/10.1037/bne0000541
http://www.ncbi.nlm.nih.gov/pubmed/36395020
https://doi.org/10.1007/s42113-023-00175-4
https://doi.org/10.1007/s42113-023-00175-4
https://doi.org/10.1006/jmps.1999.1283
http://www.ncbi.nlm.nih.gov/pubmed/10733864
https://doi.org/10.1162/neco.1991.3.1.79
http://www.ncbi.nlm.nih.gov/pubmed/31141872
https://doi.org/10.1162/089976602753712972
http://www.ncbi.nlm.nih.gov/pubmed/12020450
https://doi.org/10.1109/TNNLS.2012.2200299
http://www.ncbi.nlm.nih.gov/pubmed/24807516
https://doi.org/10.48550/arxiv.1705.02670
https://doi.org/10.48550/arxiv.1701.06538
https://doi.org/10.48550/arxiv.1701.06538
https://doi.org/10.48550/arxiv.2209.01667
https://doi.org/10.1126/science.8091209
http://www.ncbi.nlm.nih.gov/pubmed/8091209
https://doi.org/10.1371/journal.pcbi.1011950


56. Ghahramani Z, Wolpert DM. Modular decomposition in visuomotor learning. Nature. 1997; 386

(6623): 392–395. https://doi.org/10.1038/386392a0 PMID: 9121554

57. Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal

systems for behavioral control. Nat Neurosci. 2005; 8(12): 1704–1711. https://doi.org/10.1038/

nn1560 PMID: 16286932

58. Ito M, Doya K. Validation of decision-making models and analysis of decision variables in the rat basal

ganglia. J Neurosci. 2009; 29(31): 9861–9874. https://doi.org/10.1523/JNEUROSCI.6157-08.2009

PMID: 19657038

59. Kim H, Sul JH, Huh N, Lee D, Jung MW. Role of striatum in updating values of chosen actions. J Neu-

rosci. 2009; 29(47): 14701–14712. https://doi.org/10.1523/JNEUROSCI.2728-09.2009 PMID: 19940165

60. Fonseca MS, Murakami M, Mainen ZF. Activation of dorsal raphe serotonergic neurons promotes

waiting but is not reinforcing. Curr Biol. 2015; 25(3): 306–315. https://doi.org/10.1016/j.cub.2014.12.

002 PMID: 25601545

61. Beron CC, Neufeld SQ, Linderman SW, Sabatini BL. Mice exhibit stochastic and efficient action

switching during probabilistic decision making. Proc Natl Acad Sci U S A. 2022; 119(15):

e2113961119. https://doi.org/10.1073/pnas.2113961119 PMID: 35385355

62. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974; 19(6):

716–723. https://doi.org/10.1109/tac.1974.1100705

63. Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biometrika. 1989;

76(2): 297–307. https://doi.org/10.1093/biomet/76.2.297

64. Thorndike EL. The fundamentals of learning. New York (NY): Teachers College Bureau of Publica-

tions, Columbia University; 1932. https://doi.org/10.1037/10976-000

65. Thorndike EL. A proof of the law of effect. Science. 1933; 77(1989): 173–175. https://doi.org/10.1126/

science.77.1989.173-a

66. Frank MJ, Seeberger LC, O’Reilly RC. By carrot or by stick: cognitive reinforcement learning in parkin-

sonism. Science. 2004; 306(5703): 1940–1943. https://doi.org/10.1126/science.1102941 PMID:

15528409

67. Sharot T. The optimism bias. Curr Biol. 2011; 21(23): R941–R945. https://doi.org/10.1016/j.cub.2011.

10.030 PMID: 22153158

68. Sharot T, Korn CW, Dolan RJ. How unrealistic optimism is maintained in the face of reality. Nat Neu-

rosci. 2011; 14(11): 1475–1479. https://doi.org/10.1038/nn.2949 PMID: 21983684

69. Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw.

2002; 15(4–6): 603–616. https://doi.org/10.1016/s0893-6080(02)00052-7 PMID: 12371515

70. Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals

multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A. 2007; 104(41):

16311–16316. https://doi.org/10.1073/pnas.0706111104 PMID: 17913879

71. Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict indi-

vidual differences in exploration and exploitation. Nat Neurosci. 2009; 12(8): 1062–1068. https://doi.

org/10.1038/nn.2342 PMID: 19620978

72. Niv Y, Edlund JA, Dayan P, O’Doherty JP. Neural prediction errors reveal a risk-sensitive reinforce-

ment-learning process in the human brain. J Neurosci. 2012; 32(2): 551–562. https://doi.org/10.1523/

JNEUROSCI.5498-10.2012 PMID: 22238090
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364. Tarantola T, Folke T, Boldt A, Pérez OD, Martino BD. Confirmation bias optimizes reward learning.

bioRxiv. 2021; 433214. https://doi.org/10.1101/2021.02.27.433214

365. Lefebvre G, Summerfield C, Bogacz R. A normative account of confirmation bias during reinforcement

learning. Neural Comput. 2022; 34(2): 307–337. https://doi.org/10.1162/neco_a_01455 PMID:

34758486

366. Fischer J, Whitney D. Serial dependence in visual perception. Nat Neurosci. 2014; 17(5): 738–743.

https://doi.org/10.1038/nn.3689 PMID: 24686785

PLOS COMPUTATIONAL BIOLOGY Reinforcement learning versus bias and hysteresis: a mixture of experts and nonexperts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011950 March 29, 2024 67 / 70

https://doi.org/10.1037/a0020198
http://www.ncbi.nlm.nih.gov/pubmed/20853993
https://doi.org/10.1371/journal.pone.0051637
https://doi.org/10.1371/journal.pone.0051637
http://www.ncbi.nlm.nih.gov/pubmed/23284730
https://doi.org/10.1016/j.neuron.2013.07.007
https://doi.org/10.1016/j.neuron.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23889930
https://doi.org/10.1371/journal.pone.0068210
https://doi.org/10.1371/journal.pone.0068210
http://www.ncbi.nlm.nih.gov/pubmed/23894295
https://doi.org/10.1037/a0031048
http://www.ncbi.nlm.nih.gov/pubmed/23230991
https://doi.org/10.1146/annurev-psych-010814-015044
http://www.ncbi.nlm.nih.gov/pubmed/25251491
https://doi.org/10.3758/s13415-015-0334-y
http://www.ncbi.nlm.nih.gov/pubmed/25673005
https://doi.org/10.1038/nn.4384
http://www.ncbi.nlm.nih.gov/pubmed/27669989
https://doi.org/10.1038/s41562-018-0401-9
https://doi.org/10.1038/s41562-018-0401-9
http://www.ncbi.nlm.nih.gov/pubmed/30988433
https://doi.org/10.1016/j.tics.2018.01.009
http://www.ncbi.nlm.nih.gov/pubmed/29475638
https://doi.org/10.1371/journal.pcbi.1007326
http://www.ncbi.nlm.nih.gov/pubmed/31490934
https://doi.org/10.1016/j.neuropsychologia.2018.09.013
http://www.ncbi.nlm.nih.gov/pubmed/30268880
https://doi.org/10.1016/j.cognition.2020.104394
http://www.ncbi.nlm.nih.gov/pubmed/32679270
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.31234/osf.io/rnz72
https://doi.org/10.1037/h0042769
http://www.ncbi.nlm.nih.gov/pubmed/13310708
https://doi.org/10.1111/j.1756-8765.2008.01006.x
http://www.ncbi.nlm.nih.gov/pubmed/25164802
https://doi.org/10.1146/annurev-psych-120709-145346
http://www.ncbi.nlm.nih.gov/pubmed/21126183
https://doi.org/10.1162/neco.2009.09-08-866
https://doi.org/10.1162/neco.2009.09-08-866
http://www.ncbi.nlm.nih.gov/pubmed/19548803
https://doi.org/10.1101/2021.02.27.433214
https://doi.org/10.1162/neco%5Fa%5F01455
http://www.ncbi.nlm.nih.gov/pubmed/34758486
https://doi.org/10.1038/nn.3689
http://www.ncbi.nlm.nih.gov/pubmed/24686785
https://doi.org/10.1371/journal.pcbi.1011950


367. Ernst MR, Burwick T, Triesch J. Recurrent processing improves occluded object recognition and gives

rise to perceptual hysteresis. J Vis. 2021; 21(13): 6. https://doi.org/10.1167/jov.21.13.6 PMID:

34905052

368. Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science. 1974; 185

(4157): 1124–1131. https://doi.org/10.1126/science.185.4157.1124 PMID: 17835457

369. Lieder F, Griffiths TL, Huys QJ, Goodman ND. The anchoring bias reflects rational use of cognitive

resources. Psychon Bull Rev. 2018; 25(1): 322–349. https://doi.org/10.3758/s13423-017-1286-8

PMID: 28484952

370. Lewin K. A dynamic theory of personality. New York (NY): McGraw-Hill; 1935.

371. Lewin K. Principles of topological psychology. New York (NY): McGraw-Hill; 1936. https://doi.org/10.

1037/10019-000

372. Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948; 55(4): 189–208. https://doi.org/10.

1037/h0061626 PMID: 18870876

373. Behrens TE, Muller TH, Whittington JC, Mark S, Baram AB, Stachenfeld KL, Kurth-Nelson Z. What is

a cognitive map? Organizing knowledge for flexible behavior. Neuron. 2018; 100(2): 490–509. https://

doi.org/10.1016/j.neuron.2018.10.002 PMID: 30359611

374. Joel D, Niv Y, Ruppin E. Actor-critic models of the basal ganglia: new anatomical and computational

perspectives. Neural Netw. 2002; 15(4): 535–547. https://doi.org/10.1016/s0893-6080(02)00047-3

PMID: 12371510

375. Daw ND, Niv Y, Dayan P. Actions, values, policies, and the basal ganglia. In: Bezard E, editor. Recent

breakthroughs in basal ganglia research. New York (NY): Nova Science; 2006a. p. 91–106.

376. Palminteri S, Boraud T, Lafargue G, Dubois B, Pessiglione M. Brain hemispheres selectively track the

expected value of contralateral options. J Neurosci. 2009; 29(43): 13465–13472. https://doi.org/10.

1523/JNEUROSCI.1500-09.2009 PMID: 19864559

377. Wunderlich K, Rangel A, O’Doherty JP. Neural computations underlying action-based decision making

in the human brain. Proc Natl Acad Sci U S A. 2009; 106(40): 17199–17204. https://doi.org/10.1073/

pnas.0901077106 PMID: 19805082

378. Giarrocco F, Costa VD, Basile BM, Pujara MS, Murray EA, Averbeck BB. Motor system-dependent

effects of amygdala and ventral striatum lesions on explore-exploit behaviors. J Neurosci. 2023.

https://doi.org/10.1523/jneurosci.1206-23.2023

379. Herrera D, Treviño M. Undesirable choice biases with small differences in the spatial structure of

chance stimulus sequences. PLOS ONE. 2015; 10(8): e0136084. https://doi.org/10.1371/journal.

pone.0136084 PMID: 26305097

380. Baldassarre G. A modular neural-network model of the basal ganglia’s role in learning and selecting

motor behaviours. Cogn Syst Res. 2002; 3(1): 5–13. https://doi.org/10.1016/s1389-0417(01)00039-0

381. Khamassi M, Lachèze L, Girard B, Berthoz A, Guillot A. Actor-critic models of reinforcement learning

in the basal ganglia: from natural to artificial rats. Adapt Behav. 2005; 13(2): 131–148. https://doi.org/

10.1177/105971230501300205

382. Lee SW, Shimojo S, O’Doherty JP. Neural computations underlying arbitration between model-based

and model-free learning. Neuron. 2014; 81(3): 687–699. https://doi.org/10.1016/j.neuron.2013.11.

028 PMID: 24507199

383. Jordan MI, Jacobs RA. Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 1994;

6(2): 181–214. https://doi.org/10.1162/neco.1994.6.2.181

384. Uchibe E, Doya K. Competitive-cooperative-concurrent reinforcement learning with importance sam-

pling. In: Schaal S, Ijspeert AJ, Billard A, Vijayakumar S, Meyer J, editors. From Animals to Animats 8:

Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior. Cam-

bridge, MA: MIT Press; 2004. p. 287–296. https://doi.org/10.7551/mitpress/3122.003.0037

385. Bengio Y. Deep learning of representations: looking forward. In Dediu AH, Martı́n-Vide C, Mitkov R,

Truthe B, editors. International Conference on Statistical Language and Speech Processing (SLSP

2013). Berlin, Germany: Springer; 2013. p. 1–37. https://doi.org/10.1007/978-3-642-39593-2_1
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