
Citation: Díaz-Santos, S.;

Cigala-Álvarez, Ó.; Gonzalez-Sosa, E.;

Caballero-Gil, P.; Caballero-Gil, C.

Driver Identification and Detection of

Drowsiness while Driving. Appl. Sci.

2024, 14, 2603. https://doi.org/

10.3390/app14062603

Academic Editor: João M. F.

Rodrigues

Received: 5 February 2024

Revised: 11 March 2024

Accepted: 18 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Driver Identification and Detection of Drowsiness while Driving
Sonia Díaz-Santos 1,* , Óscar Cigala-Álvarez 1, Ester Gonzalez-Sosa 2, Pino Caballero-Gil 1

and Cándido Caballero-Gil 1

1 Department of Computer Engineering and Systems, University of La Laguna, 38271 Tenerife, Spain;
ocigalaa@ull.edu.es (Ó.C.-Á.); pcaballe@ull.edu.es (P.C.-G.); ccabgil@ull.edu.es (C.C.-G.)

2 eXtended Reality Lab, Nokia, 28045 Madrid, Spain; ester.gonzalez@nokia.com
* Correspondence: sdiazsan@ull.edu.es

Abstract: This paper introduces a cutting-edge approach that combines facial recognition and drowsi-
ness detection technologies with Internet of Things capabilities, including 5G/6G connectivity, aimed
at bolstering vehicle security and driver safety. The delineated two-phase project is tailored to
strengthen security measures and address accidents stemming from driver distraction and fatigue.
The initial phase is centered on facial recognition for driver authentication before vehicle initiation.
Following successful authentication, the subsequent phase harnesses continuous eye monitoring fea-
tures, leveraging edge computing for real-time processing to identify signs of drowsiness during the
journey. Emphasis is placed on video-based identification and analysis to ensure robust drowsiness
detection. Finally, the study highlights the potential of these innovations to revolutionize automotive
security and accident prevention within the context of intelligent transport systems.

Keywords: facial recognition; drowsiness detection; driver safety; machine learning; video-based
identification

1. Introduction

Vehicular theft has been a challenge since the automobile’s inception in the 19th cen-
tury, impacting both manufacturers and individual owners. Traditional security measures,
ranging from mechanical locks and alarms to electronic immobilizer systems, have demon-
strably mitigated such threats. However, the evolving technological landscape necessitates
the development of more sophisticated and robust security solutions. The integration
of Internet of Things (IoT) capabilities presents a promising avenue for enhancing road
safety and vehicle security. In this context, in-vehicle authentication emerges as a critical
component for thwarting unauthorized access attempts.

In addition to this, traffic accidents are responsible for approximately 1.3 million
deaths worldwide each year, with young people being the most affected group. Distracted
driving and fatigue rank among the leading causes of these accidents, emphasizing the
necessity of mitigating these factors to reduce the number of victims. Presently, advanced
vehicle models incorporate driver drowsiness and attention warning (DDR-AW) [1] as
one of their safety technologies, integrating the smart components of intelligent transport
systems (ITSs) to prevent accidents caused by driver inattention. ITSs currently play a
pivotal role in enhancing road safety, thanks to different components such as real-time
traffic data, predictive analytics [2], and smart infrastructure solutions.

In particular, in this work, the combination of innovative technologies with artificial
intelligence (AI) techniques is proposed to identify facial signs. This can help, firstly, to
identify the driver to provide access to control the vehicle, and secondly, to characterize
sleepiness or fatigue during driving through video identification. In this way, it will allow
us to leverage the capabilities of edge computing to utilize them in any vehicle.

The article [3] reported by the General Directorate of Traffic in Spain (Dirección General
de Tráfico (DGT)) contains a critical aspect that has garnered attention from researchers

Appl. Sci. 2024, 14, 2603. https://doi.org/10.3390/app14062603 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062603
https://doi.org/10.3390/app14062603
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8482-3957
https://orcid.org/0000-0002-6910-6538
https://doi.org/10.3390/app14062603
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062603?type=check_update&version=1

Appl. Sci. 2024, 14, 2603 2 of 19

and authorities: the prevalence of driver drowsiness as a contributing factor to traffic
accidents. In this regard, a detailed examination of the figures provided in the DGT report
can shed light on the magnitude of this issue and guide future initiatives to enhance
safety on Spanish roads. The report reveals several pertinent figures that underscore the
imperative of implementing measures to address traffic accidents associated with fatigue
or somnolence. Notably, in 2020, a total of 67 fatal accidents were attributed to this cause,
constituting 9% of the concurrent factors contributing to accidents. Furthermore, there
were 1458 accidents with victims linked to tiredness or sleepiness, representing 8% of the
various factors contributing to accidents. These statistics highlight the critical need for
targeted interventions to mitigate the impact of driver fatigue on road safety.

This work has been developed in two fundamental stages (Figure 1). The first phase
was designed to carry out facial recognition of the driver when attempting to start the
vehicle, rigorously verifying whether the driver possesses the required authorization to
operate it. Once this initial stage was completed successfully, the second phase involved
the constant monitoring of the driver’s characteristic signs of drowsiness throughout the
journey, using facial features and the condition of their eyes as reference points, aided
by IoT sensors. If a prolonged eye closure is detected, an alarm is activated through the
vehicle’s speakers to prevent potential accidents.

Figure 1. System operation for the two use cases.

This paper is structured as follows. Sections 2 and 3 provide context via a review of
previous research and a discussion of different technical aspects, respectively. Subsequently,
Section 4 describes the system design, and Section 5 delves into practical implementation
details. Finally, Section 6 shows the results and Section 7 summarizes the main findings
and their implications.

2. Related Work

Innovative strategies for enhancing vehicle security and deterring theft have been
a focus of recent research. A notable development in this area can be found within [4],
which introduces a system based on facial recognition to safeguard against vehicle theft,
effectively employing global systems for mobile communications (GSMs) and Arduino [5]
technologies. Additionally, the authors of [6] propose a vehicle tracking system that inte-
grates GSM communication with global positioning system (GPS) technology, enabling
real-time monitoring through short message service (SMS). The paper [7] aims to detect
driver fatigue by analyzing vehicle operation data, proposing a system using machine
learning to distinguish between fatigued and non-fatigued drivers based on driving behav-
ior. The study [8] explores the early detection of driver drowsiness using ensemble machine
learning, combining multiple sensors. It proposes a detection system merging physiological

Appl. Sci. 2024, 14, 2603 3 of 19

(e.g., heart rate and electromyographic activity) and vehicle sensors (e.g., steering angle
and acceleration). These methodologies underscore the importance of integrating advanced
technological systems to improve vehicle security, marking a significant stride in the use of
novel technologies to prevent car theft and provide both efficient and accessible solutions.

In the scientific literature, numerous diverse approaches addressing road safety, par-
ticularly driver behavior, using AI techniques can be found. For instance, the authors of [9]
analyzed automated systems that identify improper human driving behavior and proposed
a self-adaptation model for trust management based on deep learning, which first identifies
safe and unsafe drivers and then classifies the behaviors of safe drivers using deep learning.

The survey in [10] covers different studies that employed at least one camera to observe
a driver inside a vehicle. In fact, one of the most difficult issues related to the use of video
devices in automotive applications is the need for a high frame rate. In this sense, the
authors of [11] proposed a preliminary version of a motion magnification method that
addressed this issue.

Moreover, several very recent bibliographic references focus on the application of
different AI models based on machine learning (ML) to detect driver drowsiness. One
of the first reviews of the literature on driver drowsiness detection based on behavioral
measures using ML techniques is [12].

Stacked deep convolutional neural networks (CNNs) were used in [13] to detect faces
and extract the eye region from facial images to classify the driver as sleep or non-sleep.
The authors of [14] presented a driver drowsiness-detection model based on deep learning
techniques for the brain-computer interface. The authors of [15] also suggested the use of a
CNN technique as the best machine learning algorithm to detect microsleep and drowsiness.
Additionally, the authors of [16] proposed another real-time driver drowsiness-detection
system based on the area of eye closure and the use of a CNN [17].

The authors of [18] used a public dataset to propose an architecture that detects
driver drowsiness by comprising four deep learning models to extract four different types
of features.

The authors of [19] analyzed driver behavior and detected signs of drowsiness using a
variety of sensor data, such as cameras, motion sensors, and physiological data, to train
deep learning models. A different approach based on the study of emotions through facial
images using CNN to extract relevant emotional features is followed in [20]. A modified
deep learning architecture proposing specific adaptations in the neural network was used
in [21] to analyze and process relevant data, such as driver images and driving patterns.
Another approach to deep learning-based driver sleep detection is found in [22], where an
efficient approach involving data acquisition and processing, the selection of deep neural
network architectures, and performance evaluations of the resulting model is proposed.
The methodology employed in [23] is the combination of long-term and long short-term
memory CNNs and factored bi-linear features.

None of the aforementioned works, although relevant to the subject matter, fully align
with the approach adopted in this paper. The objective of this study is to achieve real-time
monitoring of a driver’s eye status, coupled with the quickest possible authorization of
the individual intending to operate the vehicle. This approach is imperative for several
reasons. Firstly, the end-user, represented by the driver, is unlikely to tolerate any delay in
facial recognition authorization to commence vehicle operation. Moreover, in emergency
situations, waiting for facial recognition authentication is impractical.

Regarding drowsiness detection, transmitting frames can impede system performance
and lead to failures. Thus, frames are dispatched as expeditiously as possible and pro-
cessed at maximum speed on the server. Consequently, the server hosts the drowsiness
analysis. A Jetson Nano processor with only 2 GB of memory incurs computation delays
when analyzing camera-captured frames, but it is usable in situations such as a loss of
communications with the cloud.

Consequently, while the existing literature predominantly discusses identification
strategies using ML, this paper’s focus lies in implementing a real-time system to ensure

Appl. Sci. 2024, 14, 2603 4 of 19

swift analysis and minimize errors. Specifically, this includes mitigating the impact of
extended frame transmission intervals, which diminishes the system’s efficacy in promptly
alerting the driver to potential drowsiness. Additionally, it involves optimizing frame
analysis speed to prevent delays in frame capture and avoid analyzing outdated frames.

3. Requirements and Technologies

The aim of this study is two-fold. Firstly, a program was developed to perform facial
recognition of a driver when they attempt to start the vehicle to verify whether that person
is authorized to drive it or not. In order to achieve this, the Python [24] library for face
recognition was used, which calculates the facial embedding of the driver’s face and
compares it with known and authorized faces. Secondly, a phase of research was carried
out on the various existing approaches to detect driver drowsiness, identifying three main
types of techniques for the detection of driver drowsiness based on the physiological
characteristics of drivers, artificial vision techniques for driver tracking, and vehicle driving
patterns. On the one hand, in this research, the method based on vehicle driving patterns
was discarded due to the cost factor, as one of the main objectives was to create a system that
could be used in any vehicle. On the other hand, this work focuses on driver identification
using video and artificial vision techniques to track the driver and detect drowsiness,
specifically, taking the face, eyes, and mouth as key points for driver identification and
drowsiness detection.

The main technologies used for facial recognition are detailed below. In particular, the
implementation uses the Python face recognition library [25] to process detected faces and
calculate facial embeddings. In order to detect a driver’s face, OpenCV [26], which is an
artificial vision library that not only detects faces but also identifies their components, such
as eyes, nose, and mouth, was used. As for the requirements of this part, it was necessary
that at the time of purchasing the vehicle, the dealership personnel or a specialized company
load the facial biometric data of authorized individuals along with their names. In this way,
each time an attempt is made to start the vehicle, the camera inside will be activated, and
the data stored in the database of authorized drivers will be compared to the set of facial
features of the person present in the vehicle at that moment.

In the drowsiness detection phase, the main goal was to detect the face and eyes to
identify characteristic signs of sleepiness, such as prolonged eye closure. Additionally, to
perform this task, ML was used, specifically a model built using a CNN, where the pro-
posed system was implemented using the Python language, the deep learning framework
Keras [27], and the computer vision library OpenCV.

This work has several pre-requisites. Firstly, there must be a camera inside the vehicle
to capture images of the driver through a Jetson Nano (see Figure 2). Secondly, several
software tools are required. For instance, Python, the programming language used for de-
velopment, must be installed to use the necessary packages. Furthermore, the open-source
computer vision library OpenCV is required for face and eye detection, the framework
Keras is required for creating the classification model, and the cross-platform Pygame [28]
Python modules for playing the alarm sound that wakes up the driver are also needed.

Finally, the server makes use of Docker [29] to encapsulate an application and its
dependencies in an isolated and portable environment, facilitating its deployment and
distribution in different runtime environments. It provides greater flexibility and efficiency
in server resource management and simplifies application deployment because this ap-
proach involves encapsulating both code and dependencies in a self-contained container.
Moreover, compatibility issues between environments were reduced, ensuring that the
application runs the same way on any server where it is deployed.

Appl. Sci. 2024, 14, 2603 5 of 19

Figure 2. Possible camera placement options and selected final camera placement inside the car.

3.1. In-Car Camera

One of the key hardware requirements for this work is the placement of the camera
inside the car. The specific position of the camera is a highly relevant factor for accurately
measuring both the facial embedding and drowsiness levels through facial features, such
as eye condition.

Figure 2 shows the three different camera angles, on the left, in the center, and on
the right side of the steering wheel, that were tested during the experimentation for this
work. Based on the experimental study, it was concluded that the left-side camera angle
provides poor visibility of the driver’s eyes, with significant interference from the driver’s
hand within its field of view. The center camera is positioned too closely to the steering
wheel due to its central location, which necessitates placing the camera too high and could
hinder road visibility. On the other hand, the right-side camera proved to be effective in
detecting the driver’s face and eyes. Being positioned above the air conditioning system
neither obstructs the field of view of the road nor gets too close to the driver’s face. Camera
placements on the car’s central rearview mirror and the top of the dashboard were also
tested but were not considered suitable for safety reasons, as they obstructed the driver’s
vision. In conclusion, as shown in Figure 2, the optimal angle for detecting the driver’s
face and eyes is to place the camera on the right side of the steering wheel using the air
conditioning vent hole.

3.2. Convolutional Neural Networks

Once the vehicle is started and the driving begins, the monitoring of relevant facial
features is initiated using the camera. In order to achieve this, image processing techniques
are employed to determine the level of drowsiness, typically through the application of
machine learning techniques. Some of these techniques are convolutional neural networks
(CNNs), support vector machines (SVMs) [30], and hidden Markov models (HMMs) [31].
In order to create a drowsiness detection model, one of those three types of techniques
must be trained using labeled features and outcomes. As mentioned earlier, the models
applied in this work use a CNN, which is an exclusive class of deep neural networks that
perform exceptionally well when used for image classification.

A CNN includes essential components such as an input, an output, and a hidden layer
with the potential for many layers. The input layer receives all inputs, whereas the last
layer is the output layer, which provides the desired output. All intermediate layers are
referred to as hidden layers. The hidden layers depend on the analyzed use case. These
layers are convolved through a filter that multiplies the 2D matrices of the layer and the
filter. The final layer has two nodes and is also fully connected.

The following layers constitute the unique architecture of the CNN model that
was used:

• Two layers of 32 nodes, with a kernel size of 3;
• A total of 64 nodes in the convolutional layer, with a kernel size of 3;
• A total of 128 nodes for the fully connected layer.

Appl. Sci. 2024, 14, 2603 6 of 19

The rectified linear unit (ReLU) [32] function is commonly used as the activation
function for hidden layers in CNN models. However, in this work, the ReLU function was
not applied to the output layer but was used in all the other layers. Instead, the Softmax
function was applied just before the output layer.

3.3. Other Devices

Initially, this project was conducted using a MacBook Pro computer equipped with an
Apple M1 Pro chip and 16 GB of random-access memory (RAM). Both driver identification
and the drowsiness detection algorithms were successfully tested on this device in real time,
demonstrating its suitability for the project’s goals. However, considering the impracticality
of using a laptop while driving, alternative devices that are smaller, more convenient, secure,
and do not obstruct the driver’s visibility were explored.

As a result, it was considered more appropriate to establish a client-server scheme
in which the NVIDIA Jetson Nano Developer Kit 2 GB [33] serves as the client, and the
server is dockerized on an external machine. Additionally, a second client was available
at Nokia’s company offices, acting as a control client. This is because the Jetson Nano
only has 2 GB of graphics, which made the initial tests difficult as this was insufficient for
analysis in real time, but it can work in situations such as a loss of coverage with less image
capture frequency.

The decision to adopt this architecture stemmed from the constrained graphical ca-
pacity of the Jetson Nano, which posed challenges during initial tests. With only 2 GB of
graphics memory, real-time analysis proved inadequate. However, the device exhibited
satisfactory performance under circumstances involving sporadic image captures.

In order to quantify the efficacy of the driver face recognition program, the average
execution time was measured. These figures represent the average total execution time
across tests conducted under optimal conditions, wherein the user’s face was unobstructed
by glasses, masks, or hair. Notably, the computational overhead increases with a larger
database of individuals, potentially impeding program responsiveness. Nonetheless, this
is unlikely to pose a significant issue in practical scenarios, given that vehicles typically
accommodate one to three occupants.

Furthermore, the execution time is contingent on the processing capabilities of the
device, with superior performance observed on higher-spec machines. Consequently, the
server was selected as the preferred platform for frame analysis, surpassing the computa-
tional capabilities of the Jetson Nano.

A comparison of average execution times for driver face recognition is provided in
Table 1. Notably, face recognition processing on the server yielded an average time of 3.84 s
when gazing at the camera and 8.79 s when focused on the road. In contrast, analysis
conducted on the Jetson Nano exhibited significantly longer processing times, averaging
107.51 s and 106.96 s, respectively.

Regarding drowsiness detection, the server achieved a processing rate of 0.15–0.16
frames per second (FPS), demonstrating satisfactory performance. Conversely, the latency
experienced on the Jetson Nano was prohibitively high, rendering drowsiness detection
impractical.

These findings underscore the inadequacy of the Jetson Nano for real-time analysis
without substantial system modifications.

Table 1. Average facial recognition time

Driver’s View Server Average Time Jetson Nano Average Time

At the camera 3.84 s 107.51 s
At the road 3.79 s 106.96 s

Appl. Sci. 2024, 14, 2603 7 of 19

4. System Architecture

The system architecture features a client-server scheme with a single server and two
clients, as depicted in Figure 3. Initially, the program was tested on a laptop without the
client-server scheme, running solely within a single file.

Figure 3. Client-server scheme.

There is the Jetson Nano client located inside the car with a camera focusing on the
driver. The main program runs on this client, opening the camera and sending captured
images of the driver in the car to the server or processing the image in case of a loss
of coverage. The server houses the part of the program that analyzes the image data
received from the Jetson Nano client. As for driver identification, features that allow for the
recognition of a person are extracted and compared to the characteristics in the database
containing all authorized drivers to start the vehicle. If the ID of the person received from
the client is in the Server database, he/she is authorized; otherwise, it would be considered
an attempted theft, and the user will not be authorized to start the car. Note that the Server
database does not contain all the user’s data, only the IDs. In this way, the privacy of drivers
cannot be compromised in the case of drowsiness detection. For drowsiness detection,
typical signs of sleepiness are determined by identifying the person’s face and eyes, relying
on the height of the eyes to determine if they are closed or open. When both eyes are closed
for more than a certain period (greater than a simple blink to avoid false positives), the
driver’s state is classified as asleep. Otherwise, the driver’s condition remains awake. If
the Server (or the Jetson Nano client in case of loss of coverage) detects a drowsiness state,
i.e., the driver is asleep, an alarm is triggered to awaken them.

In addition to this, the control client is responsible for receiving performance key
indicators from the Server, including the user number inside the vehicle and the driver’s
state. Regarding identification, this will have a value of 0 if the user is authorized to start
the car and 1 if they are not authorized. In the case that the person is not authorized, the
user number is 404. Finally, the driver’s state has a value of 0 if they are awake and 1 if
they are asleep.

The entire project architecture is implemented using 5G networks. For this purpose,
two 5G modems were used, each connected to one client, one to the Jetson Nano and
the other to the control client. The use of 5G networks has the advantage of offering an
ultra-fast connection speed, which enables instant data transfer, facilitating the download
and real-time streaming of high-quality multimedia content, such as 4K or even 8K videos.
Additionally, the low latency of 5G ensures an instant response in online applications and
services, which are crucial aspects of the project that was carried out.

Appl. Sci. 2024, 14, 2603 8 of 19

5. Implementation

This section details the explanation of the code used in each of the architecture compo-
nents described in the previous section to better understand the specific functionality of
each element.

5.1. Server

The server includes different functions for key performance indicators (KPIs) [34],
driver ID, drowsiness monitoring, sending statistic data to the control client, and the
main function.

5.1.1. KPI Function

The first class of the server.py file contains the functions in charge of sending reports
or metrics to a specific destination using the user datagram protocol (UDP). The first of
these is __init__(), which receives a series of parameters, including addr, which contains
the destination IP; in this case, it is 127.0.0.1, referring to local use. The next one is the port,
which is configured with 8094, which, as previously mentioned, is the port in charge of
providing the UDP service. Within this method, the variables that it receives as parameters
are instantiated in addition to creating a socket object and storing it in self.socket. Finally,
all additional arguments that the function may receive are stored in the self.tags dictionary.

Second is the tag() method, which is responsible for adding or modifying tags to the
report. It receives keyword arguments, **kwargs, which are treated as key-value pairs
and updated in the self.tags dictionary. Then, the self-object is returned, which allows for
chaining multiple calls to the tag() method.

The third function is report(), which is used to send the report or metric to the
specified destination. Inside it, a text string is constructed containing the name of the
self.measurement, the self.tags, and the kwargs values. If a timestamp, ts, is provided,
it is appended to the end of the text string. If the value self.v is True, the text string is
printed to the console using print(txt). Finally, the UDP socket self.socket is used to send
the byte-encoded report to the specified destination, thanks to self.addr and self.port.

5.1.2. Facial Recognition Function

This code section is responsible for facial recognition in drivers. In general terms, it
receives images from the client inside the vehicle, analyzes them, searches for matches
among authorized individuals’ faces, and sends a signal to the vehicle to start or not.

The code starts with the definition of the state_recognition function, which takes
four parameters:

• img: This parameter stores the current frame of the real-time camera;
• name_prove: This variable stores the name of the person who wants to start the vehicle

at that moment. Later, it will be compared with classNames to see if it has permissions;
• classNames: This is in charge of storing the names of the people authorized to start

the vehicle;
• authorizeEmbeddings: This parameter stores the facial embeddings of the people

authorized to drive the vehicle.

Next, the current frame captured by the camera is stored in the im variable, transform-
ing it to a format suitable for processing. A transformation is performed to adjust the range
of pixel values from [−1, 1] to [0, 255] and is converted to uint8. Two empty lists are initial-
ized: faceDistances, which will store the Euclidean distance when comparing the face in the
current frame with all authorized faces, i.e., how similar the faces are, and permission to
store the authorization status. The facesCurrFrame variable stores the matrix of bounding
boxes for the faces found in that frame, i.e., their location, whereas encodesCurrFrame
stores the vector of 128 key points that make each face unique.

In this step, the current frame is compared to all images of the authorized individuals
to find any matches, which will be stored in ’matches’ using the compare_faces function. If
the vector of 128 points differs by 0.6 or less from the default value, it means both faces

Appl. Sci. 2024, 14, 2603 9 of 19

are considered a match. Therefore, all face vectors that meet this condition are stored in
faceDistances. If there is a match, the authorized person’s name is stored in the ’name’
variable, but the output is formatted differently. By default, the images have the format
“First_Last.jpg”; therefore, this function changes this format to “First Last”. Finally, the
words “Authorized” or “Refused” are stored in the ’permission’ variable. This will be used
to send the starting signal to the vehicle (or not), in addition to other uses for KPIs.

In relation to facial recognition, Figure 4 depicts the outcome of a run, illustrating
a vector of facial embeddings stored in the vehicle’s database. The individual facing the
camera corresponds to the first value of the facial embedding vector, displaying a value
closest to 0, indicating the degree of similarity to the individual. A value approaching 1
suggests no resemblance to the person in front of the camera. It is evident across multiple
iterations that the individual is consistently recognized correctly, thereby confirming their
identity and authorization to initiate the vehicle. This numerical representation signifies the
accuracy of resemblance between the individual facing the camera and those authorized to
drive, serving as a metric to assess the quality of facial recognition.

Figure 4. Result of the facial recognition code.

5.1.3. Drowsiness Detection Function

In the drowsiness monitoring section, an ML model is employed in conjunction with
the OpenCV library to discern the driver’s state of drowsiness by scrutinizing images
acquired from a camera installed within the vehicle. The model proficiently categorizes the
condition of the driver’s eyes, classifying them as either “open” or “closed”. The dataset
utilized for training this model has been sourced from DataFlair. The procedural methodol-
ogy encompasses the creation of a dataset through the capture of images of the driver’s
eyes via a camera, followed by their classification into “open” or “closed” categories.

During the data cleaning phase, meticulous criteria are applied, involving the elimi-
nation of superfluous images, particularly those characterized by suboptimal quality or
lacking relevance for model training. This curation process encompasses approximately
7,000 photographs, capturing human eyes in diverse environmental settings. Subsequently,
the ML model undergoes a comprehensive training process. The conclusive weights and
architecture file of the model, denominated ‘cnnCat2.h5’, are enclosed within the ‘models’
folder. The resultant model proves instrumental in ascertaining whether the driver’s eyes
are open or closed, thereby facilitating the identification of indications of drowsiness during
the act of driving. The sequential steps employed for the detection of driver drowsiness are
delineated as follows and are shown in Figure 5.

Appl. Sci. 2024, 14, 2603 10 of 19

Figure 5. Architecture of the proposed methodology for drowsiness detection.

1. Capture an image through the camera:
A webcam is used to capture an image for input. An infinite loop is constructed to
record each frame from the camera. The camera is accessed, and the capture object
cap is set using the OpenCV method cv2.VideoCapture(0). Each frame is read with
cap.read(), and the image is stored in a frame variable.

2. Creation of a region of interest (ROI) by detecting faces:
In order to detect faces in an image, the image is converted to gray scale since the
OpenCV object detection algorithm accepts gray scale images as input. In order to
find faces, a cascaded classifier is used. Next, faces = face.detectMultiScale(grey) is
used for detection. It returns an array of hits containing the x, y, height, and width
co-ordinates of the bounding box of the object. Now, it is possible to iterate over the
faces and draw bounding boxes for each face.

3. Determining the eye region of interest (ROI) and providing it to the classifier:
Eyes are discovered using the same technique as for the faces. The left eye (leye)
and right eye (reye) cascade classifiers are initialized, and the detectMultiScale(gray)
function is used to detect the eyes. Then, only the eye data are extracted from the
entire image. This is accomplished by removing the eye-bounding box. The variable
l_eye contains the image data for the left eye and r_eye for the right eye. This is fed
into a CNN classifier, which predicts whether the eyes are open or closed.

4. The classifier detects whether the eyes are open or closed.
A CNN classifier is used to predict the state of the eyes. First, the color image is
converted to a gray scale. Then the image is resized to 24 × 24 pixels.
The code lpred = model.predict_classes(l_eye) can be used to predict each eye using
the trained model. The predict_classes function returns the class 0 or 1, as predicted by
the model for the given input image. If the value of lpred[0] is equal to 1, it indicates
that the eyes are open. On the other hand, if the value of lpred[0] is equal to 0, it
means that the eyes are closed.

5. It calculates a score to determine if the subject is asleep:
A score is essentially a value used to determine how long a person keeps their eyes
closed. Therefore, if both eyes are closed, the score will always increase, and if both
eyes are open, the score will decrease.
The sleep detection function must receive the following variables:

(a) img: The image received from the customer of the Jetson Nano, i.e., an image
of the driver.

(b) upper_bound: This is the score that specifies the maximum limit of the counter
for determining whether the driver has fallen asleep.

(c) score: This is the variable that starts increasing its value when the person
closes his eyes until he opens them again. If this value reaches the same value
as the upper-bound variable, it is determined that the person has fallen asleep.

The Haar cascade classifier is an ML-based approach that is typically used with many
positive and negative images for training. In this work, it was used for the face and eyes.
The model is loaded to predict each eye. Then, the “state” variable is created to check the

Appl. Sci. 2024, 14, 2603 11 of 19

state of the eyes (open/closed). The right eye is detected. In order to do this, only the eye
data are extracted from the full image, selecting the eye bounding box and then extracting
the eye image from the frame with this code. Afterward, the color of the image is converted
into grayscale. Subsequently, the image is resized to 24 × 24 pixels since the model was
trained using that image size. Then, the data are normalized for better convergence, with
the data values between 0 and 1. If the value of “rpred[0]” = 1, it indicates that the eyes
are open; if the value is 0, then it is concluded that the eyes are closed. The monitoring of
the left eye is done in the same way; if both eyes are closed, the score counter increases.
When both eyes are open, the score decreases. If the score is higher than the value of
the upper_bound variable, it means that the person’s eyes have been closed for a long
time. Once this function is finished, the driver’s state (awake/asleep) is sent to the Jetson
Nano client. If the state is asleep, the alarm is triggered to wake them up and prevent a
potential accident.

5.1.4. Client Control Function

This server function is intended to send the control client the resulting image of the
analysis, i.e., the square marking the boundaries of the person’s face, the name of the
authorized driver of the vehicle, and their drowsiness status.

First, the driver’s face is detected. Later, if the person attempting to start the car is not
an authorized individual to do so, it means that they are not in the vehicle’s database and,
therefore, are not identified. Consequently, they are given the name UNKNOWN, with the
user identifier 404. If the person is authorized, their data are recorded. The variables per
and st, which stand for permission and state, are created with their default values, where
the driver’s state is awake, and they are not authorized.

Next, the bounding box around the person’s face is drawn, and their data are added.
In this step, the values of the variables per and st are changed based on the driver’s state. If
the driver is awake, both variables have a value of 0. If they are asleep, the value of the st
variable changes to 1. In the case of the permission variable (per), if the driver is authorized,
its value is 0, and if they are not authorized, it is 1.

Finally, the image is resized, and the package information, the identification variable
value, the user identifier, and the state variable of the driver’s condition are sent to the
control client.

5.1.5. Main Function

The run_segmentation_test() function is the main method that executes the program.
It receives several parameters, such as inaddr, picture_outaddr, and json_outaddr, which
specify the ports to send or receive data.

Next, some contexts are established using the PictureInput, PictureOutput, and
JsonOutput objects. These contexts allow for the reading of input images, the output
of processed images, and the output of JSON metadata, respectively.

Several variables are initialized, including metadata, classNames, authorizeEmbed-
dings, name_prove, score, THRESHOLD, cont, and id. Additionally, the threshold value
(upper_bound) is read from the ’./Data/score.txt’ file. In addition, the ’./Data/score.txt’
folder is accessed, which contains values that can be modified without having to create an-
other Docker specifically for it. In this section, the output format of the output_picture.format
image is set to jpeg, and a packet object is created to send images in U8Picture format. The
names of all persons who have permits to drive the vehicle are printed on the screen.

Afterward, the face recognition part begins. The cont_auth variable is initialized and
a "while" loop is executed for the recognition stage. The loop is executed as long as cont
is greater or equal to 1; by default, it starts with 10. In this way, the driver of the vehicle
is authenticated 10 times to be sure that this person has permission to start the vehicle.
Then, the images received from the vehicle camera are stored in img. The default status
is “Awake” because the car has not been started yet and it does not matter if the driver is
asleep. Permission stores the status 0 if the person is authorized and 1 if not.

Appl. Sci. 2024, 14, 2603 12 of 19

The next section of code shows the drowsiness functionality, in which an image is
received, the drowsiness detection function is called, the information is sent to the control
client, and the driver’s status is displayed, which can be either asleep or awake. Finally, the
connection ports between the server and the two clients are established.

5.2. Jetson Nano Client

The following code sections belong to the code that runs the Jetson Nano Developer
Kit 2 GB, more specifically, the file called detection_client.py, which simulates the software
installed in the car. It is also responsible for running the camera and sending the images
to the server, as well as receiving certain parameters, including whether the driver has
permission to drive that vehicle, in which case it starts the engine, or if he is falling asleep,
sounding the alarm to wake him up.

In the first lines of code, the libraries used are imported. The pygame.mixer is in
charge of the alarm, whereas cv2 is in charge of the camera. The run function contains the
main code. In the beginning, it sets the video format to be sent to the server.

Subsequently, we run the camera and set the image size. A counter is set, called conta,
to ensure that the facial recognition code is executed 10 times. This is done to make sure
that if the person driving is authorized, he/she can start the vehicle without problems. The
packets are then sent to the server and the response is received from the server to know if
the engine has started or not.

Once the startup has been successful, the drowsiness part begins. Again, packets with
the images captured by the camera are sent, but this time, whether the person is asleep or
not is received from the server. If so, the vehicle alarm sounds to alert the driver.

5.3. Client Control

The control client is responsible for displaying (in a window) who is driving and
whether they are asleep or awake. It is used only as a visual form of what the server is
sending. In order to accomplish this, a box is created over the driver’s face, and his name is
added, as well as whether he is falling asleep or not. Finally, the connection port between
the server and the client is established.

6. Results

The final results obtained were recorded in a demo at Nokia’s facilities, showing the
operation of the client-server architecture. As it is a tool that has to function in real time,
the response times are minimal. This demo was carried out in a simulated environment so
as not to put people, infrastructure, or other collateral damage at risk. For this, a seat was
used as the driver’s seat, and various car simulation devices, such as the steering wheel,
gearshift, pedals, and the camera were located in the optimal position to record the driver’s
face. This test environment is shown in Figure 6, where the two 5G modems previously
discussed can be seen.

The demo showed part of the results discussed above on the Jetson Nano client.
Figure 7 shows how an unauthorized person fails to find a match within the vehicle
database, preventing them from starting the vehicle. Furthermore, the results of the user
identification section are displayed, including the user’s name and their eye state, as shown
in Figure 8.

Appl. Sci. 2024, 14, 2603 13 of 19

Figure 6. Test environment.

Figure 7. Result of unauthorized person trying to start the vehicle.

Figure 8. Person state result. Eyes open/closed.

For the control client, the KPI for authorized and unauthorized users, as well as driver
status monitoring (asleep/awake), are presented. Figure 9 shows a user with identifier
404, which means that he is an unauthorized user who cannot start the car, leading to an
instant program termination. The figure also shows a user with identifier 3, indicating an
authorized user. The driver’s identification variable is set to 0, allowing the user to start

Appl. Sci. 2024, 14, 2603 14 of 19

the car. After the identification, real-time drowsiness monitoring begins, and the sleep state
variable toggles between 0 (awake) and 1 (detecting drowsiness).

Figure 9. Authorized/Unauthorized person result.

Given the results obtained, we have achieved the proposed objectives and generated
a program with client-server architecture that can be placed in any vehicle to be accessed
only by authorized persons and in which drowsiness monitoring is performed in real time
to avoid not only material damage but also accidents and physical damage.

In order to analyze the amount of data sent by the client to the server, the iftop
command was used to test different configurations in the client code to see how it affect
network consumption. Mainly, two parameters were modified: the number of frames
per second that the client sends to the server, varying between 30, 15, and 5 FPS, and the
resolution of the image captured by the camera, which is 1280 × 480 pixels, maximum,
and 640 × 240, minimum. As can be seen in Table 2, the value of megabits per second
(Mbs) sent by the client varies between 22.9 Mbs and 1.08 Mbs. In order to avoid network
saturation, it was decided to leave a default image resolution of 1280 × 480 and 5 FPS.

Appl. Sci. 2024, 14, 2603 15 of 19

Table 2. Results obtained with iftop.

Frames per Second (FPS) Image Resolution Result

30 1280 × 480 22.9 Mbs

15 1280 × 480 10.8 Mbs

5 1280 × 480 3.69 Mbs

30 640 × 240 7.24 Mbs

15 640 × 240 3.3 Mbs

5 640 × 240 1.08 Mbs

In Figure 10, the bar chart effectively visualizes the relationship between FPS, image
resolution, and network consumption in megabits per second (Mbs), as derived from the
client-server data transmission tests. Each pair of bar clusters represents a specific image
resolution 1280 × 480 pixels and 640 × 240 pixels. Within each cluster, individual bars
correspond to different FPS settings: 30, 15, and 5 FPS. The height of each bar indicates
the amount of data transmitted at that particular combination of resolution and FPS. This
graphical layout allows for an immediate visual comparison across different configurations,
highlighting the proportional increase in network usage with higher FPS and the more
considerable data demands of the higher resolution setting. It serves as a compelling visual
tool to complement the tabulated data, making the patterns and relationships in the data
readily apparent and easily comprehensible.

In terms of system limitations, various aspects have been considered. In order to assess
the effectiveness of the identification phase, the data collected were analyzed to gauge test
success. These data were categorized into three outcomes:

1. Hit: Correct recognition of the driving individual by the program.
2. Mis-identifying: Failure of the program to authenticate any stored faces or detection

of an incorrect driver.
3. Failure: The program is unable to detect any face, resulting in automatic closure.

Figure 10. Graphical iftop results.

Appl. Sci. 2024, 14, 2603 16 of 19

A notable aspect of the tests pertains to the direction of the driver’s gaze. Participants
were instructed to alternate their gaze between the road and the camera to simulate real
driving conditions. An analysis of results reveals variations depending on the driver’s gaze
direction. When looking at the road, the visibility of the left side of the driver’s face may
be compromised, significantly impacting facial embedding calculation. However, under
ideal conditions with no facial obstructions, a 100% accuracy rate was achieved both when
facing the camera directly and when focusing on the road.

The second test involved drivers wearing eyeglasses, resulting in a 97.5% recognition
rate when facing the camera, with a 2.5% error rate. However, recognition dropped to 88%
when drivers looked at the road, as 12% were misidentifying due to factors previously
discussed, along with potential reflections in glasses hindering eye detection.

The subsequent tests involved drivers wearing sunglasses, yielding favorable results
of 85.4% correct identifications and 14.6% wrongly recognized when facing the camera.
However, recognition dropped to 49.2% when drivers looked at the road, with 36.2%
instances of misidentifying and 14.6% failures, primarily due to obstructed facial features.

The tests involving masks showed expected outcomes, with recognition rates signifi-
cantly lower due to facial coverage. When facing the camera, the recognition rates were
23.6% for hits, 20.7% for wrongly recognized, and 55.7% for misses. When looking at the
road, recognition was unsuccessful in 100% of cases due to the combined effects of mask
coverage and obscured facial features. Finally, tests involving drivers with long, loose hair
showed 100% accuracy when their hair was tied back, demonstrating negligible impact on
facial recognition.

For the drowsiness phase, algorithm robustness was initially characterized using
various videos featuring 15 individuals in different conditions. The tests were conducted
with subjects seated in a car, with the camera positioned consistently. Factors such as
wearing glasses, masks, hair obstruction, and lighting conditions were considered.

The initial challenges included algorithm malfunction under low illumination, diffi-
culty distinguishing closed eyes from half-closed eyes due to light, and misreading eyes
during face turns. Notably, the tests did not involve sunglasses, as drowsiness accidents
are less likely in bright conditions. Despite these challenges, the detection system yielded
100% accuracy.

In order to address these limitations, future iterations could incorporate high-quality
infrared or thermal cameras to enhance eye detection under challenging conditions such as
low light or when wearing sunglasses.

7. Conclusions

This work reflects the culmination of a research project that has produced significant
technological advancements with practical applications in vehicle security and driver safety,
leveraging cutting-edge technologies, including 5G/6G, edge computing, and real-time
data processing. The project’s demonstration at Nokia’s facilities showcased the effec-
tiveness of the client-server architecture. Importantly, the demonstration was conducted
in a simulated environment to ensure the safety of individuals, infrastructure, and other
road users.

The setup involved a simulated car with all the essential driving controls, including
a camera optimally positioned to record the driver’s face, and two 5G modems, as dis-
cussed in the architecture section, enabling high-speed data transmission and low latency
communication.

One notable achievement was the successful implementation of facial recognition to
verify the driver’s authorization. The tests demonstrated that unauthorized individuals
could not start the vehicle, effectively addressing vehicle security concerns through the use
of advanced 5G connectivity and edge computing capabilities. Additionally, attaining a
significantly low execution time for the facial recognition component enhances effectiveness
and efficiency without compromising driver comfort or time expenditure.

Appl. Sci. 2024, 14, 2603 17 of 19

Furthermore, the real-time monitoring of driver drowsiness, as discussed in previous
sections, was also validated during the demonstration. This capability holds immense
promise for preventing not only material damage but also accidents and physical harm
caused by drowsy driving, made possible by the real-time data processing capabilities of
the system.

Finally, the system underwent a comprehensive assessment encompassing speed,
latency, and performance. The outcomes substantiate the effective visibility of the indi-
vidual’s face for person recognition and authorization to operate the vehicle. Moreover,
the algorithm adeptly assesses the driver’s drowsiness in real time, achieved through the
adjustment of frames per second parameters and image resolution during data transmis-
sion from the client to the server. Leveraging the capabilities of 5G networks ensures a
more streamlined and efficient real-time data transmission, eliminating latency issues while
sending frames promptly.

In order to facilitate real-time execution on the Jetson Nano platform and achieve
acceptable inference times, future work should focus on either enhancing the data training
process or optimizing the system architecture. Additionally, a comprehensive investigation
into server infrastructure requirements, including server quantity and processing capacity,
is necessary for large-scale deployment within vehicles. This deployment scenario neces-
sitates a robust server infrastructure capable of handling the periodic transmission and
processing of images for driver monitoring tasks, such as fatigue detection.

Author Contributions: Conceptualization, E.G.-S., P.C.-G. and C.C.-G.; Methodology, S.D.-S., Ó.C.-
Á., E.G.-S., P.C.-G. and C.C.-G.; Software, S.D.-S., Ó.C.-Á. and E.G.-S.; Investigation, S.D.-S., Ó.C.-Á.
and E.G.-S.; Resources, S.D.-S. and E.G.-S.; Writing —original draft, S.D.-S. and Ó.C.-Á.; Writing—
review & editing, P.C.-G. and C.C.-G.; Supervision, P.C.-G. and C.C.-G.; Project administration, P.C.-G.
and C.C.-G.; Funding acquisition, P.C.-G. and C.C.-G.. All authors have read and agreed to the
published version of the manuscript.

Funding: This Research was supported by the CDTI (Centre for the Development of Industrial
Technology), the Ministry of Economy Industry and Competitiveness, Celtic-Plus EUREKA, and the
European Regional Development Fund, under Project IMMINENCE C2020/2-2 and the European
Union (Next Generation) under the strategic project C064/23 SCITALA.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: Author Ester Gonzalez-Sosa was employed by the company eXtended Reality
Lab. The remaining authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
ITS Intelligent Transport Systems
AI Artificial Intelligence
DGT Dirección General de Tráfico
GSM Global System for Mobile Communications
GPS Global Positioning System
SMS Short Message Service
ML Machine Learning
CNN Convolutional Neural Networks
SVM Support Vector Machines
HMM Hidden Markov Models
ReLU Rectified Linear Units
GB GigaByte

Appl. Sci. 2024, 14, 2603 18 of 19

RAM Random-Access Memory
KPI Key Performance Indicators
UDP User Datagram Protocol
ROI Region of Interest
FPS Frames Per Second
Mbs Megabits Per Second

References
1. EU General Safety Regulation. Available online: https://www.continental-automotive.com/en/industry/trucks-and-buses/eu-

general-safety-regulations.html (accessed on 21 February 2024).
2. Perkins, E.; Sitaula, C.; Burke, M.; Marzbanrad, F. Challenges of driver drowsiness prediction: The remaining steps to implemen-

tation. IEEE Trans. Intell. Veh. 2022, 8, 1319–1338. [CrossRef]
3. Avance de las Principales Cifras de la Siniestralidad Vial. 2020. Available online: https://www.dgt.es/export/sites/web-DGT/

.galleries/downloads/dgt-en-cifras/24h/Las-principales-cifras-2020_v6.pdf (accessed on 12 January 2024).
4. Kosalendra, E.; Leema, G.; Muni, V.P.K.; Kartheek, I.; Hemanth, K.C. Intelligent Car Anti-Theft System Through Face Recognition

Using Raspberry Pi and Global Positioning System. Int. J. Anal. Exp. Modal Anal. 2020, 12, 1017–1021.
5. Arduino-Home. Available online: https://www.arduino.cc/ (accessed on 19 February 2024).
6. Sanda, P.; Barui, S.; Das, D. SMS Enabled Smart Vehicle Tracking Using GPS and GSM Technologies: A Cost-Effective Approach.

In Smart Systems and IoT: Innovations in Computing: Proceeding of SSIC 2019; Springer: Singapore, 2020; pp. 51–61. [CrossRef]
7. Li, Z.; Chen, L.; Peng, J.; Wu, Y. Automatic Detection of Driver Fatigue Using Driving Operation Information for Transportation

Safety. Sensors 2017, 17, 1212. [CrossRef] [PubMed]
8. Gwak, J.; Hirao, A.; Shino, M. An Investigation of Early Detection of Driver Drowsiness Using Ensemble Machine Learning

Based on Hybrid Sensing. Appl. Sci. 2020, 10, 2890. [CrossRef]
9. Bangui, H.; Cioroaica, E.; Ge, M.; Buhnova, B. Deep-Learning based Trust Management with Self-Adaptation in the Internet of

Behavior. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn, Estonia, 27–31 March 2023;
pp. 874–881.

10. Wang, J.; Chai, W.; Venkatachalapathy, A.; Tan, K.L.; Haghighat, A.; Velipasalar, S.; Adu-Gyamfi, Y.; Sharma, A. A survey on
driver behavior analysis from in-vehicle cameras. IEEE Trans. Intell. Transp. Syst. 2021, 23, 10186–10209. [CrossRef]

11. Trenta, F.; Conoci, S.; Rundo, F.; Battiato, S. Advanced motion-tracking system with multi-layers deep learning framework for
innovative car-driver drowsiness monitoring. In Proceedings of the IEEE International Conference on Automatic Face and
Gesture Recognition, Lille, France, 14–18 May 2019; pp. 1–5.

12. Ngxande, M.; Tapamo, J.; Burke, M. Driver drowsiness detection using behavioral measures and machine learning techniques:
A review of state-of-art techniques. In Proceedings of the Pattern Recognition Association of South Africa and Robotics and
mechatronics, Bloemfontein, South Africa, 29 November–1 December 2017; pp. 156–161.

13. Chirra, V.; Uyyala, S.; Kolli, V. Deep CNN: A Machine Learning Approach for Driver Drowsiness Detection Based on Eye State.
Rev. D’Intelligence Artif. 2019, 33, 461–466. [CrossRef]

14. Tanveer, M.; Khan, M.; Qureshi, M.; Naseer, N.; Hong, K. Enhanced drowsiness detection using deep learning: An fNIRS study.
IEEE Access 2019, 7, 137920–137929. [CrossRef]

15. Jabbar, R.; Shinoy, M.; Kharbeche, M.; Al-Khalifa, K.; Krichen, M.; Barkaoui, K. Driver drowsiness detection model using
convolutional neural networks techniques for android application. In Proceedings of the IEEE International Conference on
Informatics, IoT, and Enabling Technologies, Doha, Qatar, 2–5 February 2020; pp. 237–242.

16. Hashemi, M.; Mirrashid, A.; Beheshti Shirazi, A. Driver safety development: Real-time driver drowsiness detection system based
on convolutional neural network. SN Comput. Sci. 2020, 1, 1–10. [CrossRef]

17. What are Convolutional Neural Networks? | IBM. Available online: https://www.ibm.com/topics/convolutional-neural-
networks (accessed on 19 February 2024].

18. Dua, M.; Singla, R.; Raj, S.; Jangra, A. Deep CNN models-based ensemble approach to driver drowsiness detection. Neural
Comput. Appl. 2021, 33, 3155–3168. [CrossRef]

19. William, P.; Shamim, M.; Yeruva, A.R.; Gangodkar, D.; Vashisht, S.; Choudhury, A. Deep Learning based Drowsiness Detection
and Monitoring using Behavioural Approach. In Proceedings of the 2022 2nd International Conference on Technological
Advancements in Computational Sciences (ICTACS), Chicago, IL, USA, 10–12 October 2022; pp. 592–599. [CrossRef]

20. Chand, H.V.; Karthikeyan, J. Cnn based driver drowsiness detection system using emotion analysis. Intell. Autom. Soft Comput.
2022, 31, 717–728. [CrossRef]

21. Kumar, V.; Sharma, S. Driver drowsiness detection using modified deep learning architecture. Evol. Intel. 2022, 16, 1907–1916.
[CrossRef]

22. Phan, A.C.; Nguyen, N.H.Q.; Trieu, T.N.; Phan, T.C. An Efficient Approach for Detecting Driver Drowsiness Based on Deep
Learning. Appl. Sci. 2021, 11, 8441. [CrossRef]

23. Chen, S.; Wang, Z.; Chen, W. Driver Drowsiness Estimation Based on Factorized Bilinear Feature Fusion and a Long-Short-Term
Recurrent Convolutional Network. Information 2021, 12, 3. [CrossRef]

24. Welcome to Python.org. Available online: https://www.python.org/ (accessed on 19 February 2024).

https://www.continental-automotive.com/en/industry/trucks-and-buses/eu-general-safety-regulations.html
https://www.continental-automotive.com/en/industry/trucks-and-buses/eu-general-safety-regulations.html
http://doi.org/10.1109/TIV.2022.3224690
https://www.dgt.es/export/sites/web-DGT/.galleries/downloads/dgt-en-cifras/24h/Las-principales-cifras-2020_v6.pdf
https://www.dgt.es/export/sites/web-DGT/.galleries/downloads/dgt-en-cifras/24h/Las-principales-cifras-2020_v6.pdf
https://www.arduino.cc/
http://dx.doi.org/10.1007/978-981-13-8406-6_6.
http://dx.doi.org/10.3390/s17061212
http://www.ncbi.nlm.nih.gov/pubmed/28587072
http://dx.doi.org/10.3390/app10082890
http://dx.doi.org/10.1109/TITS.2021.3126231
http://dx.doi.org/10.18280/ria.330609
http://dx.doi.org/10.1109/ACCESS.2019.2942838
http://dx.doi.org/10.1007/s42979-020-00306-9
https://www.ibm.com/topics/convolutional-neural-networks
https://www.ibm.com/topics/convolutional-neural-networks
http://dx.doi.org/10.1007/s00521-020-05209-7
http://dx.doi.org/10.1109/ICTACS56270.2022.9987728
http://dx.doi.org/10.32604/iasc.2022.020008
http://dx.doi.org/10.1007/s12065-022-00743-w
http://dx.doi.org/10.3390/app11188441
http://dx.doi.org/10.3390/info12010003
https://www.python.org/

Appl. Sci. 2024, 14, 2603 19 of 19

25. Face-Recognition. PyPI. Available online: https://pypi.org/project/face-recognition/ (accessed on 19 February 2024).
26. Home. OpenCV. Available online: https://opencv.org/ (accessed on 19 February 2024).
27. Keras: Deep Learning for Humans. Available online: https://keras.io/ (accessed on 19 February 2024).
28. Pygame. PyPI. Available online: https://pypi.org/project/pygame/ (accessed on 19 February 2024).
29. Docker: Accelerated Container Application Development. Available online: https://www.docker.com/ (accessed on 19

February 2024).
30. 1.4. Support Vector Machines. Scikit-Learn. Available online: https://scikit-learn.org/stable/modules/svm.html (accessed on 19

February 2024).
31. Hidden Markov Models. Stanford University. Available online: https://web.stanford.edu/~jurafsky/slp3/A.pdf (accessed on

19 February 2024).
32. Polo Club of Data Science @ Georgia Tech: Human-Centered AI, Deep Learning Interpretation & Visualization, C.L.G.V.; Mining.

CNN Explainer. Available online: https://poloclub.github.io/cnn-explainer/ (accessed on 19 February 2024).
33. Jetson Nano 2GB Developer Kit-Get Started. Available online: https://developer.nvidia.com/embedded/learn/get-started-

jetson-nano-2gb-devkit (accessed on 19 February 2024).
34. What Is a Key Performance Indicator (KPI)?—KPI.org. Available online: https://www.kpi.org/kpi-basics/ (accessed on 19

February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://pypi.org/project/face-recognition/
https://opencv.org/
https://keras.io/
https://pypi.org/project/pygame/
https://www.docker.com/
https://scikit-learn.org/stable/modules/svm.html
https://web.stanford.edu/~jurafsky/slp3/A.pdf
https://poloclub.github.io/cnn-explainer/
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-2gb-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-2gb-devkit
https://www.kpi.org/kpi-basics/

	Introduction
	Related Work
	Requirements and Technologies
	In-Car Camera
	Convolutional Neural Networks
	Other Devices

	System Architecture
	Implementation
	Server
	KPI Function
	Facial Recognition Function
	Drowsiness Detection Function
	Client Control Function
	Main Function

	Jetson Nano Client
	Client Control

	Results
	Conclusions
	References

