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ABSTRACT 
 

Bio energy obtained through forest biomass is a promising renewable energy option that provides a 
more environmentally sustainable alternative to fossil resources by reducing the net flux of 
greenhouse gases to the atmosphere. India, a developing nation is also in the process of building 
forest biomass models to study the potential of forests in short and long - term carbon mitigation. 
Earlier, traditional and destructive sampling were the popular methods for the aforesaid purpose. 
Recently, non - destructive methods have been adopted applying different allometric equations 
mostly developed outside India. Thus, there was a need to develop non- destructive allometric 
aboveground (AGB) models complementing the Indian climate. Also, there was a scarcity of 
domestic/local AGB models for arid, semi- arid, northern tropical thorn forest of India. The 
objectives of this study were to develop site-specific and mixed- species allometric models to 
predict AGB, at the Northern Delhi Ridge Forest (NDRF) using nonlinear mathematical functions. 
The model has a wide scope and can be applied to adjoining areas as well having similar climatic 
conditions. Three allometric combinations were tried to fit the aboveground biomass data obtained 
from the ridge forest. A three- parametric Richard’s model (with predictor variable x=D2H) was best 
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fitted to AGB (R2
adj= 0.9463) values for larger trees. Meanwhile, for juvenile plants, a three- 

parametric Richard function was best fitted (R2
adj= 0.9733) when (x = DH) was used as a predictor 

variable. Cross- validation of model parameters exhibited statistical stability. 

 

 
Keywords: Forest biomass; renewable energy; greenhouse gases; allometric; aboveground biomass; 

non-destructive; nonlinear; Northern Delhi Ridge Forest. 
 

1. INTRODUCTION 
 
Forest biomass (FBM) is a key indicator of 
productivity [1,2], resource availability [3], and 
carbon storage, sequestration and emission 
capacity [4,5] in a forest ecosystem. As a 
developing country, India has also taken 
initiatives to increase forest biomass and carbon 
storage by restricting deforestation and 
enhancing afforestation activities, which 
positively supports and implements the 
mechanism of Reducing emissions from 
deforestation and forest degradation (REDD+) in 
developing countries. Accurate assessment of 
forest biomass plays a vital role in afforestation 
and reforestation management planning, forest 
resource monitoring, in the assessment of the 
ecological value of forests, climate change 
impacts and policy formulation for forest 
harvesting, conservation and management. In 
recent times, large - scale mapping of biomass is 
routinely performed using remote sensing [6], 
with in situ ground methods required for 
calibration and validation of such datasets. 
However, methods of estimating biomass in 
fields remain a challenge for foresters. The 
assessment of forest biomass includes the 
estimation of both AGB and belowground 
biomass (BGB). The latter is not only difficult to 
quantify, but it is relatively small to the AGB. 
Therefore, the estimation of AGB has always 
been the main focus in biomass research. AGB 
calculations rely on real morphological and 
biophysical tree parameters, such as diameter at 
breast height (DBH) and tree height, which are 
used too often to calculate AGB by implementing 
nonlinear allometric biomass models, which can 
be very effective when applied to tree species 
and productivity ranges with reliable calibration 
data. Although, these models have been shown 
to be successful in predicting standing biomass, 
their availability and accuracy in estimating 
biomass from other environmental conditions can 
be highly variable [7].  
 
Traditional methods for AGB measurement, 
involves cutting down trees and then drying them 
for weighing, are destructive, time-consuming, 
expensive and laborious, and are rarely adopted 

[8,9]. Moreover, destructive methods can be 
used only for a small area, as their accuracy 
could be compromised when used to estimate 
the AGB of a forest spanning over a larger region 
[10,11,12]. Application of allometric models is 
one of the most viable options of the indirect 
method for estimation of forest biomass. The 
allometry of plant species establishes the 
quantitative relationships between easily 
measurable characteristics and other related 
attributes that are difficult to measure. Generally, 
diameter (D) alone and different combinations of 
D and tree height (namely DH and D2H) are used 
to build aboveground biomass models using 
allometry. Biomass can be modelled applying 
linear and nonlinear mathematical functions. 
Since, the nonlinear simulation is a combination 
of power and exponential functions, model fitting 
is not easy as compared to linear and fraction 
forms of equations.  
 
Earlier, priority was given to large - sized timber 
trees for development of allometric biomass 
models [13, 14, 15]. Recently, some studies have 
also come up discussing allometric biomass 
models for juvenile plants as well [16,17,18,19]. 
Gathering aboveground biomass data for juvenile 
plants is essential as they significantly add to 
future forest, wildlife habitat and soil conservation 
[20]. In addition, the density of young plants is 
much higher than that of large- sized and 
matured trees. Despite this, juveniles are 
generally excluded while carrying out inventories 
related to biomass and carbon stocks 
quantification mainly due to lack of allometric 
biomass models for young plants. As juveniles 
are indicators of net primary productivity, so 
estimating biomass of young plants is required 
for evaluating the stand potential for carbon 
storage and sequestration models. Young plants 
play a critical role in maintaining the balance of 
an overall forest ecosystem, and therefore 
cannot be undermined while   assessing the 
amount of forest biomass and carbon.  
 
India has huge amount of land under forests 
representing tropical, semi- arid conditions. 
Numerous direct/ indirect, species – specific, and 
mixed- species equations have been used in the 

https://www.mdpi.com/1999-4907/10/11/936#B7-forests-10-00936
https://www.mdpi.com/1999-4907/10/11/936#B8-forests-10-00936
https://www.mdpi.com/1999-4907/10/11/936#B2-forests-10-00936
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past for biomass estimation but domestic 
biomass models that facilitated the prediction of 
AGB stocks non- destructively in this part of India 
is still lacking. Moreover, there is also a scarcity 
of information regarding estimation of AGB of 
juvenile plants as well which forms an important 
component of a forest ecosystem. The article 
thus deals with constructing aboveground 
biomass models for NDRF by applying non- 
destructive methods. The H-D data of trees were 
collected from the above-mentioned site and was 
grouped into two categories on the basis of DBH 
range. Low DBH values ranged from 1.59 – 9.17 
cm and higher DBH ranged from 11.4- 77.08 cm. 
Richards, Power and Exponential functions were 
used for model fitting of AGB data. The proposed 
models can be applied to areas with similar 
climatic conditions as well. The results are being 
explained and interpreted in the present 
manuscript. 
 

2. MATERIALS AND METHODS 
 

2.1 Site Description and Climatic 
Conditions 

 
The northern Delhi Ridge also known as Old 
Delhi Ridge or Kamla Nehru Ridge is 87 ha 
forested area near University of Delhi. Due to 
elevated crust, it is geographically termed as a 
ridge. It lies between latitude 28°41’36.03’’N to 
28°40’3.71’’ N and longitude 77°12’39.42’’E to 
77°13’1.87’’E. The northern ridge is one of the 
four ridge forests found in Delhi which are a              
part of Aravalli Hill Ranges [21]. The climate              
of the area is semi- arid due to poor rainfall            
(66.6 cm annually) however, it receives 
significant rainfall in the monsoon. The 
vegetation here is thorny and scrub type, which 
is similar to arid and semi- arid conditions. The 
area falls under Northern Tropical Thorn Forest 
category of forest type classification of Indian 
forests [22].    
 

2.2 Sampling Procedure 
 

The aboveground biomass data came from 10 
(0.1 ha) temporary circular plots (plot radius 
17.85 m), covering a total area of 1 ha. Random 
sampling method was adopted to obtain 
unbiased data of the forest area. Non - 
destructive methods were adopted to gather the 
observed/experimental values of aboveground 
biomass data from Northern - Ridge Forest due 
to the fact that the area has been declared as a 

reserve forest vide. Notification dated 22/05/1994 
under section 4 of the Indian Forest Act, 1927, 
hence cutting trees is always discouraged in this 
area. All the trees were measured for their DBH 
and total height within the plots. Initially, 
Circumference at Breast Height (CBH in cm) of 
trees were measured at 1.37 m from ground 
using a measuring tape. All the CBH values were 
later converted to corresponding DBH values by 
dividing CBH by π (3.14). Height of trees were 
measured by wooden poles of varying heights 
(for trees up to 5 m) and Clinometer for trees 
more than 5m tall. In all, 795 trees were 
measured in 1 ha land. Later, 795 trees were 
divided into sets of two diameter classes: first 
diameter class represented juvenile plants (DBH 
1.59 - 9.17 cm) and the other diameter class 
represented large and mature trees (DBH 11.4- 
77.8 0cm). In all, 411 trees from class 1 and 384 
trees from class two were used for data 
modelling. Species wise data was gathered 
which is presented in Table 1 (a) and (b). 
 
Allometric models for biomass estimation usually 
includes information on DBH, total tree height 
and wood density. Omitting wood density values 
results in poor overall prediction of aboveground 
biomass as it is an important predictive variable 
in regression models. Moreover, the use of total 
tree height as a predictor variable also overall 
improves the quality of forest 
growth/aboveground biomass models [23]. 
Hence, the allometric equations enable 
aboveground biomass to be easily estimated, 
provided the diameter, total tree height and wood 
density of trees are available. Mean values of 
DBH and total height of tree species were used 
in the present investigation to obtain standing 
bio-volume [24] applying the equation SBV= 
(π/4* D2) H* f, where SBV is in m3/species; π is 
constant (3.14); both D and H are in meters and f 
is the form factor. Here, a form factor of 0.4 was 
applied. The bio- volume was multiplied by 
respective wood densities (Kgm-3) to get the 
aboveground biomass (AGB) in Kg. Wood- 
densities were obtained from the database of 
wood densities of tropical tree species [25] and 
from the web www.worldagroforestry.org [26]. 
The standard average density of 600 Kgm-3 was 
applied whenever density value was not 
available for tree species. AGB in kg was 
converted to Tons/species before fitting predicted 
values. The observed aboveground biomass 
values of species were placed in ascending order 
before model fitting.     

  
  

http://www.worldagroforestry.org/
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Table 1 (a). D and H of juveniles sampled from the study site (DBH range 1.59- 9.17 cm) * ±SE 
 

S. No. Species Name Mean DBH (m) Mean H (m) Density (no. of individuals/ha) WD (Kg/m3) 

1 Salvadora oleoides L. 0.0159±0.17 0.85±0.11               23 590 
2 Ficus benghalensis L. 0.0184±0.23 0.78±0.19               11 390 
3 Phyllanthus emblica L.  0.0207±0.13 1.89±0.13               15 800 
4 Pongamia pinnata L. 0.0265±0.26 2.67±0.23               19 600 
5 Bauhinia purpurea L. 0.0291±0.32 3.15±0.22               24 670 
6 Mimusopus elengi L. 0.0319±0.39 2.33±0.24               33 720 
7 Holoptelia integrifolia Roxb. 0.0337±0.19 2.81±0.09               22 640 
8 Azadirachta indica L. 0.0349±0.11 3.33±0.15               13 690 
9 Cordia dichotoma L. 0.0353±0.47 3.49±0.16               15 530 
10 Ehretia laevis Roxb. 0.0366±0.32 2.69±0.29               13 560 
11 Ficus verines L. 0.0387±0.53 3.92±0.22               19 390 
12 Morus alba L. 0.0393±0.27 3.94±0.16               11 600 
13 Eucalyptus species 0.0399±0.51 5.67±0.27                9 590 
14 Ficus religiosa L. 0.0466±0.23 3.08±0.57               15 390 
15 Terminalia bellirica (Gaertn) Roxb. 0.0481±0.29 4.83±0.14               23 720 
16 Cassia fistula L. 0.0549±0.75 3.27±0.39               24 710 
17 Ficus racemosa L. 0.0605±0.21 3.250.11               14 390 
18 Albizia procera (Roxb.) Benth 0.0658±0.33 5.23±0.37               39 520 
19 Tectona grandis L. 0.0755±0.15 5.06±0.21               18 500 
20 Bauhinia variegata L. 0.0764±0.82 5.53±0.53               21 670 
21 Albizia lebbeck (L.) Benth 0.0917±0.77 6.39±0.49               30 550 
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Table 1 (b). D and H of large tree sampled from the study site (DBH range 11.4- 77.08 cm) *±SE 
 

S. No. Species Name Mean D (m) Mean H (m) Density (no. of individuals/ha) WD (Kg/m3) 

1 Bauhinia variegate L. 0.26±3.02 5.44±0.51           10 670 
2 Holoptelia integrifolia Roxb. 0.25±4.35 18.59±0.35           16 640 
3 Acacia nilotica (L.) Willd. Ex Delile 0.25±2.53 11.21±0.57           21 900 
4 Tectona grandis L. 0.29±3.59 28.2±0.57           18 550 
5 Ficus benghalensis L. 0.64±3.73 5.8±1.05            8 390 
6 Pongamia pinnata L. 0.39±5.44 6.8±3.72           17 600 
7 Callistemon viminalis G. Don 0.18±1.89 6.58±0.33           15 600 
8 Butea monosperma (Lam.) Taub. 0.32±2.37 13.3±1.34           11 480 
9 Prosopis juliflora (Sw.) DC. 0.22±3.89 8.32±0.59           33 600 
10 Delonix regia (Hook.) Raf. 0.19±4.16 14.1±1.17          14 600 
11 Albizia procera (Roxb.) Benth. 0.17±6.15 7.12±2.13          19 520 
12 Ficus racemose L. 0.77±5.81 9.47±1.94          21 390 
13 Syzygium cumini L. 0.37±0.42 6.58±1.23          13 600 
14 Ziziphus jujuba Mill. 0.27±2.84 11.91±0.47          17 330 
15 Dalbergia sissoo Roxb. Ex DC. 0.57±1.97 7.83±0.37          12 600 
16 Ficus religiosa L. 0.72±3.53 9.71±0.63          15 390 
17 Phyllanthus emblica L. 0.13±3.85 6.5±0.71           8 880 
18 Cassia fistula L. 0.18±5.36 11.37±0.63           9 640 
19 Azadirachta indica L. 0.44±2.99 8.57±0.55         12 690 
20 Casuarina equisetifolia L. 0.21±3.14 23.59±0.43         17 830 
21 Bauhinia purpureal. 0.16±2.17 10.41±0.56          9 670 
22 Albizia lebbeck (L.) Benth. 0.24±4.02 6.71±0.65         21 550 
23 Grevelia robusta A. Cunn  0.18±3.35 27.98±0.51         14 600 
24 Ficus elastica Roxb. Ex Hornem. 0.11±5.21 6.59±0.48         14 390 
25 Morus alba L. 0.14±1.98 4.78±0.33          5 600 
26 Milletia peguensis Lock and Heald 0.13±2.79 4.31±0.43          7 600 
27 Cordia dichotoma L. 0.14±2.65 6.13±0.43          8 530 
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2.3 Modelling Approach 
 
The functional form of the model used was: y = f 
(x), which means that “y” is a function of “x” or “y” 
depends upon “x”. Here, “y” is the dependent or 
response variable (aboveground biomass in this 
case) and “x” is independent or predictor 
variable. Different combinations of “x” as D, DH 
and D2H were used for model fitting. Three 
nonlinear functions namely Richard’s, Power and 
Exponential were applied for model fitting (Table 
2). Here, α, β, and δ are parameters to be 
estimated, x is the predictor variable (used in 
different combinations), AGB is the aboveground 
biomass (in tons), e is the exponential, and ε is 
the random residual term error with mean 0 
(Table 2). 
  

2.4 Model Fitting and Evaluation 
 
Nonlinear curve fitting was performed with Excel 
Solver which is an add-in function in Microsoft 
Excel, 2021. Adjusted- R2 [27] and Residual 
Standard Error [27] were used for model 
evaluation. Model with maximum adjusted- R2 
and minimum RSE values were considered to 
perform the best.  
 

2.5 Cross - Validation or Statistical 
Significance of Model Parameters  

 
Statistical significance (cross- validation) of 
model parameters was determined through  
Jack-knife technique [28]. Model parameters 
were statistically tested to estimate uncertainties 
in their behaviour (Table 5) Jack- Knife  
technique is basically a resampling method 
which involved a leave-one- out strategy of the 
estimation of parameters in a dataset of “N” 
observations. To elaborate, if there are a total of 
“N” numbers in a dataset, the predictor is trained 
on N-1 training examples and tested on 
remaining one data point i.e., leave-one-out 
cross validation technique was implemented. 
Then, process was repeated “N” times and 
eventually predicted values of each sample was 
calculated.   

2.6 Residual Analysis 
 
D’ Agostino- Pearson test was performed to 
check for residual normality (Table 5). In addition, 
histograms with normal curve overlay were also 
created to test residual symmetry for all models. 
Only best - fit models from two datasets are 
depicted in Fig. 2 (a and b). Moreover, 
comparative analysis of residuals on basis of 
standard deviation, kurtosis and skewness was 
also conducted to come out with best results. All 
the analysis was implemented in Microsoft Excel, 
2021 using Real Statistics Resource Pack.  
 
As residual outliers can be very significant and 
can enlighten us about the study area and data 
collection process, hence it is essential to 
understand how outliers exists and whether they 
might reoccur again as the normal part of the 
process. In our case, we detected possible 
outliers from the residual datasets but it was 
neither deleted nor it was adjusted to increase 
the statistical significance of the model in 
question. Skewness is usually described as a 
measure of symmetry of a dataset. The normal 
distribution has a skewness of 0. As a general 
rule, if the skewness is between -0.7 and +0.7, 
then the data is fairly symmetrical. If the 
skewness is between -1 and -0.5 or between 0.5 
and 1, the data is moderately skewed, and if the 
skewness is less than -1 or greater than 1, then 
the data is highly skewed. Kurtosis originally was 
thought to measure the peakedness (of flatness) 
of a distribution. However, it is now widely 
accepted that the kurtosis is a measure of the 
combined weight of the tails relative to the rest of 
the distribution [32]. It measures the tail- 
heaviness of the distribution. The value is often 
compared to the kurtosis of normal distribution, 
which is equal to 3. If kurtosis is close to 3, then 
a normal distribution is often assumed. These 
are called mesokurtic distributions. If the kurtosis 
is greater than 3, then the dataset has heavier 
tails than a normal distribution and is called 
leptokurtic distribution. If kurtosis is less than 3, 
then the dataset has lighter tails than a normal 
distribution and is called platykurtic distribution.   

 
Table 2. Nonlinear functions to build aboveground (stem) biomass models 

 
S. No. Model Function Parameter Source 

1 Richards AGB = α (1-e-βX) δ + ε    3 Richards, [29] 
2 Power AGB = αXβ + ε    2 Huxley, [30] 
3 Exponential AGB = αeβX + ε    2 Bhandari, [31] 
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3. RESULTS AND DISCUSSION 
 

Allometric biomass models presented in Table 3 
clearly explained the reason behind in using two 
variable models having tree diameter at 1.3 m 
height (D) and tree height (H). Out of 18 models 
constructed (M1- M9 for juvenile plants and M10- 
M18 for large trees) M2 and M12 came out to be 
the best- fit models with highest R2 adjusted and 
lowest RSE values. All allometric models were 
constructed using 3 nonlinear functions and three 
sets of predictor variable (x) i.e., D, DH and D2H. 
For juvenile plants, the best fit model was M2 
having highest R2

adj and lowest RSE (R2 adj 
0.9723, RSE 0.00036) which was followed by M3 
(R2 adj 0.9708; RSE 0.00037), M4 (R2 adj 0.9307; 
RSE 0.00055) and M1 (R2 adj 0.9305; RSE 
0.00057). Here, a combination of DH and D2H 
was found to be strongly correlated with 
aboveground biomass. For large trees, a 
combination of D2H produced robust fitting 
results for Richard’s and Power function (R2 adj 
>0.94). The best- fit model among large trees 
was M12 showing fitting statistics (R2

adj 0.9527; 
RSE 0.03724), followed by M15 (R2

adj 0.9464; 
RSE 0.04049), M13 (R2

adj 0.7767; RSE 0.08265) 
and M10 (R2

adj 0.7670; RSE 0.08265). 
Exponential function did not produce powerful 
correlation for any of the three combinations (R2 

adj 0.68 - 0.75) hence was not given any ranking.  
 

In order to develop allometric models for 
estimating stem biomass of NDRF, we used the 
widely acceptable biophysical field level variables 
i.e., diameter at breast height (DBH) and total 
tree height (H) and observed comparably weak 
relationships using single – variable (either D or 
H) and it became stronger with two- variable 
models. However, for juvenile plants D, as a 
predictor variable demonstrated good results for 
both M1 (R2

adj 0.9305) and M4 (R2
adj 0.9307) 

models. For large trees both D and H 
independently produced weak correlations to 
predict aboveground biomass, although 
correlation of D (R2

adj 0.7419- 0.7767) was far 
better than that of H (R2

adj 0.01- 0.10). The 
relationship of these variables (D, H) to the stem 
biomass was depicted and it indicated that the 
two variable models using both D and H was 
intuitive to predict stem biomass of NDRF. 
 

In addition, we also conducted test for residual 
normality (d’ Agostino- Pearson test) for all 
models along with outlier detection and also 
checked for residual symmetry (Table 5). We 
subsequently graphed histograms with normal 
curve overlay to test for residual normality for 
best- fit models from two different datasets (Fig. 

2 a and b). The d’- Agostino- Pearson test of 
residual normality of three best- fit models from 
two different datasets: [M2(D- stat= 5.484, p= 
0.064)]; [M3(D- stat= 4.685, p= 0.096)]; [M4(D- 
stat= 4.233, p= 0.120)]; [M12(D- stat= 5.411, p= 
0.067)]; [M15( D- stat= 4.553, p= 0.1030]; and 
[M13 (D- stat= 5.930, p= 0.052)] showed a p-
value greater than 0.05 suggesting that residuals 
do not violate the assumption of normal random 
error. A minimum of “0” and a maximum of “1” 
outlier was detected from residual analysis. The 
models with a single outlier were neither 
removed nor adjusted as it was a part of data 
collection process. Residual 
symmetry/asymmetry of all models suggested 
that most of the residuals were fairly symmetrical 
and non were highly skewed. Moreover, 
residuals for models M5- M9 were moderately 
skewed (Table 5). The values for kurtosis 
indicated that distribution was mesokurtic for M5, 
leptokurtic for M7, M8 and M9 and platykurtic for 
rest of models (Table 5).   
 
Diameter at breast height (DBH) is a widely used 
representative indicator of biomass estimation, 
and trees with different DBH- sizes usually have 
different amount of biomass. For constructing 
aboveground biomass model for mixed-species 
in NDRF, we used this well- known tree DBH 
parameter along with maximum tree height (H), 
that can be measured conveniently in a real- life 
situation, and as a non- destructive method, it 
can be practiced in any restricted area where 
harvesting is prohibited. Thus, allometric models 
have wide applicability, particularly in forest 
areas where harvesting is not allowed. In this 
investigation, we analyzed three nonlinear 
regression equations with these easily 
measurable field variables (D and H) to build 
stem biomass models. Generally, adjusted R2 
value has been used for selecting best- fit 
models, but it can also give misleading results 
[33, 34]. To overcome this possibility of 
misleading and to avoid taking any biased 
decision, we selected our best- fit models 
considering not only adjusted R2 but also 
residual standard error (RSE) values. Highest 
adjusted R2 and lowest RSE value offers best- fit 
model in selecting allometric models [35, 36]. 
Best- fit allometric equation [M2] for estimating 
stem biomass of juvenile plants was AGB = 
0.057 (1-e-1.013x)1.886. It was a 3- parametric 
Richard’s model, having diameter at 1.3 m  
height (D) and total tree height as predictor 
variables, i.e., x=DH. Here, α is the upper 
asymptote, β is the growth rate or scale 
parameter and δ is the shape parameter and 
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inflection point. It is a classical sigmoid growth 
function which is often used to model individual 
tree growth and populations. The function is quite 
flexible, versatile, reliable and often used in 
forest growth modelling. All three parameters  
had biological meaning too. Similarly, for large 
trees, best- fit model [M12] had the equation 
AGB = 0.890 (1-e-0.263x)1.144, here x represented     
a combination of D2 multiplied by H. Again, it is a 
3- parametric Richard’s model. Our results are 

similar to other findings of tree volume and 
biomass allometric models where both D and H 
improves model fitting [37, 38]. Moreover, in 
order to model stem biomass of young plants, a 
2- parametric power function [M4] can also be 
used using “D” as a single predictor variable         
(R2 adj= 0.9307, RSE= 0.00055). All 18        
allometric models along with model performance 
values (R2

adj and RSE) has been mentioned in 
Table 3.  

 

Table 3. Allometric aboveground biomass models for two datasets * M1, M2...model 
designation 

 

                           Model expression and evaluation   
DBH < 10 cm (1.59- 9.17 cm)  

Model x Equation R2
adj RSE 

Richards D [M1] AGB = 0.218(1-e-5.454x)3.372 0.9305 0.00057  
DH [M2] AGB = 0.057(1-e-1.013x)1.886 0.9723 0.00036  
D2H [M3] AGB = 0.089(1-e-2.786x)1.034 0.9708 0.00037 

Power D [M4] AGB = 7.167x2.697 0.9307 0.00055  
DH [M5] AGB = 0.029x1.579 0.9733 0.00036  
D2H [M6] AGB = 0.177x1.020 0.9720 0.00037 

Exponential D [M7] AGB = 0.022e42.287x 0.9302 0.00058  
DH [M8] AGB = 0.016e4.526x 0.9088 0.00067  
D2H [M9] AGB = 0.026e41.604x 0.8387 0.00089  

DBH > 10 cm (11.4- 77.08 cm)  

Richards D [M10] AGB = 183.964(1-e-0.043x)1.441 0.7670 0.08265  
DH [M11] AGB = 0.902(1-e-0.193x)1.990 0.7614 0.08363  
D2H [M12] AGB = 0.890(1-e-0.263x)1.144 0.9527 0.03724 

Power D [M13] AGB = 0.892x1.329 0.7767 0.08265  
DH [M14] AGB = 0.051x1.225 0.7638 0.08500  
D2H [M15] AGB = 0.234x0.786 0.9464 0.04049 

Exponential D [M16] AGB = 0.063e3.115x 0.7419 0.08886  
DH [M17] AGB = 0.073e0.268x 0.6753 0.09966  
D2H [M18] AGB = 0.116e0.335x 0.7509 0.08730 

 
Table 4. Cross- validation (statistical significance) of model parameters 

   
DBH 1.59- 9.17 cm  

Predictor variable Model Parameters 

Model x α β δ 

Richards D 0.218±0.008 5.454±0.099 3.372±0.029  
DH 0.057±0.014 1.013±0.022 1.886±0.017  
D2H 0.089±0.017 2.786±0.325 1.034±0.011 

Power D 7.167±0.023 2.697±0.072 -  
DH 0.029±0.007 1.579±0.199 -  
D2H 0.177±0.006 1.020±0.161 - 

Exponential D 0.022±0.014 42.287±0.789 -  
DH 0.016±0.011 4.526±0.127 -  
D2H 0.026±0.021 41.604±0.178 -   

DBH 11.4- 77.08 cm 

Richards D 183.964±2.555 0.043±0.019 1.441±0.111  
DH 0.902±0.004 0.193±0.002 1.990±0.010  
D2H 0.890±0.012 0.263±0.002 1.144±0.099 

Power D 0.892±0.002 1.329±0.004 -  
DH 0.051±0.005 1.225±0.001 -  
D2H 0.234±0.018 0.786±0.023 - 

Exponential D 0.063±0.0004 3.115±0.0088 -  
DH 0.073±0.0001 0.268±0.0002 -  
D2H 0.116±0.0002 0.335±0.0003 - 
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Table 5. Descriptive statistics and residual analysis 
   

DBH < 10 cm (1.59- 9.17 cm) 
   

Model x d’ Agostino- 
Pearson test 

p- value Outlier SD Kurtosis Skewness 

Richards D Yes > 0.05 1 0.00058 2.275 0.681  
DH Yes > 0.05 1 0.00037 1.366 -0.738  
D2H Yes > 0.05 1 0.00038 1.989 -0.627 

Power D Yes > 0.05 1 0.00057 2.239 0.414  
DH No < 0.05 1 0.00037 2.906 -1.396  
D2H No < 0.05 1 0.00038 2.451 -0.851 

Exponential D No < 0.05 1 0.0006 3.046 -1.360  
DH No < 0.05 1 0.00068 4.730 -2.005  
D2H No < 0.05 1 0.00091 3.513 -1.779   

DBH > 10 cm (11.4- 77.08) 
   

Richards D Yes > 0.05 1 0.08577 1.916 -0.671  
DH Yes > 0.05 0 0.08527 0.464 -0.067  
D2H Yes > 0.05 1 0.03795 2.133 0.564 

Power D Yes > 0.05 1 0.08571 1.957 -0.708  
DH Yes > 0.05 0 0.08673 0.804 -0.330  
D^2H Yes > 0.05 0 0.04112 0.947 -0.800 

Exponential D No < 0.05 1 0.09132 1.304 -1.057  
DH Yes > 0.05 0 0.10171 1.056 -0.659  
D2H Yes > 0.05 0 0.08914 0.182 -1.005 

 
Accurate and precise estimation of forest 
biomass is vital for successful implementation of 
climate change mitigation actions [39]. Allometric 
biomass models are regression models that 
typically use tree diameter and/or tree height to 
predict biomass. Despite emerging new 
technologies such as remote sensing, empirical 
allometric models remain central when predicting 
forest biomass [40, 41]. Diameter at breast 
height (D, at 1.3 m above ground) is a basic 
forest inventory variable [42] but for improved 
models using both D and H to produce tree 
volume or biomass is a common forestry practice 
[43]. However, inclusion of H in the model would 
be of no use if D and H were perfectly correlated. 
Although, D and H are always correlated to some 
degree, their relationship varies greatly i.e., 
relationship is nonlinear [44] being influenced by 
genotype, competition and environmental 
conditions [45,46]. As a result, including H in 
allometric models has been shown to improve 
biomass prediction accuracy [47,48]. Because D 
and H are correlated, the unique effect of each 
predictor (i.e., the main effect) is based on its 
unique information (disregarding shared 
information). 
  
Collinearity between predictor variables (D and H 
in this case) increases standard errors                  
and instability in parameter estimates [49]. 
Although, collinearity between D and H does             
not necessarily have adverse effects on             
biomass prediction [50], it is often avoided by 

using a combined predictor of the form of DH 
(diameter of tree trunk multiplied by total tree 
height) or D2H (i.e., D2 multiplied by H) based on 
argument that the aboveground biomass is 
proportional to the volume of a cylinder (tree 
trunk) of diameter D, and height, H. This 
combined predictor incorporates information from 
both D and H and, therefore produces more 
accurate biomass prediction than when using 
either D or H alone.    
 
In this investigation, we developed these 
empirical models for estimating stem biomass in 
NDRF applying a non- destructive method that 
will allow us to use it for the estimation of 
biomass or carbon stocks in different forests and 
plantations having similar arid, semi- arid 
conditions. Although, non- destructive method 
provides relatively less accuracy than destructive 
method in estimation of tree biomass, yet it has 
an advantage of preserving the conservation 
value and biodiversity of a forest. The destructive 
method not only demands vast time and labor, 
but also it is unfeasible in developing countries 
like India where harvesting has been prohibited 
in order to conserve the existing limited forest 
resources [51,52]. Therefore, our allometric 
models following non- destructive method can be 
an alternative way to build site- specific and 
mixed- species biomass models which can be an 
effective tool for continuous monitoring of 
biomass or carbon stocks of forest in this 
particular region of India. 



 
 
 
 

Tripathi and Joshi; Asian J. Res. Agric. Forestry, vol. 9, no. 4, pp. 229-243, 2023; Article no.AJRAF.108778 
 
 

 
238 

 

 



 
 
 
 

Tripathi and Joshi; Asian J. Res. Agric. Forestry, vol. 9, no. 4, pp. 229-243, 2023; Article no.AJRAF.108778 
 
 

 
239 

 

 
 

Fig. 1. Allometric relationship between mean aboveground biomass and combinations of D 
and H for two datasets (* M1 – M9 for juvenile plants and M10 – M18 for large trees) *circles are 

observed mean values of aboveground biomass (Tons/species) 
 

 
 

Fig. 2. Frequency distribution of residuals for best- fit models for juvenile plants [M2] and large 
trees [M12] 
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Fig. 3. Graph of regression line of the predicted biomass against observed biomass. Best- fit 
models for juvenile plants [M2] and large trees [M12] datasets were used to produce these 

graphs 
 

Table 6. Correlation between aboveground biomass and predictor variables of four best – fit 
models from each dataset; “r” is the Pearson correlation coefficient 

 

S. No Model Predictor variables r 

1 M2 AGB Vs DH  0.9806 
2 M3 AGB Vs D2H  0.9999 
3 M4 AGB Vs D  0.9516 
4 M1 AGB Vs D  0.9552 
5 M12 AGB Vs D2H 0.9805 
6 M15 AGB Vs D2H  0.9926 
7 M13 AGB Vs D  0.9969 
8 M10 AGB Vs D  0.9969 

 

4. CONCLUSION 
 

In this study, we constructed 18 allometric 
models applying 3 nonlinear functions and three 
sets of predictor variable (x = D, DH, and D2H), 
for two different datasets. It was observed that 
both D and H in combination are significant in 
predicting aboveground biomass of mixed 
species growing naturally at NDRF. The best- fit 
models were ranked on basis of R2

adj and RSE 
values. For juvenile plants (DBH range: 1.59 – 
9.17 cm), M2 was the best -fit model with x = DH, 
and for large trees (DBH range 11.4 – 77.08 cm), 
M12 performed the best, with a combination (x = 
D2H). The allometric models can be applied to 
predict aboveground biomass for NDRF and 
other adjoining areas having thorny type of 
vegetation which is suited to arid and semi- arid 
conditions.  
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