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ABSTRACT 
 

A study was conducted to predict the stream flow from a catchment area of Hidkal dam situated in 
Krishna basin of India. The SimHYD model was selected to setup the stream flow model under 
limited data conditions. Daily rainfall, potential evapotranspiration (PET) and observed discharges 

Original Research Article 



 
 
 
 

Rao et al.; J. Geo. Env. Earth Sci. Int., vol. 28, no. 2, pp. 11-26, 2024; Article no.JGEESI.112180 
 
 

 
12 

 

were used as input data to setup the model.  Sensitivity analysis was carried out to identify the more 
sensitive parameter and fixed final parameter values. A genetic algorithm was used for calibration 
and validation of the model with object function of Nash -Sutcliffe Equation (NSE). The performance 
of model during calibration and validation with monthly stream flow (m3/s) was found to be very 
good in terms of NSE, R2. The NSE and correlation coefficient were found to be 0.77 and 0.93 
during calibration period and 0.90 and 0.95 during validation period respectively. The was a very 
good agreement between monthly observed and simulated stream flows of catchment area of 
Hidkal Dam. The NSE value of model during calibration period with daily runoff was found to be 
satisfactory at 0.51. It was observed that good agreement between observed and simulated daily 
runoff (in mm) with a correlation coefficient is 0.74. NSE and correlation coefficient during validation 
period using daily data are found to be 0.80 and 0.9 respectively. This study concluded that the 
SimHYD model can be used for assessment of stream flow with limited data. 
 

 
Keywords: SIMHYD; stream flow; rainfall-runoff model; calibration and validation; sensitivity analysis. 
 

1. INTRODUCTION  
 
The stream flow can be simulated or modeled 
with the help of hydrological models. These 
hydrological models require huge data to conduct 
the hydrological studies such as stream flows of 
a given catchment. Rainfall characteristics 
influence the stream flow of a given area. These 
models are the tools that simulate the impact of 
various geomorphological, and weather 
parameters on the hydrological processes in a 
watershed or basin. These models may be 
classified as data-driven, conceptual, and 
physical models and are further classified as 
lumped, semi-distributed and distributed models 
based on the spatial attribute data. Fully 
distributed models are data intensive and lumped 
models use averaged data of the catchment. 
Semi-distributed models utilise both spatial data 
and averaged data of catchment. 
 
Fully distributed models require more data and 
the catchment area with high-resolution data can 
be modeled. Empirical models did not consider 
the physical processes in the watershed. Simple 
Hydrology (SIMHYD), a lumped conceptual daily 
rainfall-runoff model, can be used to simulate 
runoff from the catchments successfully with 
limited data [1]. The SIMHYD model which is 
frequently used in Australia and China can also 
be used where limited data is available. Very 
limited studies on SIMHYD model were noticed 
in India. However, this model is a widely used 
conceptual model in the world. SIMHYD model is 
a daily conceptual rainfall-runoff model that uses 
daily rainfall and potential evapotranspiration 
data which estimates daily stream flow. It is one 
of the programmes embedded with Rainfall 
Runoff Library (RRL), in the eWater tool kit 
developed by the University of Canberra, 
Australia. The structure of SIMHYD model and 

model parameters and algorithms described in 
detail in the document are published by Zhang 
and Chiew [2].  Chiew and Siriwardena [1] 
compared calibration of several models, 
investigated whether the calibrated parameter 
values could be related to catchment 
characteristics and compared the runoff model 
using parameter values estimated from the 
regionalisation relationships. The results 
indicated that SIMHYD could be calibrated 
satisfactorily to reproduce the monthly recorded 
runoffs. The use of the five-parameter version of 
SIMHYD was sufficient for most catchments, with 
Nash-Sutcliffe model efficiency values greater 
than 0.7 obtained in more than 90% of the 
catchments. Siriwardena [1] used SIMHYD, a 
lumped conceptual daily rainfall-runoff model, on 
about 300 catchments across Australia and 
compared calibration results from several model 
types. The results indicated that SIMHYD can be 
calibrated satisfactorily to reproduce the monthly 
recorded runoffs. The SIMHYD model with five-
parameter version was sufficient for most 
catchments, with Nash-Sutcliffe model efficiency 
values greater than 0.7 obtained in more than 
90% of the catchments. The modelled monthly 
runoffs from both methods were reasonable in 
about three quarters of the catchments, where 
the Nash- Sutcliffe model efficiency was greater 
than 0.6 and the total modelled runoff was within 
30% of the total recorded runoff. Srikanthan et al. 
[3] compared the simulated runoff of historical 
(1901-1998) and 2021-2050 climate situations in 
the study area using SIMHYD They found that 
decrease in mean annual rainfall and runoff in 
eastern and south-west Australia, but an 
increase in the extreme daily rainfall, in 2021-
2050 relative to 1961- 1990. 
 
Yu and Zhu [4] used conceptual models, AWBM 
and SIMHYD and simulated daily flows of two 
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forest watersheds in France and USA. They 
evaluated their ability to model daily flows. They 
found that both models performed much better 
for the River Rimbaud watershed in France            
than for the Fernow W6 in the USA. They also 
found difference in model performance between 
AWBM and SIMHYD was small. Chiew et al. [5] 
predicted different characteristics of streamflow 
in ungauged catchments and under climate 
change with three rainfall-runoff models                  
using a large data set from 780 catchments 
across Australia. They concluded that medium 
and high flows were relatively easier to predict 
and suggested to use a single unique set of 
parameter values from model calibration. The 
low flow characteristics were considerably more 
difficult to predict and required careful                
modelling consideration to specifically target the 
low flow characteristic of interest. The modelling 
results also showed that different rainfall-runoff 
models and different calibration approaches 
could give significantly different predictions of 
climate change impact on streamflow 
characteristics, particularly for characteristics 
beyond the long-term averages. Li et al. [6] 
evaluated the effect of length of calibration data 
on the performance of a hydrological model in 
data-limited catchments where data are non-
continuous and fragmental. They used a 
calibrated SIMHYD model with non-continuous 
calibration periods for more independent 
streamflow data. They found that longer 
calibration data series do not necessarily result in 
better model performance and results could be 
useful for the efficiency of using limited 
observation data for hydrological model 
calibration in different climates. Ramezani et al. 
[7] used SIMHYD and AWBM for assessment of 
the effect of urbanisation on regional water 
balance.  Bhasme and Bhatia [8] also used 
SIMHYD model to compare the results of 
Physical Informed Machine Learning (PIML) 
while studying stream flow from a managed and 
unmanaged catchment areas. With the 
background, a study was conducted to assess 
the stream flow of Hidkal Dam catchment area in 
the Krishna basin of India using the SIMHYD 
model. 
 

2. MATERIALS AND METHODS  
 

2.1 Study Area and Data Sets 
 
The present study of catchment area of Hidkal 
dam is located in the Ghatprabha subbasin of 
Krishna basin in India with a catchment area of 

1370 km2. It is situated between a latitude of 15ᵒ 
48′ to 16ᵒ 8′ N and a longitude of 74ᵒ 0′ to              
74ᵒ 40′ E; The elevations of study area range 
from 1049 m to 640 m which reveals                        
that the catchment area is highly undulating and 
hilly terrain. The rainfall ranges from 6250 mm to 
about 1000 mm and most of the rainfall             
received from June to September. The annual 
mean temperature is 20 °C (Tmin) to 40.5 °C 
(Tmax).  The location map of the study area is 
presented in Fig. 1. The gross storage              
capacity of Hidkal dam is 1443 M m3 with an 
irrigated area of 155559 ha.  The rainfall, 
maximum & minimum temperatures were 
downloaded from the Indian Meteorological 
Department website.  Daily rainfall data at grid 
interval of 0.25o x 0.25o for 10 years from 2009 to 
2019 [9] was used. Maximum and minimum 
temperatures at grid intervals of 1 o x 1 o   for the 
same years [10] were also used for this study. 
Stream flow data on daily time steps was 
downloaded from Indian water resource 
information system website (www.indiawirs. 
gov.in) from the year (2009 to 2019). This daily 
stream flow data was used to calibrate and 
validate the model outputs. 
 

2.2 SIMHYD Model 
 
The process flow chart is presented in Fig. 2. In 
this model, the interception store is filled with 
daily rainfall, which is emptied each day by 
evaporation. The excess rainfall is then 
subjected to an infiltration function which 
estimates the infiltration capacity. The surplus 
rainfall that exceeds the infiltration capacity 
becomes infiltration excess runoff. The moisture 
that infiltrates is subjected to soil moisture 
function which diverts water to stream (interflow), 
groundwater store (recharge), and soil moisture 
store. An interflow is first estimated as a linear 
function of the soil wetness (soil moisture level 
divided by soil moisture capacity). The 
groundwater recharge is then estimated as a 
linear function of the soil wetness and remaining 
moisture flows into the soil moisture store. An 
evapotranspiration from the soil moisture store is 
estimated as a linear function of the soil wetness. 
The soil moisture store has a finite capacity                  
and overflows into the groundwater store. Base 
flow from the groundwater store is simulated              
as a linear recession from the store. The model 
therefore estimates runoff generation from               
three sources – infiltration excess runoff, 
interflow (and saturation excess runoff), and 
base flow. 
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The fundamental equations of the model are: 
 

Impervious ET = min [

PET,
(1 − Pervious fraction) × Pervious threshold,

Impervious incident 
] 

 

Interception ET = min [
Pervious incident,

PET,
Rainfall interception storage capacity 

] 

 
Infiltration Capacity = = Pervious fraction × Infiltration coefficient × exp (−Infiltration shape × Soil moisture fraction) 

 
Infiltration = min (Throughfall, Infiltration capacity) 

 
Interflow Runoff = Interflow coefficient × Soil moisture fraction × Infiltration                  

 
Infiltration after Interflow = Infiltration −  Interflow runoff 

 
Recharge = Recharge coefficient × Soil moisture fraction × Infiltration after interflow 

 
Soil input = Infiltration after interflow − Recharge 

 

2.3 Input Data Preparation  
 
The model utilizes daily time series data of 
average rainfall, average potential 
evapotranspiration (PET), and observed stream 
flow. The daily average rainfall of the catchment 
was calculated from IMD grid data. Hargreaves 
method was used to calculate the daily PET. The 
input files were saved in a desirable format so 
that the model could read the files. SWAT “PCP” 
format is also one of the readable formats of the 
SIMHYD model. Daily time series data of 
average rainfall and PET were saved in. pcp 
(SWAT) format, mm/day. The daily time series 
data of observed stream flow was also saved in. 
pcp (SWAT) format, m3/s. The daily discharge 
data from 2013 to 2019 at the outlet point was 
used for the model setup. The general details of 
the catchment and its area in km2 were also 
required for the model. 

 

2.4 Model Setup 
 
The model setup was done with the help of the 
procedure mentioned in the Rainfall Runoff 
Library user manual (Podger, 2004). The 
SIMHYD model was selected from the list of 
models given in the Rainfall Runoff Library 
software of the eWater tool kit. The model setup 
started with a general description of the study 
area and catchment area in km2. The selected 
catchment area of the Ghataprabha (Hidkal) dam 
was 1370 km2 and the same is entered as input 
to the model. The time series data of daily rainfall 
(mm/day), daily PET (mm/day) and observed 

discharge data (m3/s) from the years 2013-2019 
were uploaded in the model (Fig. 3) Warmup 
period for the model was adjusted  from 1/1/2013 
to 31/12/2013, calibration period was taken from 
1/1/2014 to 31/12/2016 and Performance 
verification (validation) period was adjusted from 
1/1/2017 to 31/12/2019 in which 1/1/2017 to 
31/12/2017 period (Fig. 4) was taken as warm 
period.  
 

2.5 Calibration of Model and Parameter 
Sensitivity of SIMHYD Model 

 
Calibration of the model comprises with fixation 
of maximum and minimum values of parameters, 
selection of optimization method, selection of 
objective function, calculation and their criteria. 
SIMHYD model has nine parameters that depict 
infiltration, storage, groundwater flow, and 
recharge characteristics. The details of 
parameters and their ranges are given in Table 
1.  RRL has three calibration procedures namely, 
manual, custom, and auto-calibration. SIMHYD 
supports auto-calibration and manual calibration 
and does not support custom calibration. The 
present model was calibrated using auto-
calibration and manual calibration methods. 
Among the auto-calibration methods, genetic 
algorithm technique was selected for calibration 
of the auto-calibration method. The genetic 
algorithm is search procedure that uses 
principles of mechanics of natural selection and 
natural genetics. The genetic algorithm combines 
an artificial survival of the fittest with genetic 
operators abstracted from nature [11]. Nash-
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Sutcliffe criterion was selected as the objective 
function of the model. This can be applied on 
daily or monthly time steps. The present model 
was calibrated on a monthly time steps. 
 
Initially, the model was auto calibrated with 
default ranges of all the parameters using a 
genetic algorithm optimizer. As a result of auto-
calibration, a set of parameter values was found. 

While running the auto-calibration, dynamic 
update option was selected. This option is very 
useful for investigate the model behaviour 
against different parameter values. It also gives 
an idea of how sensitive the model is against the 
change of each parameter value. Further, the 
calibration of model was improved with the help 
of manual calibration until it attains desirable 
threshold values of objective function [12].  

 

 
 

Fig. 1. Location of study area 
 

 
 

Fig. 2. Structure of SIMHYD model 
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Fig. 3. Screenshot of model input data setup 
 

 
 

Fig. 4 Screenshot of selection of model warmup, calibration and validation periods 
 

Table 1. SIMHYD Parameters and their ranges 
 

Parameter Description Units Min. Max. 

Baseflow coeff. Base flow Coefficient na 0 1 

Impervious Threshold Impervious Threshold mm 0 5 

Infiltration Coeff. Infiltration Coefficient na 0 400 

Infiltration shape Infiltration Shape na 0 10 

Interflow Coeff. Interflow Coefficient na 0 1 

Perv. Fraction Pervious Fraction na 0 1 

Recharge coefficient Recharge Coefficient na 0 1 

RISC Rainfall Interception Store Capacity mm 0 5 

SMSC Soil Moisture Store Capacity mm 1 500 
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Sensitivity analysis of the model parameters was 
also done. It is important to understand how 
sensitive a model is to certain parameters. This 
is very important to identify the most influential 
parameters that influence the model output. If the 
model is significantly affected by a particular 
parameter, then the focus of calibration should 
be on that parameter. The sensitivity of 
parameters against different values of their 
assigned range was also plotted and analysed. 
The simulation was run after setting up model 
input, calibration, validation, and sensitivity 
analysis. The model results (graphs and time 
series data) were saved in the folder at daily and 
monthly time steps and the stream flow in 
mm/day and m3/s was also saved. 
 

3. RESULTS AND DISCUSSION 
 
SIMHYD model was set up for the simulation of 
stream flow for a catchment area of Hidkal 
comprising an area of 1370 km2. The parameters 
sensitivity, range and model were calibrated with 
a genetic algorithm using auto-calibration option. 
The objective function of model was fine-tuned 
with manual adjustment of parameter ranges 
based on the sensitivity graphs. The results are 
presented in below sections. 
 

3.1 Parameter Sensitivity 
 
Sensitivity analysis was carried out using genetic 
algorithm of auto-calibration model. The 
sensitivity graphs between parameter values 
against the objective function values are 
presented Fig. 5 to Fig. 13. The parameter 
values against the maximum values of objective 
function were selected as fitted value of the 
model. The new set of minimum and maximum 
values were selected as new range of model 
parameters. The sensitivity graphs for all nine 
parameters are presented below. 
 
3.1.1 Sensitivity of baseflow coefficient  
 
The parameters in question have a default range 
of 0 to 1. A graph in Fig. 5 shows that the 
baseflow coefficient is highly sensitive. It was 
found that the best NSE value is achieved when 
the coefficient value is set to 0.1. As the 
parameter value increases, the NSE value 
decreases in a monotonic fashion.  
 
3.1.2 Sensitivity of impervious threshold 
 
The default range of impervious threshold is 0 to 
5. The sensitivity of impervious threshold is 

presented in Fig. 6. It was observed that the 
parameter is not sensitive and highest NSE was 
found when value was fixed at 4.5. The NSE 
value didn’t follow certain trends with increase in 
the parameter value. 
 
3.1.3 Sensitivity of infiltration coefficient 
 
The infiltration capacity range typically spans 
from 0 to 400. Fig. 7 illustrates the sensitivity of 
the infiltration coefficient. The graph indicates 
that the optimal NSE is achieved when the 
impervious value is set at 190. As the infiltration 
coefficient value increases up to 190, the NSE 
value progressively improves. However, beyond 
this point, the NSE value begins to decline as the 
infiltration coefficient value increases.  
 
3.1.4 Sensitivity of infiltration shape 
 
The default range of infiltration shape is 0 to 10. 
The sensitivity of infiltration shape is presented  
in Fig. 8. It was observed from the graph that 
infiltration shape parameter was not sensitive. 
The value of this factor was taken as 1.096. 
 
3.1.5 Sensitivity of interflow coefficient  
 
The interflow coefficient's standard range spans 
from 0 to 1, as demonstrated in Figure 9 which 
outlines its sensitivity. The graph revealed that 
the optimal NSE was achieved with an 
impervious value of 0.076. Furthermore, a 
decrease in the interflow coefficient value led to 
an increase in the NSE value.The interflow 
coefficient's standard range spans from 0 to 1, as 
demonstrated in Figure 9 which outlines its 
sensitivity. The graph revealed that the optimal 
NSE was achieved with an impervious value of 
0.076. Furthermore, a decrease in the interflow 
coefficient value led to an increase in the NSE 
value. 
 
3.1.6 Sensitivity of pervious fraction 
 
By default, the previous fraction range is from 0 
to 1. The sensitivity analysis of the previous 
fraction is depicted in Fig. 10. The graph 
indicates that the optimal NSE was obtained at a 
previous fraction value of 0.7. As the previous 
fraction increased, the NSE value also increased. 
By default, the previous fraction range is from 0 
to 1. The sensitivity analysis of the previous 
fraction is depicted in Fig. 10. The graph 
indicates that the optimal NSE was obtained at a 
previous fraction value of 0.7. As the previous 
fraction increased, the NSE value also increased.   
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Fig. 5. Sensitivity of baseflow coefficient (x axis – parameter value; y axis – NSE value) 
 

 
 

Fig. 6. Sensitivity of impervious threshold (x axis – parameter value; y axis – NSE value) 
 

 
 

Fig. 7. Sensitivity of infiltration coefficient (x axis – parameter value; y axis – NSE value) 
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Fig. 8. Sensitivity of infiltration shape (x axis – parameter value; y axis – NSE value) 
 

 
 

Fig. 9. Sensitivity of Interflow coefficient (x axis – parameter value; y axis – NSE value) 
 

 
 

Fig. 10. Sensitivity of Interflow coefficient (x axis – parameter value; y axis – N 
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3.1.7 Sensitivity of rainfall interception store 
capacity (RISC) 

 
The default range of rainfall interception store 
capacity is 0 to 5. The sensitivity of rainfall 
interception store capacity is presented in Fig. 
11. It is observed from the graph that the highest 
NSE is found when impervious value is fixed at 
3.43.  
 
3.1.8 Sensitivity of recharge coefficient 
 
The default range of recharge coefficient is 0 to 
1. The sensitivity of interflow coefficient is 
presented in Fig. 12. It was observed from the 
graph that recharge coefficient was one of the 
sensitive parameters and the highest NSE is 

found when recharge coefficient value is fixed at 
0.92. The NSE value increased with increasing 
value of recharge coefficient. 
 
3.1.9 Sensitivity of soil moisture store 

capacity 
 
The default range of soil moisture storage 
capacity is 1 to 500. The sensitivity of soil 
moisture store capacity interflow is presented in 
Fig. 13. It was observed from the graph that soil 
moisture storage capacity was one of the 
sensitive parameters and the highest NSE is 
found when soil moisture storage capacity value 
is fixed at 1. The NSE value increased with 
decreasing value of soil moisture storage 
capacity. 

 

 
 

Fig. 11. Sensitivity of rainfall interception store capacity (x axis – parameter value; y axis – 
NSE value) 

 

 
 

Fig. 12. Sensitivity of rainfall storage (x axis – parameter value; y axis – NSE value) 
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Fig. 13. Sensitivity of soil moisture storage capacity (x axis – parameter value; y axis – NSE 
value) 

 

3.2 Calibration and Validation of SIMHYD 
Model 

 
The model calibration and validation setup were 
done for Ghataprabha (Hidkal) dam with a 
catchment area of 1370 km2 for the years 2014-
2019. Warm up period for the model was 
adjusted from 1/1/2013 to 31/12/2013, calibration 
period was taken from 1/1/2014 to 31/12/2016 
and performance verification (validation) period 
was adjusted from 1/1/2017 to 31/12/2019 in 
which 1/1/2017 to 31/12/2017 period was taken 
as warm period. 
 
The model was calibrated with observed stream 
flow and was run with genetic optimizer. The 
fitted parameters which were obtained in 
parameter sensitivity process were used for 
calibration of model (Table 2), the NSE was 
selected as primary objective function for both 
calibration and validation period. The first step in 
applying a genetic algorithm is defining an 
objective function NSE. This function is used to 
evaluate the performance of a particular set of 
parameters. The next step in applying the 
genetic algorithm to the SIMHYD model is 
defining the range of values that each respective 
parameter can take. This is done to ensure that 
the parameters stay within physically plausible 
limits. Once the range of each parameter is 
defined, the next step of the genetic algorithm is 
the initialization. The initialization assigns 
random values to each of the parameters (within 
its limits) to each of the individuals of the 
population. After the initialization, the initial 

population passes through the general loop of 
the genetic algorithm. 
 
The model provided a scatter graph between 
daily observed and simulated runoff of the study 
area for both calibrated and validated periods 
(Fig. 14). The scatter plot between monthly 
observed and simulated runoff are also 
presented in Fig. 15. During the calibration and 
validation process of model, it compared the 
daily and monthly simulated data with 
comparative statistics and univariate statistics. 
 
The model's monthly calibration and validation 
performance was analyzed and presented in 
Table 3. Daily calibration and validation were 
conducted using runoff (mm), while monthly 
calibration and validation were performed using 
monthly stream flow data (m3/s). The Nash 
Sutcliffe value during the calibration period with 
daily runoff was satisfactory at 0.51, with a 
correlation coefficient of 0.74. During the 
validation period using daily data, the NSE and 
correlation coefficient were 0.80 and 0.9, 
respectively, indicating an improvement over the 
calibration period. The model's warmup period 
was limited to one year due to data constraints, 
but a longer warmup period would have 
improved the calibration period results. The 
model's performance during calibration and 
validation with monthly stream flow was 
excellent, with NSE and correlation coefficient 
values of 0.77 and 0.93 during calibration and 
0.90 and 0.95 during validation, respectively 
(Table 3). The high correlation coefficient during 
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both calibration and validation indicates a strong 
agreement between observed and simulated 
stream flows. Graphs illustrating the model-
generated daily observed and calculated runoff 
during the calibration and validation periods are 
presented in Fig. 16 and Fig. 17. 
 

3.3 Prediction of Stream Flow 
 
The simulation model was applied daily and 
monthly over the entire period from 2013 to 
2019, including calibration and validation stages. 
As shown in Fig. 18, the model effectively 
simulated low and medium flow, although it failed 
to capture the extreme events of 2019. 

Nonetheless, the model performed well in terms 
of matching the observed stream flow, with an 
R2 value of 0.72. Fig. 19 displays a scatter plot 
comparing monthly discharges, which shows a 
high level of agreement between the simulated 
and observed discharges, with an R2 value of 
0.73. However, the model underestimated high 
flow events exceeding 1000 m3/s. The monthly 
stream flow data from 2013 to 2019, as seen in 
Fig. 20, show a similar trend between the 
observed and simulated values. Finally, the 
scatter plot in Fig. 21 confirms the good 
agreement between observed and simulated 
monthly stream flow, with an R2 value of 0.89. 

 
Table 2. Parameters fitted values of SIMHYD 

 

Parameter Units Min. Max. Fitted values 

Baseflow coeff. na 0 1 0.1 

Impervious Threshold mm 0 5 4.5 

Infiltration Coeff. na 0 400 190 

Infiltration shape na 0 10 0.0196 

Interflow Coeff. na 0 1 0.0762 

Perv. Fraction na 0 1 0.7 

Recharge coefficient na 0 1 3.431 

RISC mm 0 5 0.92 

SMSC mm 1 500 1.0 

 

 
 

Fig. 14. Scatter plot between daily observed and simulated runoff – Ghataprabha (Hidkal) dam 
during calibration and verification period 
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Fig. 15 Scatter plot between monthly observed and simulated runoff – Ghataprabha (Hidkal) 
dam during calibration and verification period 

 
Table 3. Results of model performance indices during calibration and validation periods 

 

Sl. No. Parameter Calibration Validation 

Daily Monthly Daily Monthly 

1 NSE 0.51 0.77 0.80 0.90 
2 Coefficient of correlation 0.74 0.93 0.90 0.95 
3 Coefficient of determination 0.56 0.86 0.81 0.91 

 

 
 

Fig. 16. Comparison between simulated and observed runoff for calibration period from 2013 
to 2016 
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Fig. 17. Comparison between simulated and observed runoff for validation period from 2017 to 
2019 

 

 
 

Fig. 18. Comparison of observed and simulated daily stream flow discharge from 2013-2019 
 

 
 

Fig. 19. Scatter plot between observed and simulated daily stream flow from 2013-2019 
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Fig. 20. Comparison of observed and simulated monthly stream flow discharge from 2013-2019 
 

 
 

Fig. 21. Scatter plot between observed and simulated monthly stream flow discharge from 
2013-2019 

 
4. CONCLUSION 
 

The SIMHYD conceptual lumped model 
underwent calibration and validation using 
autocalibration's genetic algorithm for the Hidkal 
dam catchment area in the Krishna Basin of 
Karnataka, India. This model successfully 
simulated both daily and monthly stream flows 
with results closely matching observed stream 
flows. Statistical indices, including NSE and R2, 
were used to measure the model's performance 
during both calibration and validation periods. 
The study found a significant agreement between 
observed and monthly stream flows in the Hidkal 
dam catchment area. Moreover, the SIMHYD 
model proved its capability to simulate stream 
flows even under limited data conditions. 
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