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Abstract 
Laminated composites are widely used in many engineering industries such 
as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We 
analyze the 3D deformations of a multilayered, linear elastic, anisotropic rec-
tangular plate subjected to arbitrary boundary conditions on one edge and 
simply supported on other edge. The rectangular laminate consists of aniso-
tropic and homogeneous laminae of arbitrary thicknesses. This study presents 
the elastic analysis of laminated composite plates subjected to sinusoidal me-
chanical loading under arbitrary boundary conditions. Least square finite 
element solutions for displacements and stresses are investigated using a ma-
thematical model, called a state-space model, which allows us to simulta-
neously solve for these field variables in the composite structure’s domain 
and ensure that continuity conditions are satisfied at layer interfaces. The go-
verning equations are derived from this model using a numerical technique 
called the least-squares finite element method (LSFEM). These LSFEMs seek 
to minimize the squares of the governing equations and the associated side 
conditions residuals over the computational domain. The model is comprised 
of layerwise variables such as displacements, out-of-plane stresses, and in- 
plane strains, treated as independent variables. Numerical results are pre-
sented to demonstrate the response of the laminated composite plates under 
various arbitrary boundary conditions using LSFEM and compared with the 
3D elasticity solution available in the literature. 
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1. Introduction 

The combination of one or more engineering materials on a macroscopic level 
produces a composite which has better engineering properties than parent mate-
rials. Multilayered composite plates are extensively used in aerospace, automo-
tive, shipbuilding industry, and other structural components due to their high 
strength than the parent material. Their elastic modulus and ultimate strength 
are tailored to meet various design requirements. They are also applied in sand-
wich panels, in which two stiff outer panels, known as skin or face sheets, are 
bound to a softer inner material called core. Laminates are made of numerous 
laminae also known as ply or layer with each laminae having unidirectional fi-
bers. The volume fiber-to-matrix ratio largely depends on the specific purpose of 
the design. It has proven very challenging to accurately predict the response 
characteristics of multilayered structures due to their intrinsic anisotropy, hete-
rogeneity, and the low ratio of transverse shear modulus to the in-plane Young’s 
modulus [1]. 

Literature has reported many higher-order plate theories for the analysis of 
laminated plates. These studies are categorized into experimental, analytical, or 
numerical studies of a composite’s response to static, transient loading. Reddy 
[2] [3] [4] studied the theoretical difference in equivalent single-layer or layer-
wise variable descriptions as well as in the chosen unknown variables, either dis-
placement, stress, or mixed formulations. In equivalent single-layer variable de-
scriptions, the variables are introduced for the whole plate or shell, whereas in 
layerwise variable descriptions, each layer is seen as an independent plate or 
shell, so the number of independent variables is dependent on the number of 
plies. Pagano [5] [6] demonstrated the three-dimensional elasticity solutions, 
which showed that multilayered composite structures may exhibit complicating 
effects introduced by anisotropic behavior, like high transverse deformability, 
zig-zag effects, and interlaminar continuity. Multilayered composite structures 
can show high in-plane anisotropy due to different mechanical-physical proper-
ties in different in-plane directions [7]. Tauchert [8] provided exact elasticity 
solutions to the plane-strain deformation of orthotropic simply supported lami-
nates using the method of displacement potentials. Reddy [3] has developed well 
known simple third-order shear deformation theory for the mechanical analysis 
of laminated composite plates. A major challenge encountered in solving prob-
lems for sandwich and laminate plates is accurately finding transverse stresses 
that can cause delamination between adjacent plies while satisfying the continu-
ity conditions [9]. The linear elasticity equations have been solved by expressing 
the three displacements as double Fourier series in the in-plane coordinates for 
simply supported edges, and static mechanical loading. Ordinary differential 
equations are deduced for them in the thickness direction [6] [10]. Vel and Batra 
[1] [11] utilized the Eshelby-Stroh formalism to satisfy boundary conditions at 
the edges in the sense of Fourier series that rely on St. Venant’s principle, for ar-
bitrary boundary conditions at the edges. Reissner [12] [13] proposed a mixed 

https://doi.org/10.4236/wjet.2024.121003


C. Mathew, Y. Fu 
 

 

DOI: 10.4236/wjet.2024.121003 42 World Journal of Engineering and Technology 
 

formulation as a tool to variationally derive governing equilibrium and constitu-
tive equations in terms of independent variables such as displacements and 
transverse stresses. Equivalent single-layer models (ESLM) made use of this 
mixed formulation, but least-squares finite element method (LSFEM) is required 
to accurately describe the local response of multilayered composite structures. 
Specifically, Carrera [14] [15] [16] [17] developed LSFEMs based on standard fi-
nite element method where the Reissner’s functional was minimized to com-
pletely and a priori fulfill C0 continuous functions in the thickness z-direction 
requirements with very successful results. There after the layerwise mixed model 
by Carrera was extended by Garcia Lage et al. [18] [19] to apply to piezoelec-
tric/magnetic plates to achieve good results as well. 

Finite element models are normally based on weak formulations, with dis-
placement-based or mixed formulations. One of the difficult issues encountered 
in finite element modeling is shear-locking problems, where computational dif-
ficulties arise when modeling thin plates or shells. Finite element models, either 
layerwise or equivalent single layer, displacement-based or mixed, are often 
based on weak formulations. The alternative is weighted residual formulations, 
among which the least-squares formulation is quite unique in its basic idea of 
minimizing the error introduced in the approximation of the governing equations. 

Numerical integration techniques take care of shear-locking during computa-
tion and sometimes the shear-locking can be handled by using higher-order 
elements that experience less locking but at the expense of a slower convergence, 
[7]. An additional issue in mixed weak formulations is that the finite element 
approximation spaces must satisfy a condition called the inf-sup condition [20] 
[21]. Weighted residual formulations can serve as an alternative to weak formu-
lations. The basic idea of least-squares formulations is that it minimizes the error 
introduced in the approximation of the governing equations. In other words, the 
combination of the least-squares variational principle and a mixed formulation 
leads to an unconstrained variational minimization problem, where the finite 
element approximating spaces can be independently chosen. Hence, stability 
requirements for the inf-sup condition are not needed. The matrices obtained 
from mixed least-squares formulations are symmetric and positive-definite 
whereas the ones formed from weak formulations are generally symmetric but 
not positive definite in general. Initial studies on mixed least-squares formula-
tions show interesting theoretical and computational merits. Pontaza and Reddy 
[22] were the first to develop a mixed least-squares model for bending of sin-
gle-layer isotropic laminates, using the classical plate theory (CPT) and first- 
order shear deformation theory (FSDT). In addition, Pontaza [23] went further 
to demonstrate the advantage of least-squares finite element models applied to 
both solid and fluid mechanics. Moleiro et al. [24] [25] and Dervin [9] extended 
Pontaza and Reddy’s mixed least-squares FSDT finite element model to static 
and free vibration analysis of multilayered composite and sandwich plates. It is 
imperative to note that these works indicate that mixed least-squares models are 
not sensitive to shear-locking when high-order C0 basis or shape functions with 
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full integration in the two-dimensional approximations. Pontaza and Reddy [22] 
[23] also demonstrated that there is an exponential decay of the least squares 
functional for increasing the expansion of the polynomial order of the two- 
dimensional approximations. 

The present work provides a least square finite element model also known as 
layerwise mixed model for the static analysis of multilayered plates using LSFEM 
under arbitrary boundary conditions, and mechanical loads. The present model 
is able to fully account for various types of boundary conditions. We utilize a 
particular type of FEM, called the least-squares finite element method (LSFEM). 
The benefit of least-squares formulation is that it leads to a variational uncon-
strained minimization problem, where the finite element approximating spaces 
can be chosen independently. The purpose of this research work is to determine 
the efficacy of the proposed methodology in predicting stresses in laminated 
composite structures when subjected to static mechanical loading under arbi-
trary boundary conditions. 

1.1. Problem Formulation 

We consider a rectangular laminate plate of dimension a b h× ×  and use rec-
tangular Cartesian coordinates x1x2 and x3 to describe the position of a material 
particle in the unstressed reference configuration. Figure 1 describes the static 
deformation of an N-layer laminate plate occupying the region  
( ) ( ) ( )0, 0, 2, 2a b h h× × − . The laminate is composed of transversely isotropic 
material with material properties varying smoothly in the transverse directions 
(x2 and x3) [26]. Fiber direction aligned with longitudinal direction is the axis of 
transverse isotropy. In the absence of conservative body force and internal heat 
sources, the static analysis of infinitesimal deformation of a linearly elastic lami-
na of a multilayered plate is governed by the mechanical equilibrium equations 
shown in Equation (1a) and the geometrical relation between the components of 
the strain tensor and displacement vector shown in Equation (1b). 

Mechanical static equilibrium equations 

, 0ij jσ =                              (1a) 

Strain-displacement equations 

( ), ,
1
2ij i j j iu u= +                          (1b) 

where ij  are components of the infinitesimal strain tensor, ijσ  are the com-
ponents of the Cauchy stress tensor, indices , 1,2,3i j = , a comma followed by 
index j denotes partial differentiation with respect to the position jx  of a ma-
terial particle, and a repeated index implies summation over the range of the  

index j, i.e., ,ij jσ  is a contracted form of ij

jx
σ∂
∂

, which if expanded further is 

written in the following form; 1311 12

1 2 3

0
x x x

σσ σ ∂∂ ∂
+ + =

∂ ∂ ∂
; 2321 22

1 2 3

0
x x x

σσ σ ∂∂ ∂
+ + =

∂ ∂ ∂
; 

31 32 33

1 2 3

0
x x x
σ σ σ∂ ∂ ∂

+ + =
∂ ∂ ∂

. 
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(a)                                                   (b) 

Figure 1. (a) Geometry and global coordinates of a composite plate; (b) Notation of a multilayered plate. 

1.2. Constitutive Equation 

The constitutive equations for an orthotropic elastic material in the principal 
material coordinate is defined as 

ij ijkl ijCσ =                           (2a) 

In matrix form, Equation (2a) is represented as 

11 12 1311 11

12 22 2322 22

13 23 3333 33

4423 23

5513 13

6612 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

C
C

C

σ
σ
σ
σ
σ
σ

    
    
    
    

=     
    
    
    

        








          (2b) 

Voigt notation is applied as given by Equation (3) where the in-plane stresses 
are separated from the out-of-plane stresses i.e. 12σ  and 33σ  are switched, so 
as 23σ  and 13σ . The same applies to strain. 

[ ] [ ]T T
1 2 3 4 5 6 11 22 12 13 23 33, , , , , , , , , ,σ σ σ σ σ σ σ σ σ σ σ σ=         (3a) 

[ ] [ ]T T
1 2 3 4 5 6 11 22 12 13 23 33, , , , , , ,2 ,2 ,2 ,=                      (3b) 

The constitutive law for the three-dimensional stress of the kth layer of lami-
nae in the principal material coordinate in Voigt matrix notation is given as. 

1 11 12 13 1

2 12 22 23 2

3 66 3

4 55 4

5 44 5

6 13 23 33 6

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0

C C C
C C C

C
C

C
C C C

σ
σ
σ
σ
σ
σ

     
     
     
     

=     
     
     
     
          








           (4) 

C is a 6 × 6 symmetric matrix of elasticities of the layer material in the 
stress-free configuration [27]. 

The constitutive relation for a three-dimensional stress state of the kth layer of 
laminae in the global coordinate is shown below in Voigt notation. 
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1 111 12 16 13

2 212 22 26 23

3 316 26 66 36

4 455 45

5 545 44

6 613 23 36 33

0 0
0 0
0 0

0 0 0 0
0 0 0 0

0 0

g gC C C C
C C C C
C C C C

C C
C C

C C C C

σ
σ
σ
σ
σ
σ

    
    
    
    

=     
    
    
    

        








            (5a) 

where [ ]( )T T
1 2 3 4 5 6, , , , , , , , , ,g

xx yy xy xz yz zzσ σ σ σ σ σ σ σ σ σ σ σ  =  and 

[ ]( )T T
1 2 3 4 5 6, , , , , , ,2 ,2 ,2 ,g

xx yy xy xz yz zz  =             in the global coordinates. 

Here, subscript x, y, z denotes the global coordinates, but we will maintain 1, 2, 
∙∙∙, 6 in Voigt notation in the global coordinates for convenience. C  is a 6 × 6 
symmetric matrix of the components of the transformed stiffness matrix and it is 
related to C by TC TCT= , and T is a 6 × 6 transformation matrix available in 
the literature [3]. 

In other to calculate the residuals needed to solve for the unknown field va-
riables namely, displacements, transverse stresses, and in-plane strains,  

( )1 2 3 4 5 6 1 2 3, , , , , , , ,k k k k k k k k k kS u u u σ σ σ=    , we compute the mixed form of modulus of 
elasticity also known as mixed Hook’s law. The elastic constitutive equations as 
highlighted above are used and a layerwise variable description is used for dis-
placements, transverse stresses, and in-plane strains, taken as independent field 
variables. Therefore, the in-plane stresses, as well as the transverse strains are 
written as a function of in-plane strains, and transverse stresses respectively. 
Thus, there are a total of 9unknown independent field variables for each layer. 

11 12 16 13
1 1

12 22 26 232 2

3 16 26 66 36 3

4 455 45

5 5
45 44

6 6
13 23 36 33

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

g C C C C

C C C C

C C C C

C C

C C

C C C C

σ
σ
σ

σ
σ
σ

 
    
    
    
    =    
    
    
         − −


−









         (5b) 

ˆ
ijC  is computed by expressing the in-plane stresses and transverse strains in 

terms of in-plane strains and transverse stresses (layerwise continuous variables 
and out-of-plane quantities) [27] [28] given by 

3
3

33

ˆ i
ij ij j

CC C C
C

= −  for , 1,2,6i j =  

3
3

33

ˆ i
i

CC
C

=  for , 1,2,6i j =  

3
3

33

ˆ i
i

CC
C

= −  for , 1,2,6i j =                        (6) 

55 44 45 45

ˆ ij
ij

C
C

C C C C
= −

−
 for , 4,5i j =  
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55 44 45 45

ˆ  jj
iiC

C C C
C

C
=

−
 for , 4,5i j =  

33
33

ˆ 1C
C

=  

We use a state-space formulation and take kS  as unknown variable at a 
point in each plate layer. The residual on the kth layer involves the first-order de-
rivative for the element kS . 

Strain-displacement equations model 
for , 1i j =  

( )11 1,1 1,1 1,1
1
2

u u u= + =  

1 1,1 1
k k kR u= −                           (7a) 

for , 2i j =  

( )22 2,2 2,2 2,2
1
2

u u u= + =  

2 2,2 2
k k kR u= −                         (7b) 

for 1, 2i j= =  

( )12 1,2 2,1
1
2

u u= +  

12 1,2 2,12 u u= +  

3 1,2 2,1 3
k k k kR u u= + −                        (7c) 

Elastic constitutive equations model 

4 55 4 45 5 55 13 45 232 2C C C Cσ = + = +     

4 55 1,3 55 3,1 45 2,3 45 3,2u u uC C C C uσ = + + +  

4 4 55 1,3 55 3,1 45 2,3 45 3,2
k k k k k k k k k kC C Cu u uCR uσ= − − − −             (8a) 

5 45 4 44 5 45 13 44 232 2C C C Cσ = + = +     

1,3 3,15 45 45 4 2,3 34 ,44 2C C Cu u uCuσ = + + +  

5 5 45 1,3 45 3,1 44 2,3 44 3,2
k k k k k k k k k kC C Cu u uCR uσ= − − − −             (8b) 

6 13 1 23 2 36 3 33 6C C C Cσ = + + +     

( )6 13 1,1 23 2,2 36 1,2 2,1 33 3,3C C Cu u u u uCσ = + + + +  

6 6 13 1,1 23 2,2 36 1,2 36 2,1 33 36 2,3
k k k k k k k k k k k kR uC C C C Cu u u C uσ= − + + + +        (8c) 

Equilibrium equations model 

1 11 1 12 2 16 3 13 6
ˆ ˆ ˆ ˆC C C Cσ σ= + + +    

2 12 1 22 2 26 3 23 6
ˆ ˆ ˆ ˆC C C Cσ σ= + + +    

3 16 1 26 2 66 3 36 6
ˆ ˆ ˆ ˆC C C Cσ σ= + + +    

From , 0ij jσ =  
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11,1 12,2 13,3 0σ σ σ+ + = ; 1,1 3,2 4,3 0σ σ σ+ + =  

11 1,1 12 2,1 16 3,1 13 6,1 16 1,2 26 2,2 66 3,2 36 6,2 4,3
ˆ ˆ ˆ ˆ 0ˆ ˆ ˆC C C C C C C Cσ σ σ+ + + + + + + + =       

7 11 1,1 12 2,1 16 3,1 13 6,1 16 1,2 26 2,2 66 3,2 36 6,2 4,3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆk k k k k k k k k k k k k k kC C C C C C CR Cσ σ σ= + + + + + + + +      (9a) 

21,1 22,2 23,3 0σ σ σ+ + = ; 3,1 2,2 5,3 0σ σ σ+ + =  

16 1,1 26 2,1 66 3,1 36 6,1 12 1,2 22 2,2 26 3,2 23 6,2 5,3
ˆ ˆ ˆ ˆ ˆ ˆ 0ˆ ˆC C C C C C C Cσ σ σ+ + + + + + + + =       

8 16 1,1 26 2,1 66 3,1 36 6,1 12 1,2 22 2,2 26 3,2 23 6,2 5,3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆk k k k k k k k k k k k k k kC C C C C C CR Cσ σ σ= + + + + + + + +      (9b) 

31,1 32,2 33,3 0σ σ σ+ + = ; 4,1 5,2 6,3 0σ σ σ+ + =  

9 4,1 5,2 6,3
k k k kR σ σ σ= + +                     (9c) 

Altogether, there are nine residuals, 0kRα = , where 1,2,3, ,9α =   which 
leads to 9 equations with 9 unknowns. The displacements boundary conditions 
are therefore directly impose because they are independent variables of the 
present formulation. Hence we write the residual boundary conditions in terms 
of the variable kS  since the in-plane stresses are not computed directly in 
LSFEM. The least-square finite element model allows the introduction of addi-
tional residuals in the functional in the least square sense, corresponding to 
boundary conditions imposed in a least-squares sense. In this case, the constitu-
tive relation described in Equation (2) is used to write the in-plane stresses in 
terms of the model-independent field variables, so that additional residuals can 
be included in the least-squares functional. 

( ) ( ) ( )11 1 12 2 16 3 13 6
ˆ ˆ ˆ ˆk C C C CR σ= + + +                 (10) 

Three residual boundary conditions are obtained for each bounding face of a 
cubic composite, resulting in 18 residuals denoted by 10

kR  through 27
kR . 

1.3. Boundary Conditions 

The mechanical static analysis focuses on multilayered plates under transverse 
mechanical loads applied on the plate top surface and/or bottom surface. There-
fore, a transverse mechanical load is considered by transverse normal stress,  

1 2 2
, , hx xσ  

 
 

± , which is applied on the plate’s top and/or bottom surfaces. The  

mechanical boundary conditions prescribed on the top and/or bottom surfaces 
are surface traction vector ijσ . Nonzero normal and zero tangential tractions 
are typically prescribed on these surfaces. The traction component prescribed is 

3iσ  sinusoidal surface traction components. 

1 2
1 2

3 00,0, sin sin,
2

,i
m x n xh

a
x x

b
σ σ π 

 


π    ± = ±         
 are prescribed on 

2
h

± , 

Where 0σ  is the load intensity, m, and n are any possible integers (Table 1). 
To satisfy the continuity condition, we ensure that transverse normal stresses, 

in-plain strains, and displacements through the layer interface are equal. In oth-
er words, layers interfaces are perfectly bonded together. The values of iu , 3i  
and 3iσ  are equal through the interface. 
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Table 1. Boundary and loading condition on two surfaces. 

Thickness a) load on the top surface 

2
hz =  13 23 0σ σ= = , 1 2

33 0 sin sin
m x n x

a b
σ σ

π π   =    
   

 

2
hz = −  13 23 33 0σ σ σ= = =  

 b) load on the bottom surface 

2
hz =  13 23 33 0σ σ σ= = =  

2
hz = −  13 23 0σ σ= = , 1 2

33 0 sin sin
m x n x

a b
σ σ

π π   = −    
   

 

 
1

3 3
k k
i t i bσ σ +=  

1k k
it ibu u +=                           (11) 

1,2k =  and 1,2,3i =  
1

11 11
k k

t b
+=  , 1

22 22
k k

t b
+=  , 1

12 12
k k

t b
+=   

Due to interfacial continuity on x3, it shows that the jump in values of trans-
verse stresses, in-plane strains, and displacement across the interface is zero. “t” 
denotes the top and “b” the bottom surfaces of a layer, respectively. As pointed 
earlier, the boundary conditions are simply supported on 0y =  and b in all 
cases. i.e., the laminate and sandwich plates are simply supported on 0y =  and 
b; 22 0σ = , 1 0u = , 3 0u =  in all cases. The boundary conditions at the edges 
on 0x =  and a can be clamped, simply supported, free edge, slippery surface, 
and other four arbitrary boundary conditions [1], that are summarized in Table 2. 

1.4. Least Square Finite Element Model 

The Least square finite model is developed to allow the use of basis functions C0 
in the two-dimensional approximations, to reduce the higher regularity re-
quirements common to all weighted residual formulations. Thus, the system of 
governing equations is preferably transformed into an equivalent first-order 
system, which then requires additional independent variables. The least-squares 
functional is developed by measuring the norms of the residuals of all the go-
verning equations. Generally, the least-squares functional is derived by the sum 
of the squared residuals of each governing equation for the kth layer, considering 
of each lamina. 

The functional J is defined according to [9] in terms of the residuals with con-
tributions from the material layer as 

( ) ( )3 1 2 3 1 2

2 2

1 1

1
2 k k

p p
k k
a x x x b x x xh h

k k
J R d d d R d d d

Ω Γ
= =

 
= + 

 
∑ ∑∫ ∫ ∫ ∫        (12) 

where k
aR  is residual boundary conditions, and the repeated index a goes from 

1 to 9, Ω denotes the in-plane domain of the plate. The second surface integral is  
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Table 2. Boundary conditions at the edges. 

 Applied Boundary Condition Note 

B1 0x =  or x a=  1 2 30, 0, 0u u u= = =  clamped edge 

B2 0x =  or x a=  11 2 30, 0, 0u uσ = = =  simply supported 

B3 0x =  or x a=  1 12 30, 0, 0u uσ= = =   

B4 0x =  or x a=  1 12 130, 0, 0u σ σ= = =  slippery surface 

B5 0x =  or x a=  11 2 30, 0, 0u uσ = = =   

B6 0x =  or x a=  11 2 130, 0, 0uσ σ= = =   

B7 0x =  or x a=  11 12 30, 0, 0uσ σ= = =   

B8 0x =  or x a=  1 0jσ =  ( 1, 2,3j = ) free edge 

So B1B1 denotes clamped edge an 0x =  and x a= . 

 
for the bounding surfaces of a composite and k

bR  are residuals for the boun-
dary conditions for the kth layer in the bounding surface and b goes from 10 to 
27. 

ks  is expressed in terms of the basis functions that are a product of Co conti-
nuous Lagrange polynomials of degree N1, N2, N3 in x1, x2, x3 directions. 

( ) ( ) ( )
31 2

, 1 2 3
1 1 1

NN N
k k
a a ijm i j m

i j m
s S x x xψ ψ ψ

= = =

= ∑∑∑              (13) 

Ni is the number of nodes in each axis, altogether there are 1 2 39 N N N× × ×  
unknowns for each layer. 

The basis function is defined as 

( ) ( )( ) ( )
( ) ( )( )

1

1

1 1
1

p
i

p i i

L
p p L
ξ ξ ξ

ψ ξ
ξ ξ ξ

−

−

′− +
=

− −
               (14) 

the basis function iψ  is expressed in terms of its natural coordinates and P-th 
order, ( )1pL ξ−  is the Lagrange polynomial and ( )1pL ξ−′ , its derivative, iξ  is 
the root of the Legendre polynomial ( ) 0nP ξ =  of n-order. Substituting Equa-
tion (14) into Equation (13) leads to 

( )( ) ( )
( ) ( )( ) ( ) ( )

31 2 1
, 2 3

1 1 1 1

1 1
1

NN N
pk k

a a ijm j m
i j m p i i

L
s S x x

p p L
ξ ξ ξ

ψ ψ
ξ ξ ξ

−

= = = −

′− +
=

− −∑∑∑       (15) 

Substituting the resulting Equation (15) into Equation (12), then the integral 
is evaluated numerically by using the Gauss-Lobatto quadrature rules in each of 
x1x2 and x3. Strain energy J is minimized to obtain an algebraic equation by tak-
ing the derivative of J with respect to ,

k
a ijmS . 

,

0
a ijm

J
S
∂

=
∂

                         (16) 

The layerwise mixed least-squares model for static analysis of multilayered 
composite plates ultimately yields the following symmetric positive definite sys-
tem of linear equations KA = F 
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1 3 1 131 1

13 13

1 1 2 1 12

2 32 2 1 2 2 2 12 2 12

3 3 1 3 2 3 3 3 12 3 12

13 1 2 3 12 12

12 312 12 1 12 2 12 12 12 12

13 13 13

u u uu u u u u u

u uu u u u u u u

u u u u u u u u u

u u u

uu u

F K K K K K
F K K K K K
F K K K K K
F K K K K K
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σ σ σ
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



     

1

2

3

13

12

u
u
u
σ

  
  
  
  

   
   
   
   

    





     (17) 

2. Results 

We study the problem analytically analyzed by Vel et al. [1] and Moleiro [29] to 
verify our algorithm and to establish the accuracy of computed results for com-
posite and sandwich plate respectively. Each lamina consists of a unidirectional 
fiber-reinforced material that is modeled as orthotropic and is of equal thickness 
layers, square laminate of side length a, with the sinusoidal loads applied only on 
the top surface. In the sandwich plate the face sheet is modeled as orthotropic 
whereas the core is modeled as isotropic. We express the results of the composite 
plate in the following nondimensionalized form according to Pagano [5]. 

( )
( )

( )2
1, , , ,

2
xx yy xy xx yy xy

o a
σ σ σ σ σ σ

σ
= , 1

zz zz
o

σ σ
σ

=  

( ) ( ) ( )1, ,
2xz yz xz yz

o a
σ σ σ σ

σ
=                  (18a) 

( )
( )

( )2
1 2 1 232
, ,

o

u u u
q h

E
a

u= , 
( )

2
3 32o

Eu
h aσ

=  

Similarly, we express the results of the sandwich plate in the following nondi-
mensionalized form according to Moleiro [29] 

( ) ( )
2

2
10, , ,,xx yy xy xx yy xy

o

h
a

σ σ σ σ σ σ
σ

= , 1
zz zz

o

σ σ
σ

=  

( ) ( )1, ,xz yz xz yz
oa

σ σ σ σ
σ

=                   (18b) 

( ) ( )
2

3
10, ,

o

EE hu v u v
aσ

∗

= , 
3

4
10

o

E hw w
aσ

∗

=  

where 100 GPaE∗ = , 1 MPaoσ = . 
The two load distributions given in Table 1 are considered. The following 

three cases of lamination are considered and compared with the analytical solu-
tions obtained in Vel and Batra [1]: 

Case 1; A two-ply [0˚/90˚] laminate with the fibers parallel to the x1 and the x2 
directions in the bottom and the top layers, respectively. 

Case 2; A three-ply laminate [0˚/90˚/0˚] with the fibers parallel to the x1, x2, 
and x1 directions in the bottom, middle, and top layers, respectively. 

Case 3; A three-layer sandwich plate made of (isotropic) polyvinyl chloride 
(PVC) foam core with thickness 2h/3, along with (orthotropic) carbon fiber 
reinforced polymer (CFRP)composite skins of 0° and thickness h/6 each skin for 
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load case a. 
Our results of the selected quantities are verified with those in Vel [1] for plate 

aspect ratio a/h = 5, and 10 in the following tables below. 
The mechanical properties of the test material [6], the (orthotropic) carbon 

fiber reinforced polymer CFRP and isotropic polyvinyl chloride (PVC) foam 
PVC [29] [30] [31] are given in Table 3 below. 

Case 1; A two-ply [0˚/90˚] composite laminate 
We present the nondimensionalized results for this Case 1 composite laminate 

[0˚/90˚]. The result of nondimensionalized quantities for this Case 1 composite 
laminate is made of test material composite layers, under mechanical load are 
shown in detail in the following Tables 4-6, each for a different aspect (side to 
thickness) ratio, i.e., a/h = 5, 10 respectively. We also provide a clearer descrip-
tion of this Case 1 composite laminate behaviour under mechanical loading, 
Figures 2-5 describe through-the-thickness distributions of a number of me-
chanical quantities, each for a different aspect (side to thickness) ratio, i.e., a/h = 
5, 10 respectively. 

Case 2; A three-ply laminate [0˚/90˚/0˚] 
We present the nondimensionalized results for Case 2 composite laminate 

[0˚/90˚/0˚] made of test material composite layers. The results of nondimensio-
nalized quantities are shown in detail in the following Tables 7-9, each for a dif-
ferent aspect (side to thickness) ratio, i.e., a/h = 5, and 10 respectively. Figures 
6-9 present the through-the-thickness distributions of a number of mechanical 
quantities, each for a different aspect ratio, i.e., a/h = 5, and 10 respectively. 

Case 3; A three-layer sandwich plate [0˚/core/0˚] 
We consider a sandwich plate made of PVC foam core and CFRP composite 

skin, under mechanical load and arbitrary boundary conditions. The same in-
tensity of the mechanical load is also considered for the sandwich plate as re-
quired for the nondimensionalized form in Equation (18b). the numerical results 
are displayed in Table 10 for a different aspect (side to thickness) ratio, i.e., a/h 
= 4, 10, and 10. Figures 10-13 present the through-the-thickness distributions of 
a number of mechanical quantities, each for a different aspect ratio, i.e., a/h = 4, 
10, and 10 respectively. 

3. Discussion 

The condition number of the matrix K is improved by using non-dimensional 
variables throughout the formulations and subsequently improve and reduce the 
error. In LSFEM, the basis functions are not required to satisfy the essential 
boundary conditions unlike in the Ritz method where the essential boundary 
conditions must be satisfied. The Ritz method allows one to apply penalty me-
thod in order to enforce the essential boundary condition whereas in finite ele-
ment method, each ply or laminae is discretized into disjointed domains. The 
accuracy of the numerical solution can be improved by either increasing the or-
der of polynomials in the basis functions or reducing the size of element or both.  
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Table 3. Mechanical properties of the materials used. 

Properties E11 E2 E33 G12 G13 G23 v12 v13 v23 

Test mat 25 1 1 0.5 0.5 0.2 0.25 0.25 0.25 

CFRP 175 7 7 3.5 3.5 1.4 0.25 0.25 0.25 

PVC foam 0.28 0.2 0.28 0.1 0.1 0.1 0.4 0.4 0.4 

where E, G (in Gpa), and v are Young’s modulus, shear modulus, and Poisson’s ratio re-
spectively. 

 
Table 4. Comparison of present solution with the 3D exact solution of Vel [1] for [0˚/90˚] laminate subjected mechanical load 
case a, and a/h = 5; the superscript of stress and displacement quantities indicate the in-plane and through-thickness location: 1 = 
(a/2, a/2, −h/2), 2 = (a/2, a/2, h/2), 3 = (a/8, 0, −h/2), 4 = (a/8, a/2, 0), 5 = (a/2, 0, 0), 6 = (a/2, a/2, 0), 7 = (a/4, a/2, h/2), 8 = (a/2, 
a/4, −h/2). This applies to the quantities in Tables 5-7. 

a/h xxσ 1 yyσ 2 xyσ 3 xzσ 4 yzσ 5 zzσ 6 u 7 v 8 w 6 

Vel −4.6300 5.7230 0.3130 1.5500 0.8750 0.5790 −1.0470 1.3410 1.2170 

B1B1          

Present −4.6344 5.7481 0.3044 1.5827 0.8714 0.5840 −1.0006 1.2999 1.2179 

Vel −2.4990 10.5680 0.4870 0.6380 1.3510 0.4320 −0.5120 2.6320 2.2460 

B2B2          

Present −2.4583 10.4330 0.3419 0.6180 1.5341 0.4430 −0.4351 2.6795 2.2323 

Vel −4.6670 5.7710 0.2470 1.5670 0.8710 0.5770 −1.0500 1.3600 1.2290 

B3B3          

Present −4.6960 5.7175 0.2625 1.4591 0.8575 0.5797 −1.0079 1.3680 1.2119 

Vel −1.9940 12.7050 0.0650 0.4190 1.4990 0.3680 −0.3430 3.2470 2.7080 

B4B4          

Present −2.0047 12.7084 0.0736 0.4646 1.5003 0.3708 −0.2994 3.2776 2.7086 

Vel −7.6710 7.8940 0.5270 1.2160 1.2110 0.4950 −1.8700 1.8990 1.7120 

B5B5          

Present −7.6582 7.8831 0.4986 1.2747 1.2115 0.4958 −1.7831 1.8115 1.7099 

Vel −3.4570 10.8880 0.5390 0.6380 1.4160 0.4160 −0.8470 2.7170 2.3270 

B6B6          

Present −3.4228 10.9622 0.5433 0.6410 1.3188 0.4623 −0.8933 2.7011 2.3160 

Vel 7.9130 8.0960 0.4240 1.1950 1.2250 0.4890 −1.9240 1.9610 1.7580 

B7B7          

Present 7.8958 8.2291 0.4279 1.0789 1.2667 0.4763 −2.1144 1.7651 1.7602 

Vel −2.6600 12.8770 0.1080 0.4160 1.5410 0.3590 −0.5650 3.2910 2.7530 

B8B8          

Present −2.5931 12.8682 0.1217 0.5331 1.5263 0.3060 −0.5505 3.0441 2.7398 
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Table 5. Comparison of present solutions with the 3D exact solution of Vel [1] for [0˚/90˚] laminate subjected mechanical load 
case b, and a/h = 5. 

a/h xxσ 1 yyσ 2 xyσ 3 xzσ 4 yzσ 5 zzσ 6 u 7 v 8 w 6 

Vel −4.8710 5.4410 0.3050 1.4520 0.9740 −0.4090 −1.0430 1.2950 1.2030 

B1B1          

Present −4.8772 5.4655 0.2965 1.4905 0.9667 −0.9942 −0.9973 1.2525 1.1882 

Vel −2.7510 10.259 0.4780 0.5470 1.4470 −0.5550 −0.5120 2.5780 2.2260 

B2B2          

Present −2.6866 10.1204 0.3341 0.5227 1.6281 −0.5476 0.4390 2.6276 2.2318 

Vel −4.9050 5.4860 0.2440 1.4670 0.9710 −0.4100 −1.0460 1.3120 1.2140 

B3B3          

Present −4.9362 5.4304 0.2582 1.3632 0.9676 −0.4083 −1.0913 1.2114 1.1962 

Vel −2.254 12.3600 0.0630 0.3300 1.5940 −0.6180 −0.3450 3.1820 2.6810 

B4B4          

Present −2.2406 12.3596 0.0699 0.3694 1.5910 −0.6186 −0.3422 3.0591 2.6804 

Vel −7.8940 7.6710 0.5230 1.1190 1.3160 −0.4950 −1.8990 1.8700 1.7120 

B5B5          

Present −7.8831 7.6582 0.5428 1.1761 1.3140 −0.4958 −1.8115 1.7835 1.7093 

Vel −3.7430 10.6180 0.5350 0.5470 1.5170 −0.5730 −0.8920 2.6760 2.3180 

B6B6          

Present −3.6303 10.4299 0.5368 0.5438 1.6660 −0.5968 −0.8173 2.6599 2.3176 

Vel −8.1280 7.8700 0.4240 1.0950 1.3300 −0.5010 −1.9530 1.9310 1.7570 

B7B7          

Present −8.1108 8.0053 0.4311 0.9824 1.2321 −0.5155 −1.4629 1.7724 1.7595 

Vel −2.9650 12.5670 0.1140 0.3260 1.6400 −0.6290 −06190 3.2380 2.7350 

B8B8          

Present −3.1390 12.7970 0.1253 0.3539 1.6219 −0.5984 −0.5984 3.0150 2.7295 

 
Table 6. Comparison of present solutions with the 3D exact solution of Vel [1] for [0˚/90˚] laminate subjected under mechanical 
load case a, and a/h = 10. 

a/h xxσ 1 yyσ 2 xyσ 3 xzσ 4 yzσ 5 zzσ 6 u 7 v 8 w 6 

Vel −4.6530 3.8880 0.2210 1.5920 0.7130 0.6400 −0.9760 0.9330 0.6490 

B1B1          

Present −4.7004 3.8839 0.2345 1.6453 0.7190 0.6319 −0.9421 0.8994 0.6490 
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Continued 

Vel −2.9410 8.3020 0.3100 0.7940 1.1130 0.4900 −0.5760 2.0430 1.3870 

B2B2          

Present −3.0498 8.3581 0.2860 0.7429 1.3662 0.4843 −0.5741 1.9703 1.3814 

Vel −4.6600 3.8970 0.2080 1.5980 0.7140 0.6400 −0.9360 0.9360 0.6510 

B3B3          

Present −4.7035 3.8889 0.2288 1.6458 0.7166 0.6495 −1.0074 0.9815 0.6497 

Vel −1.8380 11.8120 0.0520 0.3610 1.4230 0.3700 −0.2930 2.9320 1.9750 

B4B4          

Present −1.8429 11.8120 0.0605 0.4063 1.4228 0.3806 −0.2909 2.9774 1.9751 

Vel −7.3040 7.3090 0.4970 1.1540 1.2190 0.5000 −1.7760 1.7820 1.2270 

B5B5          

Present −7.3040 7.3086 0.5167 1.1784 1.2188 0.4996 −1.6918 1.6974 1.2275 

Vel −4.4270 9.2500 0.4320 0.7640 1.2920 0.4500 −1.0790 2.2800 1.5500 

B6B6          

Present −4.3905 9.2003 0.3987 0.7684 1.1106 0.5049 −1.1354 2.0485 1.5216 

Vel −7.4320 7.4650 0.4700 1.1300 1.2410 0.4900 −1.8060 1.8210 1.2540 

B7B7          

Present −7.4436 7.4531 0.4805 1.1097 1.2961 0.5025 −1.9855 1.5150 1.2548 

Vel −2.5030 12.1000 0.1190 0.3740 1.4900 0.3600 −0.5410 3.0040 2.0260 

B8B8          

Present −2.5219 11.8053 0.1125 0.3447 1.4754 0.3600 −0.5355 3.3776 1.9770 

 

 
(a)                             (b) 

Figure 2. Comparison of present results and Vel [1] for , ,
2 2xx
a a zσ  

 
 

, and  

, ,
2 2yy
a a zσ  

 
 

, both on B4, load case a, and a/h = 5, 10, case 1. 

https://doi.org/10.4236/wjet.2024.121003


C. Mathew, Y. Fu 
 

 

DOI: 10.4236/wjet.2024.121003 55 World Journal of Engineering and Technology 
 

 
(a)                             (b) 

Figure 3. Comparison of present results and Vel [1] for ,0,
8xy
a zσ  

 
 

, on B3 

and , ,
8 2xz
a a zσ  

 
 

, on B6, load case a, and a/h = 5, 10, case 1. 

 

 
(a)                             (b) 

Figure 4. Comparison of present results and Vel [1] for , ,
8 2yz
a a zσ  

 
 

, on 

B8, and , ,
2 2zz
a a zσ  

 
 

, on B7, load case a, and a/h = 5, 10, case 1. 

 

 
(a)                             (b) 

Figure 5. Comparison of present results and Vel [1] for , ,
2 2
a aU z 

 
 

, on B1 

and , ,
2 2
a aW z 

 
 

, on B2, load case a, and a/h = 5, 10, case 1. 
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Table 7. Comparison of present solutions with 3D exact solution of Vel [1] for 
[0˚/90˚/0˚] laminate subjected mechanical load case a; the superscript of stress and dis-
placement quantities indicate the in-plane and through-thickness location: 1 = (a/2, a/2, 
−h/2), 2 = (a/2, a/2, h/2), 3 = (a/2, a/2, −2h/3), 4 = (a/2, a/2, 2h/3), 5 = (a/2, a/2, 0), 6 = 
(a/2, 0, 0). This applies to the quantities in Tables 7-9. 

a/h Variable B1B1 B2B2 B3B3 

  Vel present Vel present Vel present 

5 

xxσ 1 −4.2350 −4.2580 −2.6600 −2.6042 −4.2530 −4.2875 

xxσ 2 4.5040 4.5233 2.9280 2.8543 4.5200 4.5551 

yyσ 3 −3.7260 −3.7179 −11.3320 −11.2277 −3.7530 −3.7493 

yyσ 4 3.5760 3.5646 11.1790 11.0771 3.5990 3.5962 

zzσ 5 0.4950 0.4922 0.4950 0.4992 0.4950 0.4958 

yzσ 6 1.4700 1.4711 3.9800 4.0810 1.4780 1.4636 

w 5 1.1800 1.1771 3.5596 3.5596 1.1880 1.1845 

10 

xxσ 1 −3.0000 −3.0002 −2.2780 −2.3835 −3.0020 −3.0623 

xxσ 2 3.0320 3.0316 2.3090 2.4227 3.0340 3.0947 

yyσ 3 −1.7130 −1.7113 −8.0680 −8.0450 −1.7150 −1.7136 

yyσ 4 1.6740 1.6720 8.0290 8.0068 1.6760 1.6744 

zzσ 5 0.5000 0.4995 0.5000 0.5002 0.5000 0.4995 

yzσ 6 0.7220 0.7243 2.8670 3.2294 0.7230 0.7145 

w 5 0.4460 0.4457 2.0890 2.0284 0.4470 0.4462 

 
Table 8. Comparison of present solutions with 3D exact solution of Vel [1] for 
[0˚/90˚/0˚] laminate subjected mechanical load case a. 

a/h Variable B4B4 B5B5 B6B6 

  Vel present Vel present Vel present 

5 

xxσ 1 −1.8970 −1.9062 −6.9870 −6.9854 −3.2380 −3.3749 

xxσ 2 2.1640 2.1640 7.1800 7.1792 3.4310 3.5725 

yyσ 3 −17.2210 −17.2199 −4.7840 −4.7834 −11.4420 −11.3734 

yyσ 4 17.0670 17.0670 4.6390 4.6383 11.2970 11.2316 

zzσ 5 0.4950 0.4982 0.4960 0.4962 0.4950 0.4952 

yzσ 6 5.9050 5.5865 1.9110 1.9110 4.0330 3.9274 

w 5 5.2970 5.2969 1.5250 1.5251 3.5420 3.5080 

10 

xxσ 1 −1.440 −1.4414 −5.898 −5.8982 −3.509 −3.3331 

xxσ 2 1.472 1.4683 5.906 5.9059 3.516 3.3388 

yyσ 3 −17.194 −17.1937 −2.882 −2.8821 −8.3140 −8.2753 

yyσ 4 17.155 17.1544 2.845 2.8821 8.2770 8.2380 

zzσ 5 0.5 0.4992 0.5 0.4994 0.5000 0.4996 

yzσ 6 5.955 5.6085 1.228 1.2278 2.9960 3.1669 

w 5 4.449 4.4493 0.753 0.7521 2.1550 2.1215 
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Table 9. Comparison of present solutions with 3D exact solution of Vel [1] for 
[0˚/90˚/0˚] laminate subjected mechanical load case a. 

a/h Variable B7B7 B8B8 

  Vel present Vel present 

5 

xxσ 1 −7.1210 −7.1514 −2.0430 −2.0165 

xxσ 2 7.3120 7.3391 2.2320 2.1982 

yyσ 3 −4.8640 −4.8749 −17.2470 −17.0307 

yyσ 4 4.7180 4.7311 17.1020 16.8851 

zzσ 5 0.4960 0.4996 0.4960 0.4995 

yzσ 6 1.9390 1.9260 5.9170 5.5644 

w 5 1.5500 1.5484 5.3070 5.2569 

10 

xxσ 1 −5.9520 −6.0191 −1.5620 −1.6747 

xxσ 2 5.9590 6.0237 1.5690 1.6809 

yyσ 3 −2.9090 −2.9162 −17.2050 −15.8814 

yyσ 4 2.8390 2.8789 17.1680 15.8455 

zzσ 5 0.5000 0.4998 0.5000 0.4996 

yzσ 6 1.2390 1.2528 5.9630 5.3059 

w 5 0.7600 0.7613 4.4530 4.1034 

 

 
(a)                             (b) 

Figure 6. Comparison of present results and Vel [1] for , ,
2 2xx
a a zσ  

 
 

, 

, ,
2 2yy
a a zσ  

 
 

, both on B4 load case a, and a/h = 5, 10, case 2. 

 
In the LSFEM model, case 1, for instance, we used mesh size = 1, the number of 
degrees of freedom DOF, generated (for N1 = N2 = 6, and N3 = 4) = 5733. The 
continuity conditions hold for the fact that the values of 13σ , 23σ  and 33σ  at 
the top of the layer are the same as 13σ , 23σ  and 33σ  at the bottom of layer 
respectively. After refining the mesh size by increasing the number of polyno-
mials, the corresponding number of degrees of freedom (for N1 = N2 = 8, and  
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(a)                             (b) 

Figure 7. Comparison of present results and Vel [1] for ,0,
8xy
a zσ  

 
 

, on 

B3, , ,
8 2xz
a a zσ  

 
 

, on B6 load case a, and a/h = 5, 10, case 2. 

 

 
(a)                             (b) 

Figure 8. Comparison of present results and Vel [1] for ,0,
2yz
a zσ  

 
 

, on B8 

and , ,
2 2zz
a a zσ  

 
 

, on B7 load case a, and a/h = 5, 10, case 2. 

 

 
(a)                             (b) 

Figure 9. Comparison of present results and Vel [1] for , ,
2 2
a aU z 

 
 

, on B1 

and , ,
2 2
a aW z 

 
 

, on B2, load case a, and a/h = 5, 10, case 2. 
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Table 10. Comparison of present solutions of [0˚/core/0˚] sandwich laminate subjected to mechanical load case (a) and arbitrary 
boundary conditions and compared with 3D exact solution of Moleiro [29]; the superscript of stress and displacement quantities 
indicate the in-plane and through-thickness location: 1 = (a/2, a/2, −h/2), 2 = (a/2, a/2, h/2), 3 = (0, 0, h/2), 4 = (0, a/2, 0), 5 = (a/2, 
0, 0), 6 = (a/2, a/2, 0), 7 = (0, a/2, −h/2). 

a/h Variable B4B4 B5B5 B6B6 B7B7 

  present Moleiro present Moleiro present Moleiro Present Moleiro 

4 

xxσ 1 11.1779 ----- 35.6216 35.5423 4.6002 ----- 36.2268 ----- 

xxσ 2 −7.3486 ----- −32.2059 −32.1295 −4.9144 ----- −33.0336 ----- 

yyσ 1 7.4461 ----- 3.0089 3.0182 6.0102 ----- 3.1211 ----- 

yyσ 2 −7.6961 ----- −3.1650 −3.1740 −6.2608 ----- −3.3744 ----- 

xyσ 3 0.0000 ----- −1.9449 −1.9459 −10.2660 ----- 0.0000 ----- 

xzσ 4 0.0000 ----- 1.4401 1.4416 0.0001 ----- 1.4785 ----- 

yzσ 5 2.4652 ----- 1.1715 1.1723 2.3171 ----- 1.1546 ----- 

zzσ 6 0.5005 ----- 0.5155 0.5156 0.5073 ----- 0.5158 ----- 

U 7 −0.0022 ----- 5.6996 5.6998 2.4417 ----- 5.6623 ----- 

V 5 94.9841 ----- 3.8847 3.8839 3.8971 ----- −40.0893 ----- 

W 6 54.3157 ----- 23.2708 23.2887 46.2588 ----- 23.4997 ----- 

10 

xxσ 1 5.1359 ----- 13.5463 13.5706 3.9398 ----- 14.0185 ----- 

xxσ 2 −5.0036 ----- −13.5287 −13.5525 −3.1002 ----- −13.9656 ----- 

yyσ 1 5.4524 ----- 1.6835 1.6838 3.8347 ----- 1.7419 ----- 

yyσ 2 −5.5948 ----- −1.7482 −1.7485 −3.8972 ----- 1.8216 ----- 

xyσ 3 0.0000 ----- −1.0240 −1.0240 −4.4464 ----- 0.0000 ----- 

xzσ 4 0.0000 ----- 2.4387 2.4389 0.0000 ----- 2.4968 ----- 

yzσ 5 2.5668 ----- 1.0301 1.0303 1.9858 ----- 1.0372 ----- 

zzσ 6 0.5016 ----- 0.5047 0.5047 0.4819 ----- 0.5025 ----- 

U 7 −0.0001 ----- 2.3857 2.3856 1.3941 ----- 2.4364 ----- 

V 5 20.5211 ----- 0.2894 0.2894 0.2844 ----- −12.7644 ----- 

W 6 22.3063 ----- 6.7443 6.7065 14.8675 ----- 6.9170 ----- 

50 

xxσ 1 2.3793 ----- 7.8999 7.8999 5.3792 ----- 7.8642 ----- 

xxσ 2 −2.3656 ----- −7.9029 −7.9028 −5.3757 ----- −7.8651 ----- 

yyσ 1 5.4334 ----- 0.4815 0.4786 1.5595 ----- 0.4773 ----- 

yyσ 2 −5.4370 ----- −0.4815 −0.4814 −1.5629 ----- −0.4807 ----- 

xyσ 3 0.0000 ----- −0.3549 −0.3549 −5.3191 ----- 0.0000 ----- 

xzσ 4 0.0000 ----- 3.3934 3.3934 0.0000 ----- 3.3701 ----- 

yzσ 5 2.4786 ----- 0.3691 0.3691 0.5187 ----- 0.3910 ----- 

zzσ 6 0.4996 ----- 0.5002 0.5002 0.5000 ----- 0.5001 ----- 

U 7 0.0000 ----- 1.4156 1.4156 1.8637 ----- 1.4048 ----- 

V 5 0.8434 ----- 0.0088 0.0088 0.0088 ----- 0.2896 ----- 

W 6 15.8773 ----- 1.1911 1.1911 4.2545 ----- 1.1895 ----- 
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(a)                                  (b) 

Figure 10. Comparison of present results and Moleiro [29] for , ,
2 2xx
a a zσ  

 
 

,  

, ,
2 2yy
a a zσ  

 
 

, both on B5 load case a, and a/h = 4, 10, 50, case 3. 

 

 
(a)                                  (b) 

Figure 11. Comparison of present results and Moleiro [29] for ( )0,0,xy zσ ,  

0, ,
2xz
a zσ  

 
 

, both on B5, load case a, and a/h = 4, 10, 5, case 3. 

 

 
(a)                                  (b) 

Figure 12. Comparison of present results and Moleiro [29] for 0, ,
2yz
a zσ  

 
 

,  

, ,
2 2zz
a a zσ  

 
 

, both on B5, load case a, and a/h = 4, 10, 50, case 3. 
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(a)                                  (b) 

Figure 13. Comparison of present results and Moleiro [29] for ( )0, 2,U a z ,  

( )2, 2,W a a z , both on B5, load case a, and a/h = 4, 10, 50, case 3. 

 
N3 = 4) = 9477. The error for in-plane-stress error reduced from 1.19% to 0.15% 
and out-of-plane normal stress reduced marginally from 1% to 0.3% but the 
computation error for the shear stress 13σ  reduced from 19.19% to 15.2%. 
The-through-the-thickness variations remain the same for the two DOFs. To ve-
rify the efficiency of the present model and its predictive capabilities. Figures 
2-7 show that the predicted distributions through the plate thickness for the va-
riables xxσ , yyσ , xyσ , xzσ , yzσ , zzσ , 3U  for a/h = 5, 10, alongside the ex-
act three-dimensional solutions. The plots and tables provide detailed descrip-
tions of the composite laminate [0˚/90˚] and [0˚/90˚/0˚] static analysis under ar-
bitrary boundary condition and corresponding exact solutions. In all the figures, 
both the exact three-dimensional solutions and the present model solutions are 
represented using the corresponding symbolic toolbox. 

4. Conclusion 

We present a three-dimensional linear elasticity numerical solution of a least 
square finite element model formulation for static analysis of multilayered 
composite and sandwich plates under arbitrary boundary conditions and com-
pare our results with exact solution available in literature. The model is devel-
oped in a least squares sense by taking the three transverse stresses, three strain- 
displacement relations in the xy-plane and three displacement components as 
independent variables and using the least-squares method to minimize the resi-
duals in the expressions for these nine field variables. The numerical examples 
show the accuracy and capabilities of our least square finite element model. The 
present model results judgement is based on a comprehensive comparison with 
the exact three-dimensional elasticity solutions by Vel and Batra [1] and Moleiro 
for sandwich plate [29]. The numerical examples focus on the static analysis of 
the simply supported square multilayered composite and sandwich plate on y = 
0, b, and arbitrary BC support on x = 0, a, under a sinusoidal transverse load ei-
ther at top or bottom surface of the laminate. The ranges of aspect ratios a/h 
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considered are 5, 10 for composite plate and 4, 10, 50 for sandwich plate, i.e., 
from thin plate to thick plate. Even though we show that the present least- 
squares finite element models give very accurate results and in excellent agree-
ment with the exact three-dimensional solutions, the accuracy of this model de-
pends on the thickness of plate. For a thin plate of a/h = 10 upwards, the model 
produces highly accurate results, that is, as the thickness of the plate decreases, 
the accuracy of the model increases, and computation error diminishes. To in-
crease the accuracy of the model for a very thick plate, such as a/h = 1, 2, 4, we 
increase the z-polynomial order and refine the mesh, however this increases the 
computation cost and time. In the future we will introduce a combination of 
thermal and mechanical load. In fact, in addition to mechanical loading of 
composite and sandwich structures, thermal effects can be fully coupled into the 
model to analyze the static or dynamic thermo-mechanical deformations. This 
can be accomplished by adding the energy equation and an appropriate consti-
tutive law for the heat fluxes into the mechanical and thermal equilibrium go-
verning equations and incorporating the temperature field and transverse heat 
fluxes into the list of field unknown variables to solve for. 
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