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Abstract

Discovering mathematical equations that govern physical and biological systems from

observed data is a fundamental challenge in scientific research. We present a new physics-

informed framework for parameter estimation and missing physics identification (gray-box)

in the field of Systems Biology. The proposed framework—named AI-Aristotle—combines

the eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Phys-

ics-Informed Neural Networks (PINNs) with symbolic regression (SR) techniques for param-

eter discovery and gray-box identification. We test the accuracy, speed, flexibility, and

robustness of AI-Aristotle based on two benchmark problems in Systems Biology: a phar-

macokinetics drug absorption model and an ultradian endocrine model for glucose-insulin

interactions. We compare the two machine learning methods (X-TFC and PINNs), and

moreover, we employ two different symbolic regression techniques to cross-verify our

results. To test the performance of AI-Aristotle, we use sparse synthetic data perturbed by

uniformly distributed noise. More broadly, our work provides insights into the accuracy, cost,

scalability, and robustness of integrating neural networks with symbolic regressors, offering

a comprehensive guide for researchers tackling gray-box identification challenges in com-

plex dynamical systems in biomedicine and beyond.

Author summary

Our study addresses the fundamental challenge of uncovering mathematical rules govern-

ing physical and biological systems from real-world data. We introduce a novel frame-

work, AI-Aristotle, designed for parameter estimation and identifying hidden physics

(gray-box) in Systems Biology. AI-Aristotle combines the powerful eXtreme Theory of

Functional Connections (X-TFC), Physics-Informed Neural Networks (PINNs), and sym-

bolic regression (SR) techniques to discover parameters and uncover hidden relationships.

Our work offers guidance to researchers addressing gray-box identification challenges in

complex dynamic systems, including applications in biomedicine and beyond.
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1 Introduction

One of the most coveted tasks in Machine Learning is the discovery of new physics laws from

observed and experimental data. When dealing with dynamical systems, a classic goal for

inverse problems is parameter discovery, where experimental data and systems of differential

equations are leveraged to estimate the unknown parameters governing [1]. In some cases,

only partial knowledge of the physics may be available, which means one or several terms of

the system of equations are unknown. This is the case with the so-called Gray-Box model,

where an inversion can be performed to recover the missing terms [2].

One of the first attempts to extrapolate governing equations from observed data is pre-

sented in the well-known work by Brunton et al. [3], in which the authors propose a new

school of thought for dynamical system discovery problem from the perspective of sparse

regression [4] and compressed sensing [5]. In particular, they take advantage of the fact that

most physical systems are described by only a few relevant terms governing the dynamics,

making the governing equations sparse in a high-dimensional non-linear function space. This

method named SINDy—Sparse Identification of Nonlinear Dynamics—depends on the choice

of the candidate non-linear functions library and the availability and quality of the data. Thus,

it is not a generalized method and works better if guided by the available knowledge in the

form of constraints on the functional form of the phenomena under study. For example, given

the trend of the observed data, one can approximately understand if it is a trigonometric or

polynomial trend and build the library accordingly. SINDy has shown its capability in identify-

ing non-linear dynamical systems from data without previous assumptions of the forms of the

differential equations governing the phenomena.

Another method to retrieve governing equations from data has been proposed by Udrescu

et al. [6]. In this paper, the authors make use of symbolic regression (SR), which aims to find a

symbolic expression that accurately represents an unknown function based on a given dataset.

They developed a novel recursive multidimensional symbolic regression algorithm, named

AI-Feynman, that combines neural network techniques with physics-inspired strategies. The

efficiency of this method has been proved by discovering 100 equations from the Feynman Lec-
tures on Physics, outperforming the accuracy of the state-of-the-art publicly available software.

However, despite the groundbreaking capability of this work, there are some drawbacks and

areas for improvement. The method currently focuses on equations involving elementary

functions but does not handle equations involving derivatives and integrals commonly found

in physics. Integrating the capability to discover such equations would be valuable. Also, while

the AI-Feynman shows promise, it could further benefit from combining the strengths of

genetic algorithms and its approach to generate a more robust and versatile equation discovery

tool. Overall, the development and refinement of symbolic regression algorithms continue to

evolve, offering exciting possibilities for future discoveries in the realm of physics and beyond.

In this research direction, a new framework named AI-Descartes has been recently pub-

lished [7]. In this paper, the authors address the challenge of deriving meaningful mathemati-

cal models from both axiomatic knowledge and experimental data by combining logical

reasoning with SR. The novelty of this method lies in the attempt to generate models that are

consistent with general logical axioms. The authors showcase their method’s effectiveness by

applying it to three classic scientific laws: Kepler’s third law of planetary motion, Einstein’s rel-

ativistic time-dilation law, and Langmuir’s theory of adsorption. They demonstrate the capa-

bility to discover governing laws even with limited data points, emphasizing the importance of

logical reasoning in distinguishing between candidate formulas with similar data-fit accuracy.

However, this method relies on the correctness and completeness of background theories,

which may not always hold, and the development of further techniques such as abductive
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reasoning [8] for partially addressing incomplete theories would be needed. Scaling behavior

remains a challenge, especially regarding the undecidability of certain logical types and varia-

tions in run-time performance.

Another recently developed SR package, named Feyn [9] and based on the symbolic regres-

sor QLattice, is showing great performance and capabilities, especially for small data sets,

where traditional machine learning techniques such as gradient boosting and random forests

tend to overfit [10]. Christensen et al. [11] efficiently used Feyn on clinical omics datasets to

generate high-performing models to predict disease outcomes and to reveal putative disease

mechanisms.

Other approaches using particular type of Neural Networks called Random Projection Neu-

ral Networks (RPNNs) [12–14] are used in combination with SR. RPNNs demonstrated great

efficiency in solving forward problems of stiff ODEs and DAEs, outperforming traditional

solvers [15, 16]. In Ref. [17], RPNNs are used for learning PDEs from spatio-temporal data

and for the construction of the bifurcation diagram of the learned PDE. In a recent work [18],

RPNNs are used to model a representation for SR called Interaction Transformation [19],

showing the capability of this framework in drastically reducing the computational effort. In

another work [20], a single-layer NN is combined with SR. In this approach, the SR layer,

incorporating mathematical operators and basis functions, is constructed randomly instead of

using genetic programming, and the output weighting parameters are optimized through

least-squares optimization. The use of least-squares optimization significantly reduced compu-

tational time, resulting in system models based on simple analytic expressions that accurately

represent the input-output relationship of dynamic systems. Recently, RPNNs and SR were

combined in the AI-Lorenz [21] to discover chaotic dynamical systems in a black-box fashion,

when the differential equations of the model are totally unknown.

One of the earliest works on addressing “gray-box” identification for nonlinear dynamical

systems is the one of Ref. [2]. The gray-box in this paper is composed of a known part, repre-

sented by a system of Ordinary Differential Equations (ODEs), and unknown parts, which are

approximated using neural networks. The paper illustrates this approach by applying it to

model a complex reacting system with nonlinear kinetics for parameter discovery. The authors

also highlight the challenges of working with discrete-time models and the advantages of using

continuous-time approximations for a more nuanced understanding of system behavior.

Other gray-box identification and parameter estimation methodologies were applied to a wide

range of applications, such as phase field systems, biotechnology, and optogenetics [22–26].

More recently in [27], NNs and Gaussian Processes were used to perform gray

box identification of PDEs based on stochastic Monte Carlo simulators in biological systems

and in particular for the chemotaxis motility.

The PINN frameworks [28] are advancing the state-of-the-art methodologies for inverse

problems of parameter discovery. Particularly challenging is the scenario in which we have a

highly nonlinear dynamics system with many unknown parameters and very few available

experimental data to leverage. This challenge has been addressed in a systems-biology-

informed deep learning algorithm that incorporates the system of ODEs into the neural net-

works. In the works [29, 30], the authors proved the efficiency of this new algorithm to infer

the dynamics of unobserved species using only a few scattered and noisy measurements by

testing it for benchmark problems in systems biology.

In this work, we propose a new framework named AI-Aristotle to perform parameter dis-

covery and gray-box identification for problems in Systems Biology. We employ two neural

networks based methods for the unknown terms approximation, such as PINNs and X-TFC

[31] with domain decomposition [15], and two symbolic regression algorithms for the mathe-

matical explicitation of the gray-box model, such as PySR [32, 33] and gplearn [34]. Our
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framework is tested for two problems. The first one is a three-compartment pharmacokinetics

model describing single-dose drug absorption. The second, more challenging problem is an

ultradian endocrine model describing the glucose-insulin interaction. PINNs and X-TFC have

been previously employed for gray box identification [21, 35, 36]. The novelty of this work lies

in its unique integration of these methods and their concatenation with symbolic regression

algorithms. This integrated framework allows the user to select the neural network-based mod-

ule depending on the data availability, using two different symbolic regression algorithms for

cross-validation. Unlike the SINDy method, which encounters difficulties with high-dimen-

sional noisy data, the symbolic regression methods in this framework effectively address these

challenges.

This paper is organized as follows. In Section 2, we present an introduction of the physics-

based models used for our simulations. In Section 3, we report the two Neural Networks meth-

ods for solving the inverse problem with data and physics models and the two SR algorithms

used to explicitly identify the previously retrieved gray-boxes. In Section 4, we report the

results obtained by the two NN methods and the two SR algorithms for different test cases

involving both parameter discovery and gray-box identification. Finally, we summarize con-

clusions and discussion in Section 4.3.2.

2 Models

In this section, the mathematical models describing the phenomena of our simulations are

introduced. These models are designed to capture the dynamic interactions within specific

biological processes, such as drug absorption and glucose-insulin interaction, offering physics-

based knowledge of the behavior and characteristics of the systems under study.

2.1 Pharmacokinetics model

The first model we aim to use for our simulations is a single-dose compartmental Pharmacoki-

netics (PK) model [37], represented by the following system of ODEs:

dB
dt
¼ kgG � kbB

dG
dt
¼ � kgG

dU
dt
¼ kbB

s:t:

Bð0Þ ¼ 0

Gð0Þ ¼ 0:1mg

Uð0Þ ¼ 0

8
>>>>>>><

>>>>>>>:

8
>>>>>>>>>><

>>>>>>>>>>:

ð1Þ

This model evaluates the variation of drug concentration in three compartments, in a time

range [0, 10] hours. The drug is initially introduced in the GI-tract (first compartment G),

where it dissolves and diffuses into the bloodstream (second compartment B). Finally, the

drug is eliminated from the bloodstream through the liver, kidneys, and urinary tract (third

compartment U). The parameters kg = 0.72h−1 and kb = 0.15h−1 represent the rates at which

the drug diffuses from the GI-tract into the bloodstream, and then eliminated from the blood-

stream through the liver, kidneys, and urinary tract, respectively. The intake drug is considered

to be 0.1μg of antibiotic tetracycline. In Section 4, we will show our simulations using this

model for two test cases: 1) Parameters discovery, and 2) Gray-Box identification. With “Gray-

Box”, we indicate the missing terms of a model. For this PK model, the missing term consid-

ered is the right-hand-side of the first ODE, which we approximate with an unknown function
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h(t) as follows:

dB
dt
¼ hðtÞ

dG
dt
¼ � kgG

dU
dt
¼ kbB

s:t:

Bð0Þ ¼ 0

Gð0Þ ¼ 0:1mg

Uð0Þ ¼ 0

8
>>>>>>>>>><

>>>>>>>>>>:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð2Þ

which we aim to obtain by using available data for B, G, and U.

2.2 Ultradian Endocrine model

The second model used in our simulations is an ultradian model for the glucose-insulin

interaction [38], which is modeled by 6 state variables and 30 parameters [29]. This model

describes the existence of rhythmic oscillations in both glucose and insulin levels within the

body that occur on a relatively short timescale, typically less than 24 hours. In particular, in

our simulation, we will use a time range [0, 1800] minutes. It results in the following system

of ODEs:

dIp
dt
¼ f1ðGÞ � E

Ip
Vp
�

Ii
Vi

 !

�
Ip
tp

dIi
dt
¼ E

Ip
Vp
�

Ii
Vi

 !

�
Ii
ti

dG
dt
¼ f4ðh3Þ þ IGðtÞ � f2ðGÞ � f3ðIiÞG

dh1

dt
¼

1

td
ðIp � h1Þ

dh2

dt
¼

1

td
ðh1 � h2Þ

dh3

dt
¼

1

td
ðh2 � h3Þ

s:t:

Ipð0Þ ¼ 36mU=ml

Iið0Þ ¼ 44mU=ml

Gð0Þ ¼ 110mg=dl

h1ð0Þ ¼ 0

h2ð0Þ ¼ 0

h3ð0Þ ¼ 0

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

The three main variables of this model are the plasma insulin concentration Ip, the intersti-

tial insulin concentration Ii, and the glucose concentration G. The last three variables h1, h2,

and h3—a three-stage linear filter—represent the delay process between insulin and glucose

production [38]. The functions f1, f2, f3, and f4, represent the insulin secretion, the insulin-

independent glucose utilization, the insulin-dependent glucose utilization, and insulin-
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dependent glucose utilization, respectively [39], and they are expressed as follows:

f1ðGÞ ¼
Rm

1þ exp � G
VgC1
þ a1

� � ;

f2ðGÞ ¼ Ub 1 � exp �
G

C2Vg

 ! !

;

f3ðIiÞ ¼
1

C3Vg
U0 þ

Um

1þ ðkIiÞ
� b

 !

;

f4ðh3Þ ¼
Rg

1þ exp a
h3

C5Vp
� 1

� �� � ;

where

k ¼
1

C4

1

Vi
þ

1

Eti

� �

;

and IG(t) is the exogenous (externally driven) glucose delivery rate. In our simulations, we

define it over N = 3 nutrition events, at time tj (minutes) with a carbohydrate quantity mj

(grams):

IGðtÞ ¼
XN

j¼1

mjk expðkðtj � tÞÞ; ð4Þ

where (tj, mj) = [(300, 60)(650, 40)(1100, 50)](min, g), and the parameters governing this sys-

tem of ODEs are listed in Table 1. Fig 1 shows the flow diagram of the glucose-insulin model,

where the circles represent the three main state variables (Ip, Ii, G), the solid arrows represent

the input and output flows and rate of exchange, and dashed arrows represent functional rela-

tionships. The delay arrow denotes the delay process of h1, h2, h3 state variables.

Also for this second model, we aim to pursue parameter discovery and gray-

box identification. For the latter case, the missing terms we approximate with two unknown

functions, f(t) and g(t), which are in the first two ODEs, as follows:

dIp
dt
¼ f1ðGÞ þ f ðtÞ

dIi
dt
¼ gðtÞ

dG
dt
¼ f4ðh3Þ þ IGðtÞ � f2ðGÞ � f3ðIiÞG

dh1

dt
¼

1

td
ðIp � h1Þ

dh2

dt
¼

1

td
ðh1 � h2Þ

dh3

dt
¼

1

td
ðh2 � h3Þ:

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

PLOS COMPUTATIONAL BIOLOGY AI-Aristotle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011916 March 12, 2024 6 / 33

https://doi.org/10.1371/journal.pcbi.1011916


Table 1. Ultradian Endocrine model: List of parameters for the model. The search ranges are listed only for the five

parameters used for the parameter discovery in our simulations.

Parameter Nominal value Unit Search range

Vp 3 lit –

Vi 11 lit –

Vg 10 lit –

E 0.2 lit min−1 (0.1, 0.3)

tp 6 min (4, 8)

ti 100 min (60, 140)

td 12 min –

k 0.0083 min−1 –

Rm 209 mU min−1 (41.8, 376.2)

a1 6.6 – (1.32, 11.88)

C1 300 mg lit−1 –

C2 144 mg lit−1 –

C3 100 mg lit−1 –

C4 80 mU lit−1 –

C5 26 mU lit−1 –

Ub 72 mg min−1 –

U0 4 mgmin−1 –

Um 90 mg min−1 –

Rg 180 mg min−1 –

α 7.5 – –

β 1.772 – –

https://doi.org/10.1371/journal.pcbi.1011916.t001

Fig 1. Ultradian Endocrine model: Flow diagram. The circles represent the three main state variables (Ip, Ii, G), the

solid arrows represent the input and output flows and rate of exchange, and the dashed arrows represent functional

relationships.

https://doi.org/10.1371/journal.pcbi.1011916.g001
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3 Methodology

As mentioned in the Introduction section, the parameter discovery and approximation of the

unknown terms in the systems of ODEs are performed by two NN-based methods, while the

symbolic regression is performed by two different algorithms, to cross-verify the mathematical

expressions obtained. In this section, we present some details of these methods that are

included in the AI-Aristotle framework, whose overall schematic is shown in Fig 2.

3.1 X-TFC

The first NN-based method presented uses a single-layer random projection neural network.

For the sake of simplicity, we will show its implementation for the gray-box identification in

the pharmacokinetics model only, since the implementation for the ultradian endocrine

model is similar.

Different techniques are combined to build this algorithm for solving both forward and

inverse problems involving differential equations. The first one is a functional interpolation

technique named the Theory of Functional Connections (TFC) [40, 41]. According to TFC

[42], we can approximate the unknown solutions of our system of ODEs, taking into consider-

ation the initial conditions, with the so-called constrained expressions (CE) as follows:

B ¼ ðσðtÞ � σð0ÞÞTβB þ Bð0Þ ð6aÞ

G ¼ ðσðtÞ � σð0ÞÞTβG þ Gð0Þ ð6bÞ

U ¼ ðσðtÞ � σð0ÞÞTβU þ Uð0Þ ð6cÞ

Fig 2. AI-Aristotle framework for gray-box identification: 1. The observed data and the partial knowledge of physics are used to train the selected neural network-

based module. 2. The selection of the neural networks-based module needs to be done between (a) X-TFC, recommended for high-resolution data and missing terms

discovery, and (b) PINN, recommended for sparse data and parameter estimation. The neural network outputs are the time-dependent representations of the missing

terms of the dynamical systems, which are fed into the symbolic regression algorithm. 3. The selected Symbolic Regression module identifies the mathematical

expressions of the missing terms. It is recommended to use both symbolic regressors for cross-validation. 4. The full knowledge of physics is now available, allowing

forward modeling performance.

https://doi.org/10.1371/journal.pcbi.1011916.g002
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whose derivatives can be analytically expressed:

dB
dt
¼ cσ0TβB ð7aÞ

dG
dt

¼ cσ0TβG ð7bÞ

dU
dt

¼ cσ0TβU ð7cÞ

The parameter c represents a mapping coefficient that maps the time domain t into the acti-

vation function domain. To these systems, we need to add the NN approximation of the

unknown term h(t), which is

hðtÞ ¼ σðtÞβh: ð8Þ

Here, σ is the free-chosen function of the CE. No matter what free-chosen function will be

selected, the CE will always satisfy the initial conditions exactly. According to the X-TFC

framework [31], we select a single-layer NN as a free-chosen function, such as

gðtÞ ¼
XL

j¼1

bjsðwjt þ bjÞ ¼

sðw1t þ b1Þ

..

.

sðwLt þ bLÞ

2

6
6
6
6
4

3

7
7
7
7
5

T

β ¼ σTβ ð9Þ

where L is the number of neurons, wj 2 R is the jth input weight connecting the input node

with the jth neuron, bj 2 R with j = 1, . . ., L is the jth output weight connecting the output

node with the jth neuron, bj is the bias of the jth neuron, and σj(�) is the NN’s activation func-

tion, which is selected by the user (for all the simulations in this work, we select a tanh activa-

tion function. The motivation for this choice is reported in the first section of S1 Text. In the

extreme learning machine algorithm [43], input weights and biases are randomly pre-selected

(uniform random distribution), thus the only unknown parameters that need to be computed

are the output weights β = [β1, . . ., βL]T. Once the CEs are built, they can be replaced in the sys-

tem of ODEs of Eq (2), to obtain the loss functions

LB ¼ � cσ0ðtÞ
TβU þ σðtÞβh ð10aÞ

LG ¼
�
� cσ0ðtÞT � kgðσðtÞ � σð0ÞÞ

�T
βG þ Gð0Þ ð10bÞ

LU ¼ � cσ0ðtÞ
TβU þ kbðσðtÞ � σð0ÞÞTβB þ kbBð0Þ ð10cÞ

LdataB
¼ B̂ � ðσðtÞ � σð0ÞÞTβB þ Bð0Þ ð10dÞ

LdataG
¼ Ĝ � ðσðtÞ � σð0ÞÞTβG þ Gð0Þ ð10eÞ

LdataU
¼ Û � ðσðtÞ � σð0ÞÞTβU þ Uð0Þ; ð10fÞ

where B̂; Ĝ, and Û are the available observed data of the three variables. As we can see, now we
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have reduced the problem into a system of linear equations of the type Ax = b, where the

unknown x is the vector of output weights β. However, here we show the procedure to solve it

as a system of non-linear equations (that will be the case of the Ultradian Endocrine model).

When dealing with a system of non-linear ODEs, the next step is to build the Jacobian matrix,

by deriving the six previous losses with respect to βB, βG, βU, and βf. For the pharmacokinetics

model, the Jacobian is

J ¼

@LB

βB

@LB

βG
0

@LB

βh

0
@LG

βG
0 0

@LU

βB
0

@LU

βU
0

@LdataB
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0 0 0

0
@LdataG
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0 0

0 0
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0:
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7
7
7
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7
7
7
7
7
7
7
7
7
7
7
7
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ð11Þ

The unknown vector β is computed by iteratively solve the linear system JDb
k
¼ L. Each

k-th iteration corresponds to an update of the output weights βk+1 = βk + Δβk, where

Db
k
¼ � ðJ Tðb

k
ÞJ ðbk

ÞÞ
� 1J Tðb

k
ÞLðbk

Þ. If the Jacobian is rank-deficient, it is good practice to

minimize the value of the Euclidean norm to achieve better performance or compute the

Moore-Penrose pseudoinverse of the Jacobian as proposed in Refs. [16, 17]. Once all the out-

put weights β are computed, they will be replaced into the CEs of Eqs (6a) to (6c) and (8) to

find our sought solutions. In this work, X-TFC is used in a domain-decomposition fashion

[15, 44], where the time-domain is decomposed into several sub-domains with equispaced

time steps, and the algorithm is applied to each sub-domain subsequently, such that the solu-

tion found at the interface becomes the new initial condition for the subsequent iteration of

the algorithm in the next sub-domain. A schematic of the X-TFC algorithm to solve the gray-

box inverse problem for the pharmacokinetics model is shown in Fig 3.

3.2 Physics-Informed Neural Networks (PINNs)

The second NN-based approach is known as Physics-Informed Neural Networks (PINNs).

This method has the capability to address both forward and inverse problems associated with

differential equations by using a deep, fully connected neural network.

3.2.1 PINNs for Pharmacokinetics model. Building upon the concept of PINNs as origi-

nally proposed in reference [28], we introduce a deep learning framework that incorporates

the differential equations governing the single-dose compartmental Pharmacokinetics model.

In this framework, a neural network characterized by parameters θ1 takes time t as input and

generates an output vector representing the state variables u(t; θ1) = (uB(t, θ1), uG(t; θ1), uU(t;
θ1)) which serves as an approximation of the ODE solution ûðtÞ. To solve the gray-box inverse

problem, in addition to the unknown parameters, we have an unknown component of the

equation. Thus, we introduce another neural network with a different design to approximate
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the unknown term h(t). The system of ODEs for this model is as follows:

dB
dt
¼ hðt; y2Þ

dG
dt
¼ � kgG

dU
dt
¼ kbB

s:t:

Bð0Þ ¼ 0

Gð0Þ ¼ 0:1mg

Uð0Þ ¼ 0:

8
>>>>>>><

>>>>>>>:

8
>>>>>>>>>><

>>>>>>>>>>:

ð12Þ

Here, the parameters θ2 characterize the second neural network, which takes t as input and

generates an output h(t; θ2).

The next crucial step involves constraining the neural network to satisfy both the scattered

observations of ûðtÞ and the system of ODEs (12). This is achieved by constructing the loss

function that takes into account terms corresponding to the observations and the ODE system.

To be more specific, let us assume that we have measurements of ûdata ¼ fû1; û2; . . . ; ûMg at

various time instances t1, t2, . . ., tMdata. We want to ensure that the neural network satisfies the

ODE system at specific time points t1, t2, . . ., tNode. It is important to note that the time instants

t1, t2, . . ., tMdata, and t1, t2, . . ., tNode may not necessarily be on a uniform grid and can be chosen

arbitrarily. Here, N is the number of collocation points, and M is the number of data points.

For computing the total loss, we employ the Self-Adaptive Loss Balanced method [45, 46].

The total loss function is defined as a function of θ1, θ2, p, λode, where p represents the

unknown parameters of the ODEs, and λode is a vector representing the individual loss weights

for all the state variables, i.e., λode = (λ1, λ2, . . ., λS), where S is the number of state variables.

Note that λdata and λIC are constant values equal to 1 in this study and are not trainable vari-

ables in our neural network [46]. The total loss function is defined as a function of θ1, θ2, p,

λode, where p represents the unknown parameters of the ODEs, and λode is a vector represent-

ing the individual loss weights for all the state variables, i.e., λode = (λ1, λ2, . . ., λS), where S is

the number of state variables. Note that λdata and λIC are constant values, equal to 1 in this

Fig 3. Pharmacokinetics model: Schematic of the X-TFC algorithm. Input weights and biases are randomly selected. The last step solves iteratively a least squares

system, thus no back-propagation is involved in the training, allowing fast computational times.

https://doi.org/10.1371/journal.pcbi.1011916.g003
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study, and are not trainable variables in our neural network. The total loss is computed as fol-

lows:

Lðy1; y2; p; lodeÞ ¼ lICLICðy1Þ þ ldataLdataðy1Þ þ lodeLodeðy1; y2; pÞ; ð13Þ

where

LICðy1Þ ¼ ðûðt0Þ � uðt0; y1ÞÞ
2 ð14Þ

Ldataðy1Þ ¼
1

Mdata

XMdata

m¼1

ðûðtmÞ � uðtm; y1ÞÞ
2 ð15Þ

Lodeðy1; y2; pÞ ¼
1

Node

XNode

n¼1

du
dt

�
�
�
�
�
tn

� Fðtn; uðtn; y1Þ; hðtn; y2Þ; pÞ

0

@

1

A

2

ð16Þ

We emphasize that Ldata and LIC represent the discrepancies between the neural network

predictions and the measured data, making them supervised losses. Conversely, Lode is derived

from the ODE system and, therefore, qualifies as an unsupervised loss. In the final step, we

simultaneously determine the parameters y
∗
1
, y

∗
2

of both neural networks and the unknown

ODE parameters p� by minimizing the loss function using gradient-based optimization meth-

ods, such as the Adam optimizer [47] and L-BFGS optimizer [48]. Additionally, we determine

the l
∗
ode vector by updating adaptive weights in each epoch by solving:

y
∗
1
; y

∗
2
; p∗; l∗ode ¼ argmax

lode
min
y1 ;y2;p

Lðy1; y2; p; lodeÞ ð17Þ

For the training process, where our goal is to predict the unknown term h(t; θ2) and the val-

ues of parameters simultaneously, we employ the Adam optimizer with default hyperpara-

meters and a learning rate of 10−4. Training is performed on the entire dataset. Since our total

loss comprises two supervised losses and one unsupervised loss, we adopt a two-stage training

strategy as follows:

1. Recognizing that supervised training typically yields faster convergence than unsupervised

training, we initially train the network using the two supervised losses, Ldata and LIC, for a

set number of iterations. This initial training phase enables the network to quickly align

with the observed data points.

2. Subsequently, we continue the training process, incorporating all three losses.

Empirical observations demonstrate that this two-stage training approach expedites net-

work convergence. The specific number of iterations for each stage and parameters for the

implementation are detailed in Section 4.1. A schematic of the PINNs algorithm for solving

the gray-box inverse problem in the pharmacokinetics model is shown in Fig 4.
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3.2.2 PINNs for Ultradian Endocrine model. The system of ODEs for this model is as

follows:

dIp
dt
¼ f1ðGÞ þ f ðt; y2Þ

dIi
dt
¼ gðt; y2Þ

dG
dt
¼ f4ðh3Þ þ IGðtÞ � f2ðGÞ � f3ðIiÞG

dh1

dt
¼

1

td
ðIp � h1Þ

dh2

dt
¼

1

td
ðh1 � h2Þ

dh3

dt
¼

1

td
ðh2 � h3Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ

Here, parameters θ2 characterize the second neural network, which takes t as input and gener-

ates two outputs f(t; θ2) and g(t; θ2).

In accordance with the pharmacokinetics model, this study adopts a self-adaptive loss-bal-

anced method and a two-stage training strategy. To expedite the neural network training pro-

cess, extending the discussion from the previous section on Fully connected Neural Networks,

we introduce supplementary layers following the workflow presented in [29].

Fig 4. Pharmacokinetics model: Schematic of the PINNs algorithm for predicting the unknown term h(t; θ2) and

the values of parameters simultaneously. Here, u(t; θ1) is a vector that contains all three output states. Unlike the

X-TFC network, PINN requires back-propagation, which is the expensive computational component.

https://doi.org/10.1371/journal.pcbi.1011916.g004
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• Input Scaling Layer: In cases where the time domain exhibits significant variation spanning

multiple orders of magnitude, which can detrimentally affect neural network training, we

employ a linear scaling function on the time variable t, using a value in the time domain T to

obtain ~t ¼ t
T, which approximates values to be *O(1). In this study, for the time interval

ranging from 0 to 1800, we have adopted a value of T = 100.

• Feature Layer: Frequently, solutions to ordinary differential equations (ODEs) display pat-

terns such as periodicity or exponential decay. To enhance the neural network’s ability to

learn these patterns, especially in multimodal solutions with multiple levels of frequencies,

we incorporate a dedicated feature layer. This layer is key in capturing the complexity of

multimodal solutions. The general framework remains consistent across different problems.

We utilize the set of functions e1(θ), e2(θ), . . ., eL(θ) to construct L features

e1ð~tÞ; e2ð~tÞ; . . . ; eLð~tÞ, as illustrated in Fig 5. If discerning a clear pattern proves challenging,

it is advisable to omit the feature layer rather than introducing inaccurate information. This

feature layer is a training aid and not a mandatory component for the success of the PINNs

for system biology identification problems.

• Output Scaling Layer: The predicted outputs, denoted as ~uIp
; ~uIi

; . . . ; ~uh3
, may exhibit varia-

tions in magnitudes. To address this, we can normalize the network outputs. To standardize

these outputs, we employ a normalization procedure, expressed as follows:

uIp
¼ kIp ~uIp

uIi
¼ kIi ~uIi

..

.

uh3
¼ kh3

~uh3
:

Here, kIp ; kIi ; . . . ; kh3
represent the magnitudes of the corresponding ODE solutions

ûIp
; ûIi

; . . . ; ûh3
. This normalization ensures that the predicted outputs are scaled consistently

Fig 5. Ultradian Endocrine model: Schematic of the PINNs algorithm for solving a gray-box identification problem.

https://doi.org/10.1371/journal.pcbi.1011916.g005
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with the characteristics of the underlying ODE solutions. Furthermore, we introduce an

additional component to this layer to facilitate the alignment of the state variables with a lin-

ear trajectory connecting the initial and final data points. This linear transformation facili-

tates interpreting and visualizing the model’s outputs, ensuring their alignment with

meaningful data trends. In summary, the Output Scaling Layer standardizes predicted out-

puts while integrating a linear transformation component. This integration enhances the

interpretability and relevance of the model’s results, expediting the neural network’s conver-

gence towards an accurate solution. We observed that without the output scaling layer, the

model tended to get stuck in local minima.

The list of parameters of this model can be found in Section 4.2. A schematic of the PINNs

algorithm for solving the gray-box identification problem in the Ultradian Endocrine model is

shown in Fig 5.

3.3 Symbolic regression

Symbolic regression is a powerful method used in machine learning, designed to discover a

mathematical expression or equation that provides the optimal fit for a provided dataset.

Unlike traditional regression methods (e.g., linear regression, polynomial regression), sym-

bolic regression seeks to discover the underlying mathematical relationship between input var-

iables and the target variable without making assumptions about the form of the equation.

Two popular symbolic regression algorithms commonly used in this context are PySR (Python

Symbolic Regression) [32] and gplearn (Genetic Programming for Symbolic Regression) [34].

These algorithms employ different techniques to discover symbolic expressions from data, and

their processes are very similar to each other.

They are SR libraries that combine genetic programming with machine learning techniques

to discover mathematical expressions. The first step of their processes is creating an initial pop-

ulation of candidate equations represented by mathematical expressions composed of simple

mathematical operations (+, −, ×,�), functions (e.g., sine, cosine, exponential), and variables.

Subsequently, each candidate equation is evaluated against the given dataset, and its perfor-

mance is assessed using a fitness function, that measures how well the equation fits the data,

typically by calculating the mean squared error (MSE) or a similar metric. A genetic algorithm

is used to select the best-performing candidate equations for the next generation. Equations

that fit the data well are more likely to be selected, while less fit equations may be removed.

Genetic operations like crossover (combining parts of two equations) and mutation (making

small changes to an equation) are applied to the selected equations to create a new generation

of candidate equations. This process iterates through multiple generations, continually

improving the equations’ fitness until a termination condition, such as a maximum number of

generations, or a threshold fitness level, is met.

4 Results

In this section, the results of our simulations are reported and discussed. The first two subsec-

tions 4.1 and 4.2 show the performance of X-TFC and PINNs in parameter discovery and

gray-box identification for both the Pharmacokinetics and Ultradian Endocrine model. The

synthetic data are generated by solving the forward problems with Runge-Kutta method for

PINNs, and RPNNs for X-TFC. The outputs of the gray-box identification are used as input in

the symbolic regression algorithms for the symbolic distillation of both NN-based methods,

whose results and performance are shown in subsections 4.3.1 and 4.3.2.
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4.1 Pharmacokinetics

In the parameter discovery test case, we aim to infer the value of the parameters kg = 0.72h−1

and kb = 0.15h−1 of the system of ODEs in Eq (1), given a certain number of available data

points of B, G, and U. The results and performance for both X-TFC and PINNs are reported in

Table 2, simulating the variation of drug concentration in the three compartments for a time

domain of 50 hours. The number of data points used varies from 10 to 100, and both methods

show great accuracy in retrieving both the parameters governing the ODEs. The accuracy of

the methods is evaluated with the absolute difference between the nominal value of the param-

eters and their inference. As expected, we see an increase in accuracy while increasing the

number of data points, but one can see that both methods can give great precision even for a

meager dataset (10 data points—one every five hours). To substantiate this claim, particularly

for PINNs, we executed the model 10 times, each with a distinct random seed. We then com-

puted the average relative error (%) of the inferred parameter values over these 10 runs and

reported this average alongside the corresponding average computational time in Table 2. For

the pharmacokinetics inverse problem, in PINNs, we utilized the Adam optimization with Nc

= 500, learning rate (lr) of 1×10−4, and we conducted training for 50,000 iterations. Notably, in

this context, the application of self-adaptive loss balancing weights was deemed unnecessary,

and the two-phase training method was not employed. We perform the computational experi-

ments for PINNs on NVIDIA’s GeForce RTX 3090 GPUs, which are powered by NVIDIA’s

2nd generation RTX Ampere architecture. The GPU has 10496 core and is endowed with 24

GB of GDDR-6X memory. PINNs parameters setup is shown in Table 3.

Since X-TFC uses a domain decomposition technique, we report the number of iterations

needed from the iterative least-squares for each sub-domain, with an iteration tolerance set

equal to 1e-06. The X-TFC results reported in Tables 2 and 4 are obtained with certain neural

networks hyperparameters setup, which are specified so that they can be readily reproducible.

With a proper ablation study and domain decomposition, we can reduce these errors by sev-

eral orders of magnitude, as shown in Tables A and B in S1 Text. The tuning hyperparameters

are N number of points per sub-domain, L number of neurons, and tstep the length of each sub-

domain. These setups for each simulation are reported in Table 5, made with an Intel(R) Xeon

(R) W-2255 CPU @ 3.70GHz machine.

Table 2. Pharmacokinetics model: Performance of X-TFC and PINNs for parameter discovery for time range [0,

50] hours. Refer to Table 1 for X-TFC hyperparameters.

X-TFC

# data points relative error (%) # of iter. comp. time [s]

kg kb

10 41.66 6.96 5 0.07

20 9.23 2.57 5 0.07

50 0.55 0.17 5 0.07

100 0.38 0.11 5 0.07

PINNs

# data points relative error (%) # of iter. comp. time [s]

kg kb

10 1.25 0.11 5e04 48.54

20 0.21 0.03 5e04 48.74

50 0.12 0.02 5e04 48.86

100 0.09 0.02 5e04 48.38

https://doi.org/10.1371/journal.pcbi.1011916.t002
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GPUs, renowned for their inherently parallel architecture, excel in efficiently distributing

specific computations across a multitude of cores. As the volume of data points grows, the

potential for enhanced parallelization efficiency becomes evident, potentially resulting in

reduced computation times. It is worth highlighting that computational times may decrease

when employing GPUs as the number of data points increases, as illustrated in Table 2 depict-

ing the results of the PINNs method. This phenomenon is particularly noticeable due to our

utilization of GPUs for this method.

In the gray-box identification test case for the Pharmacokinetics model, we aim to obtain

the right-hand-side unknown term h(t) of the first ODE of the system (2). X-TFC and PINN

results and performance for a simulation of 50 hours are shown in Table 4. Performance is

evaluated via Mean Absolute Error (MAE):

MAE ¼
PN

i¼1
jĥiðtÞ � hiðtÞj

N
;

Table 4. Pharmacokinetics model: Unknown term discovery for time range [0, 50] hours. Comparison between X-TFC and PINNs performance via MAE, RMSE, RE,

and computational time for different numbers of data points. The initial number in the ‘# of Iter.’ column for PINNs represents the iterations during the primary training

stages using Adam optimization while the second number corresponds to the training stage utilizing L-BFGS.

X-TFC

# data points h(t) # of iter. comp. time [sec.]

MAE RMSE RE (%)

10 2.57e-03 7.88e-03 36.00 2 0.003

20 1.24e-04 4.59e-04 2.89 1,1 0.015

50 3.75e-07 2.24e-06 1.99e-02 1,1,1,1 0.05

100 1.41e-08 8.69e-08 9.18e-04 1,1,1,1 0.05

PINNs

# data points h(t) # of iter. comp. time [sec.]

MAE RMSE RE (%)

10 1.26e-04 5.57e-04 6.92 3e04, 1e02 141.68

20 1.09e-04 4.82e-04 5.99 3e04, 1e02 145.97

50 6.59e-05 2.26e-04 2.80 3e04, 1e02 140.81

100 6.54e-05 1.84e-04 2.29 3e04, 1e02 143.37

https://doi.org/10.1371/journal.pcbi.1011916.t004

Table 3. Pharmacokinetics model: PINN parameters setup for the discovery of unknown terms over a time range

of [0, 50] hours. The initial and second numbers in the ‘Number of Iterations’ Row represent the iterations during the

primary and secondary training stages using Adam optimization. The third number corresponds to the training stage

utilizing L-BFGS. The first and second numbers in the ‘Architecture of Neural Networks’ indicate the width and depth,

respectively.

PINNs parameters

Optimizer Adam, LBFGS

Activation Function Tanh

Number of Iterations 5000, 25000, 100

Architecture of main NN 50, 7

Architecture of second NN 20, 5

Learning Rate for main NN 0.001

Learning Rate for second NN 0.0001

Number of Collocation Points 500

https://doi.org/10.1371/journal.pcbi.1011916.t003
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Root Mean Squared Error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðĥiðtÞ � hiðtÞÞ

2

N

s

;

and Relative Error (RE):

RE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðĥiðtÞ � hiðtÞÞ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ĥiðtÞ

2

q

where ĥðtÞ and h(t) are the exact and learned solutions, respectively. Also, for these test cases,

we can see how both methods can perform a good inversion of the unknown term h(t) given a

few data samples. Fig 6A shows the learned concentrations in time of the three state variable B,

G, and U for X-TFC and PINNs solutions vs. the exact solution (given by 50 data points),

while the learned function h(t) is plotted in Fig 6B.

As presented in Tables 2 and 4, our comparative analysis reveals valuable insights into the

performance of the X-TFC and PINNs methods when applied to the same problem with vary-

ing data sizes within the same time range. For smaller sizes of the dataset (e.g., 10 data points),

the PINNs method can achieve better performance in accuracy, especially for the gray-box test

case, showing its inherent performance in handling sparse datasets for approximating complex

functions due to the high expressivity of the deep neural network. Conversely, as the dataset

size increases, the performance of the X-TFC method in terms of accuracy improves substan-

tially. Its computational speed, a distinct advantage, allows it to effectively capitalize on larger

datasets. With more data points, the X-TFC method can produce increasingly accurate results,

eventually surpassing the accuracy achieved by the PINNs method. Despite the initial accuracy

advantage of PINNs, it reaches a point where further increasing the dataset size does not signif-

icantly improve accuracy with the same setup while still keeping great performance. This is

probably due to the optimization error, and overcoming this limitation may involve architec-

tural enhancements, such as increasing the neural network’s depth, employing different opti-

mization algorithms, or implementing alternative techniques. In contrast, the X-TFC method

continues to benefit from additional data, showcasing its scalability and adaptability. In sum-

mary, for problems with small datasets, the PINN method excels in providing accurate solu-

tions. For larger datasets the X-TFC method becomes increasingly competitive, offering the

potential for superior accuracy with adequate computational resources.

Finally, we evaluate the performance of the two NN-based models for noisy data, simulating

a more realistic scenario. We perturb 100 synthetic data points with a Uniform random distri-

bution noise at four different levels of noise n = [1%, 2%, 3%, 4%, 5%, 10%] as follows:

ŷnoise ¼ ŷ � ð1þ nξÞ ð19Þ

Table 5. Pharmacokinetics model: X-TFC hyperparameters setup for parameter discovery and unknown term dis-

covery, for time range [0, 50] hours.

Parameter discovery Unknown terms

# data points N L tstep N L tstep

10 100 100 50 11 100 50

20 100 100 50 11 100 25

50 100 100 50 13 100 12.5

100 100 100 50 26 100 12.5

https://doi.org/10.1371/journal.pcbi.1011916.t005
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where ξ � Uð� 1; 1Þ is a random variable following a uniform random distribution. In

Table 6, the performance of X-TFC and PINNs for retrieving the missing term h(t) are

reported in terms of MAE, RMSE, RE, number of iterations, and computational times. The

X-TFC results are obtained without domain decomposition to avoid overfitting in the solution,

using 100 collocation points, 100 neurons, and a least-squares tolerance of 1e-06 in 0.05 sec-

onds. For PINNs, the previous framework design is kept to handle noisy data. The PINNs and

X-TFC solution comparison with the exact solution, for a noise standard deviation of 0.05, is

presented in Fig 7A. Additionally, Fig 7B compares the results obtained from the X-TFC and

PINN methods. For all five values of noise std, we can find h(t) with good accuracy using both

NN-based methods, keeping low errors, which increase with the increase of noise, as expected.

4.2 Ultradian Endocrine model

The results of the parameter discovery test case for the Ultradian Endocrine model are

reported in Table 7, as the absolute difference between the nominal and inferred values of the

parameters. Our simulations were conducted for the discovery of five parameters. However,

the PINNs algorithm proved to be very effective in system identification, discovering up to 21

parameters of the ultradian endocrine model using only data for G and Ip. As presented in

Fig 6. Pharmacokinetics model: comparison between exact solution vs. X-TFC and PINNs solutions, for (A) the variables B,

G, and U, with 20 data points per variable, and for (B) for the unknown term h(t).

https://doi.org/10.1371/journal.pcbi.1011916.g006
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[30], using only 360 data points for G, the PINNs algorithm was able to discover 17 parameters

accurately, which is challenging and not possible for the X-TFC algorithm to do with a small

amount of data on only one state variable.

With X-TFC, we can retrieve the parameters already in the first sub-domain. Further itera-

tions of the algorithm might produce higher errors. Thus, more careful hyparameter selection

and initialization of parameters and output weights initial guesses at each subdomain need to

be carried out. The Levenberg-Marquardt algorithm is employed to perform the non-linear

least squares, allowing us to define the search range of the parameters. In the context of

PINNs, the obtained results are contingent on the learning process. Notably, the neural net-

work’s capacity to learn effectively is closely tied to the temporal scope of the problem. Specifi-

cally, the neural network may not yield accurate approximations within a smaller time range,

which corresponds to a reduced dataset size.

In the gray-box identification case, we aim to infer the two unknown terms f(t) and g(t) in

the system of ODEs (5), from available data of the variables Ip and G. In Table 8, the MAE,

RMSE, RE, and computational times are reported for both X-TFC and PINNs frameworks, for

different amount of data points, from 360 to 1800 (i.e., data available every 5, 4, 3, 2, and 1

minutes), in a simulation of 1800 minutes. For X-TFC, a domain decomposition of several

subdomains is needed, thus the number of iterations reported in the table refers to the average

number of iterations in one subdomain. The hyperparameters for the X-TFC neural networks,

as well as the configuration of parameters for the PINNs, employed to generate the results pre-

sented in Table 8, are documented in Tables 9 and 10, respectively. The first three state vari-

ables of the model learned by X-TFC and PINNs are plotted vs. the exact solution in Fig 8A,

while the two learned functions f(t) and g(t) are plotted in Fig 8B. In both figures, the overlap

of the solutions of both frameworks is clear.

Table 6. Pharmacokinetics model with noisy data: Unknown term discovery for time range [0, 50] hours. Compari-

son between X-TFC and PINNs performance via MAE, RMSE, RE, and computational time for different values of

noise.

X-TFC

Noise level h(t) # of iter. comp. time [sec.]

MAE RMSE RE (%)

1% 8.20e-05 2.19e-04 2.33 2 0.05

2% 8.47e-05 2.20e-04 2.34 2 0.05

3% 8.96e-05 2.23e-04 2.36 2 0.05

4% 9.61e-05 2.26e-04 2.40 2 0.05

5% 1.05e-04 2.32e-04 2.46 2 0.05

10% 1.50e-04 2.73e-04 2.90 2 0.05

PINNs

Noise level h(t) # of iter. comp. time [sec.]

MAE RMSE RE (%)

1% 7.03e-05 1.75e-04 2.17 3e04, 1e02 143.56

2% 1.14e-04 1.80e-04 2.23 3e04, 1e02 143.86

3% 1.47e-04 2.27e-04 2.82 3e04, 1e02 143.67

4% 1.47e-04 4.52e-04 5.61 3e04, 1e02 143.74

5% 1.72e-04 6.15e-04 7.64 3e04, 1e02 144.01

10% 2.24e-04 7.26e-04 9.02 3e04, 1e02 143.91

https://doi.org/10.1371/journal.pcbi.1011916.t006
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Fig 7. Pharmacokinetics model: (A) Comparison between exact solution B, G, and U and solution of PINNs and

X-TFC with noisy data (noise std = 0.05). (B) Comparison between exact solution vs. X-TFC and PINNs solutions for

unknown term h(t) with noisy data (noise std = 0.05).

https://doi.org/10.1371/journal.pcbi.1011916.g007

Table 7. Ultradian Endocrine model: Parameter discovery via X-TFC and PINNs algorithms. The performance of the two methods is given by the absolute difference

between nominal values and inferred values. On the right, we also present computational times in seconds.

X-TFC

# data points relative error (%) # of iter. comp. time [s]

E tp ti Rm a1

360 0.12 1.17 0.024 9.86 1.54 31 2.9

450 0.037 0.43 0.063 3.90 0.59 44 4.0

600 0.0087 0.103 0.0186 1.31 0.20 90 3.5

900 0.0047 0.105 0.0019 1.83 0.28 47 3.9

1800 4.30e-04 2.94e-05 7.09e-04 0.0019 3.14e-04 98 8.0

PINNs

# data points relative error (%) # of iter. comp. time [s]

E tp ti Rm a1

360 0.0037 0.24 3.97e-01 0.27 0.0096 6e05 2494.6

450 0.020 0.0037 3.71e-03 0.0048 0.0027 6e05 2455.2

600 0.0051 0.010 3.78e-03 0.010 0.0022 6e05 2577.1

900 0.015 0.0017 1.25e-02 0.0037 0.0022 6e05 2631.6

1800 0.0090 0.012 9.92e-04 0.011 0.0017 6e06 2946.5

https://doi.org/10.1371/journal.pcbi.1011916.t007
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As evidenced by the data presented in Tables 7 and 8, encompassing both gray-box and inverse

problem scenarios, and spanning across both this model and the pharmacokinetics model, a dis-

cernible pattern emerges concerning the impact of dataset size on method performance.

Table 8. Ultradian Endocrine model: Unknown terms discovery for time range [0, 1800] minutes. X-TFC and PINNs performance in terms of MAE, RMSE, RE, num-

ber of iterations, and computational time for different numbers of data points.

X-TFC

# data points f(t) g(t) # of iter. comp. time [sec.]

MAE RMSE RE (%) MAE RMSE RE (%)

360 7.08e-02 3.14e-01 1.93 1.32e-01 4.14e-01 16.7 2 0.25

450 7.78e-03 3.83e-02 0.24 8.84e-02 2.83e-01 11.4 2 0.25

600 2.90e-03 1.22e-02 7.45e-02 2.09e-02 6.30e-02 2.49 3 0.25

900 9.45e-04 3.45e-03 2.13e-02 1.43e-02 4.37e-02 1.77 2 0.40

1800 1.71e-04 7.11e-04 4.28e-03 1.72e-03 5.73e-03 0.22 2 0.60

PINNs

# data points f(t) g(t) # of iter. comp. time [sec.]

MAE RMSE RE (%) MAE RMSE RE (%)

360 1.99e-02 8.42e-02 5.08e-01 5.49e-02 1.32e-01 5.14 1e06 3883.68

450 1.57e-02 7.58e-02 4.57e-01 4.04e-02 8.61e-02 3.36 1e06 3958.43

600 8.57e-03 6.99e-02 4.21e-01 3.58e-02 9.18e-02 3.58 1e06 4028.44

900 8.27e-03 3.80e-02 2.29e-01 3.77e-02 7.77e-02 3.03 1e06 4177.49

1800 7.89e-03 5.99e-02 3.61e-01 3.14e-02 6.02e-02 2.35 1e06 4917.81

https://doi.org/10.1371/journal.pcbi.1011916.t008

Table 9. Ultradian Endocrine model: X-TFC hyperparameters setup for parameter discovery and unknown terms

discovery, for time range [0, 1800] minutes.

# data points Parameter discovery Unknwon terms discovery

N L tstep N L tstep

360 4 200 15 4 5 15

450 5 200 16 5 10 16

600 5 150 12 5 15 12

900 5 200 8 5 30 8

1800 6 200 5 6 30 5

https://doi.org/10.1371/journal.pcbi.1011916.t009

Table 10. Ultradian Endocrine model: PINNs parameters setup for unknown terms discovery, for the time range

[0, 1800] minutes. The first and second numbers in the ‘Architecture of Neural Networks’ indicate the width and

depth, respectively. The initial and second numbers in the ‘Number of Iterations’ Row represent the iterations during

the primary and secondary training stages.

PINNs parameters

Optimizer Adam

Activation Function Swish

Number of iterations 10000, 1000000

Architecture of main NN 128, 4

Architecture of second NN 32, 4

Learning Rate for main NN 0.001

Learning Rate for second NN 0.001

Number of Collocation Points 1800

https://doi.org/10.1371/journal.pcbi.1011916.t010
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In the case of the X-TFC method, an increase in the number of data points leads to progres-

sively more accurate results. However, it is noteworthy that when confronted with a relatively

small dataset, the PINNs method exhibits superior performance, characterized by heightened

accuracy and reduced absolute error. For instance, in Table 8, the PINNs method demon-

strates better efficacy with merely 360 and 450 data points. Nevertheless, as the dataset grows,

the X-TFC method surpasses PINNs in accuracy and computational efficiency.

In summary, the choice between the X-TFC and PINN methods should be made judi-

ciously, with careful consideration of dataset size and noise levels. While the X-TFC method

excels with larger datasets, the PINN method exhibits a unique strength in scenarios involving

smaller datasets or noisy data, where it achieves greater accuracy.

Fig 8. Glucose-insulin interaction model: Comparison between exact solution vs. X-TFC and PINNs solutions for (A) the

variables Ip, Ii, and G (top to bottom), and (B) unknown terms f(t) and g(t) (top to bottom).

https://doi.org/10.1371/journal.pcbi.1011916.g008
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4.3 Symbolic distillation of gray-box models recovered from X-TFC and

PINNs methods

After training the X-TFC and PINNs model, we obtain a gray-box model for f(t), g(t) and h(t)
parameterized by high dimensional parameters. Therefore, we perform symbolic regressions

and fit compact closed-form analytical expressions to f(t), g(t) and h(t) independently by using

PySR [33] and gplearn [34]. Both packages use a genetic algorithm to combine algebraic

expressions stochastically. The employed method shares similarities with the method of natu-

ral selection, as it assesses the “fitness” of each expression based on its simplicity and accuracy.

In this study, we consider binary operations in the fitting process as +, −, and ×. In symbolic

regression, the accuracy of recovered expressions is assessed through complexity, score, and

loss. Complexity measures the intricacy of the discovered equations in terms of the number of

terms, mathematical operations, and the overall structure of the equations. Managing com-

plexity is an important aspect of symbolic regression because overly complex equations can be

difficult to interpret and may not generalize well to new data, leading to overfitting. Score in

symbolic regression algorithm is typically used to discover the mathematical expressions that

maximize or minimize the chosen scoring metric while considering different combinations of

mathematical operations and constants. Loss in symbolic regression typically refers to a math-

ematical function that quantifies the discrepancy between the predicted values generated by a

symbolic expression or equation and the actual observed values in the dataset.

We represent the validation metrics for the model obtained from PySR with variation in

loss and score against the complexity of symbolic expression. The loss function can be consid-

ered as mean square error (MSE) or root mean square of error (RMSE) between actual and

predicted outputs. However, the score is defined as the negative of the derivative of the log-loss

with respect to the complexity. The complexity in PySR is defined as the number of nodes in

an expression tree, irrespective of each node’s content. In the PySR implementation, we chose

the candidate model with the highest score among expressions with a loss better than at least

1.5x the most accurate model represented by the lowermost loss function. In gplearn, we

observe the variation of the loss function against the length of the symbolic expression, and we

choose the candidate model when complexity increases, but the loss remains stagnant.

4.3.1 Symbolic distillation of pharmacokinetics model. We perform symbolic regression

for (12), in particular

dB
dt
¼ hsymðG;BÞ; ð20Þ

where we recover the expression hsym in terms of G and B using symbolic regressions.

Table 11. Pharmacokinetics model: Results of symbolic regression for gray-box identification using the PySR

package (top) proposed by Cranmer [33] and the method implemented in gplearn [34] package (bottom).

Method PySR True Expression

hsym h

X-TFC 0.7199G − 0.15B 0.72G − 0.15B
PINNs 0.7257G − 0.1559B

Method gplearn True Expression

hsym h

X-TFC 0.7205G − 0.1507B 0.72G − 0.15B
PINNs 0.7310G − 0.1480B

https://doi.org/10.1371/journal.pcbi.1011916.t011
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In Table 11, we show the closed-form symbolic models obtained from the packages PySR

and gplearn for the gray-box models recovered from X-TFC and PINNs approaches. From

Table 11, it is evident that symbolic models are in very good agreement with the true models.

Validation metrics for the models obtained from PySR and gplearn are shown in Fig 9. In Fig

9A, we show the plots of loss and scores against the complexity of expressions for the symbolic

models obtained from PySR. In Fig 9A, it is evident that as complexity increases, the scores

remain constant for both the PINNs and X-TFC, which indicates convergence of the candidate

model. Similarly, the loss for the PINN approach obtained the convergence very early, but the

loss for the X-TFC method keeps decreasing, but complexity remains constant. Therefore, a

candidate model with a complexity of 5 is appropriate and does not overfit. Fig 9B shows the

validation metric of the symbolic model obtained from gplearn. Unlike PySR, gplearn provides

the metric in terms of loss and length of expressions as the population evolves. In Fig 9B, we

plot the loss against the length of expression in symbolic models. The candidate models for

PINN and X-TFC methods, shown in Table 11, correspond to lengths of 7 and 19, respectively.

In Fig 10, we show the evolved tree of binary operations, obtained from gplearn, in the sym-

bolic model recovered for hsym obtained from PINNs. It is to be noted that the number of

nodes (9) in Fig 10 represents the length of expression in the symbolic model.

An evaluation of the framework for data affected by noise is reported in Sections 4.1

(Table 6 with comments at the end of the section) and 4.3.1 for the pharmacokinetics case. The

performance has been evaluated for X-TFC, PINNs, and symbolic regression. We performed

the symbolic regression for the nose levels of 1%, 2%, 3%, 4%, 5%, and 10% sampled from a

Uniform distribution with mean (μ) variance 0 and 1

3
(σ2), respectively. To accelerate the con-

vergence of symbolic regression, we use a L1− loss function with a regularizer, chosen as noise

level. Therefore, the loss function is defined as

L1 ¼
Xn

i¼1

jyi � ŷij þ
1
ffiffi
s
p I; ð21Þ

Fig 9. Pharmacokinetics model: Validation metrics for the Pharmacokinetics model using for X-TFC and PINN based gray-box models. (A) represents variation

in loss and score of symbolic models obtained from PySR with respect to the complexity of expressions. Once convergence is achieved, the score remains constant as

the complexity of the recovered expression increases, and thus, the criteria for selection of candidate symbolic with expression shown in Table 11. (B) represents

variation in loss of symbolic models, obtained from gplearn, with respect to the length of expression. We choose the length of expression 9 and 19 for PINNs and

X-TFC, respectively. These lengths of expressions correspond to the minimum loss for the regressed symbolic models with closed form expression shown in Table 11.

https://doi.org/10.1371/journal.pcbi.1011916.g009
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where yi 2 R
n

is vector of actual data, ŷi is predicted data, s is the scale of the noise and I is

identity matrix of size n × n. The mathematical expressions distilled for different noise levels

are reported in Table 12.

4.3.2 Symbolic distillation of X-TFC and PINNs for Ultradian Endocrine model. The

gray-box models for Ip and Ii are expressed as

dIp
dt

¼
Rm

f
þ fsymðIp; IiÞ ð22Þ

dIi
dt
¼ gsymðIp; IiÞ ð23Þ

Here, we discover the closed and compact form of fsym(Ip, Ii) and gsym(Ip, Ii) using symbolic

regression. In Table 13, we present the close and compact form symbolic models for fsym
(PINNs and X-TFC) and gsym (PINNs and X-TFC) recovered by using PySR and gplearn.

Table 12. Mathematical expressions distilled with symbolic regression for both PINN and X-TFC methods for dif-

ferent noise levels, compared with the true expression.

Symbolic Regression for Noisy Data

Noise level PINN X-TFC True expression

1% 0.721G—0.155B 0.714G—0.149B

2% 0.720G—0.154B 0.714G—0.148B

3% 0.720G—0.154B 0.714G—0.148B 0.72G − 0.15B
4% 0.716G—0.153B 0.714G—0.147B

5% 0.729G—0.149B 0.715G—0.146B

10% 0.697G—0.154B 0.717G—0.143B

https://doi.org/10.1371/journal.pcbi.1011916.t012

Fig 10. Pharmacokinetics model: gplearn based evolved tree of binary operations in symbolic model recovered for

gray-box model hsym obtained from X-TFC and PINNs. It is to be noted that the number of nodes in the tree

corresponds to the length of expressions, which is 9 for the PINNs method.

https://doi.org/10.1371/journal.pcbi.1011916.g010
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Table 13 shows a very good agreement between the symbolic models and actual expression

represented by the semi-discrete system of ODEs. In Figs 11 and 12, we present the plots that

show the variation in score and loss against complexity of recovered expression for models

learned from X-TFC and PINNs, for PySR and gplearn packages, respectively. Interpretation

of the Figs 11 and 12 are the same as those explained in Section 4.3.1. For example, in Fig 11,

the convergence with PySR is achieved when the score remains constant while the complexity

increases. In Fig 12A, the convergence with gplearn framework for fsym is achieved at length of

expression of 18 and 25 for PINN and X-TFC, respectively. However, for gsym, we see that con-

vergence is achieved for lengths of expression of 13 and 18 for PINN and X-TFC, respectively.

In Fig 13, we show the evolved tree of binary operations, obtained from gplearn, in a symbolic

model recovered for gsym obtained from PINNs. It is to be noted that a number of nodes in the

tree (13) in Fig 10 represents the length of expression in the symbolic model.

Summary and discussion

This paper presents a comprehensive framework named AI-Aristotle, which combines two

neural network-based methods (X-TFC and PINNs) with two symbolic regression techniques

Table 13. Results of symbolic regression for gray-box discovering of Ultradian Endocrine model using the PySR package (top) developed by Cranmer [33] and the

method implemented in gplearn [34] package (bottom).

Method PySR True expressions

fsym gsym f g

X-TFC −0.2333Ip + 0.0182Ii 0.0660Ip − 0.0280Ii −0.2333Ip + 0.0182Ii 0.0667Ip − 0.0282Ii
PINNs −0.2332Ip + 0.0181Ii 0.0667Ip − 0.0282Ii

Method gplearn True expressions

fsym gsym f g

X-TFC −0.2331Ip + 0.0183Ii 0.066Ip − 0.028Ii −0.2333Ip + 0.0182Ii 0.0667Ip− 0.0282Ii
PINNs −0.2329Ip + 0.0178Ii 0.068Ip − 0.029Ii

https://doi.org/10.1371/journal.pcbi.1011916.t013

Fig 11. Ultradian Endocrine model: Validation metrics for PySR method. (A) fsym and (B) gsym are expressed by score and loss metrics against the complexity of the

expressions recovered using PySR. It is to be noted that, in both the plots, once convergence is achieved, the score remains unchanged as complexity increases.

https://doi.org/10.1371/journal.pcbi.1011916.g011
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to address the challenging tasks of parameter discovery and gray-box identification in Systems

Biology problems.

Our framework was evaluated on two benchmark problems: the pharmacokinetics drug

absorption model and the ultradian endocrine model describing glucose-insulin interactions.

The results demonstrated the capability of both X-TFC and PINNs to accurately estimate

parameters even with limited data, showcasing their potential for model calibration in real-

world scenarios. In the gray-box identification simulations, our framework successfully discov-

ered the missing terms in the differential equations governing the systems. The learned

Fig 12. Ultradian Endocrine model: Validation metrics for gplearn method. (A) fsym and (B) gsym are expressed by MSE loss against length of the expressions

recovered using gplearn and presented in Table 13. For fsym, we choose length of expression 18 and 25 for PINNs and X-TFC, respectively. However, for gsym, we

choose length of expression 13 and 25 for PINNs and X-TFC, respectively.

https://doi.org/10.1371/journal.pcbi.1011916.g012

Fig 13. Ultradian Endocrine model: Tree of binary operations recovered for gsym.

https://doi.org/10.1371/journal.pcbi.1011916.g013
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functions exhibited high accuracy even with a small number of data points. This ability to iden-

tify gray-box terms is essential for improving model fidelity and understanding complex sys-

tems where some underlying mechanisms are not fully known. We further distilled the learned

neural network models using two symbolic regression algorithms, providing interpretable

mathematical expressions. This process enhances the transparency and usability of the models,

facilitating their integration into scientific research and decision-making processes.

Our study has unveiled a noticeable trend in how dataset size affects the performance of dif-

ferent methods. When we look at the X-TFC method, increasing the number of data points

leads to progressively improved results. However, when dealing with relatively small datasets,

the PINN method outperforms on accuracy. This superiority can be attributed to PINNs’ effi-

ciency in handling sparse datasets and approximating complex functions with fewer data

points. As the dataset size expands, the X-TFC method overtakes PINNs in both accuracy and

computational efficiency. In particular, the latter occurs because of the use of least-squares

optimization as a solver instead of the back-propagation. It seems that the optimization error

dominates in PINNs; hence, no further improvement can be achieved even for more data

points. Thus, when choosing between the X-TFC and PINN methods, careful consideration of

dataset size and required computational time is paramount. To investigate that X-TFC is more

sensitive to the selected hyperparameters before training, an ablation study to find the best

parameters is required to achieve the desired accuracy. This does not add any serious compu-

tational expense as X-TFC is extremely fast.

We perform the distillation of gray-box models obtained by using PINNs and X-TFC meth-

ods. Symbolic regression provided compact and closed-form expression for PINN and

X-TFC-based surrogates. To show the robustness of recovered symbolic expression, we used

PySR and gplearn package and recovered almost identical expressions for the Pharmacokinet-

ics and Ultradian Endocrine model. At the implementation level, we find that PySR is a more

robust and efficient framework than gplearn; for example, for the problems we considered

here, it takes 10 minutes for PySR on CPU, while it takes up to one hour for gplearn. Also,

PySR requires less effort in tuning the hyperparameters of the model to perform the symbolic

regressions. The robustness of PySR is due to the implementation of simulated annealing-

based mutation of a tree of binary expressions [33], which is not present in the gplearn

framework.

The proposed framework can be applied to a broad range of physical phenomena to esti-

mate the governing parameters and identify the mathematical expressions of the missing parts

of a partial knowledge of the physics. Both PINNs and X-TFC are effective and generalizable

for solving problems and dynamical systems involving both ODEs [29, 44, 49–57] and PDEs

[31, 58–63], in fields such as rarefied-gas dynamics, optimal control, epidemiology, radiative

transfer, chemical kinetics, and many others. X-TFC, in Ref. [15], proved to be efficient and

robust in solving stiff problems in the field of chemical kinetics, also for large-scale problems

in terms of the number of ODEs (air pollution POLLU problem with 20 ODEs) and in terms

of time horizon (Belousov-Zhabotinsky reaction) thanks to the domain decomposition tech-

nique, outperforming traditional numerical methods. Likewise, in the PINNs framework, we

can split the operator as shown in Ref. [64] for a stiff biological neural model, to alleviate the

issue of the stiffness of ODEs, choosing the operator splitting approach between the Strang

[65] and the Godunov splitting [66].

Thus, the AI-Aristotle framework is generalizable and applicable to a large number of scien-

tific disciplines other than systems biology. The same applies to symbolic regression tech-

niques, which have been widely used to discover physics laws in fields such as Alzheimer’s

disease [36], chaotic systems [21], wind speed forecasting [67], and so on.
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