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Abstract: Each year, an enormous amount of construction waste is produced worldwide. The reuse
of construction waste in construction works is a sustainable solution. The present research work
utilized recycled brick aggregates in the production of concrete. The resulting concrete exhibited
substandard splitting tensile, flexural, and compressive properties. Steel fibers were used to improve
these substandard properties of recycled brick aggregate concrete. The volume fractions of 1%, 2%,
and 3% for steel fibers were mixed in concrete, whereas recycled brick aggregates were obtained
from solid fired-clay bricks, hollow fired-clay bricks, and cement–clay interlocking bricks. The
compressive strength was enhanced by up to 35.53% and 66.67% for natural and recycled brick
aggregate concrete, respectively. Strengthened flexural specimens demonstrated up to 8765.69%
increase in the energy dissipation. Specimens strengthened with steel fibers showed substantially
improved splitting tensile, flexural, and compressive responses. Separate equations were proposed
to predict the peak compressive strength, strain at peak compressive strength, elastic modulus, and
post-peak modulus of recycled brick aggregate concrete. The proposed regression equations were
utilized in combination with an existing compressive stress–strain model. A close agreement was
observed between experimental and predicted compressive stress–strain curves of recycled brick
aggregate concrete.

Keywords: recycled brick aggregate; steel fiber; splitting tensile strength; flexural strength; compres-
sive strength; energy dissipation; analytical modeling; regression

1. Introduction

Numerous studies report the extensive production of structural waste each year [1,2].
Currently, China produces approximately 400 million tons of brick waste annually [1],
whereas Japan, the USA, and Europe produce approximately 77 million, 317 million, and
510 million tons of structural waste each year, respectively [3,4]. The total construction
waste that is produced annually in China is roughly estimated at 1.8 billion tons [5]. These
numbers are alarming in the sense that the waste material must be treated and disposed
properly to eliminate its carbon footprint. These numbers are expected to rise with time
as studies have predicted the concrete demand to be as high as 18 billion tons by the
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year 2050 [6], with per capita usage around 3 tons [7]. Globally, the total building waste
being generated is estimated to be 2.5 billion tons, with concrete as the major constituent [8].

Researchers have boosted their efforts to reuse structural waste in the production of
new concrete [9–12], with the main finding being recycled aggregate concrete (RAC) having
substandard mechanical properties. Vrijders and Desmyter [13] concluded that recycled
aggregates tend to absorb more water than natural aggregates. As a result, the porosity of
recycled aggregates was found to be 10% higher than that of natural aggregates. In addition,
the replacement of 20% and 50% natural aggregates with recycled aggregates reduced the
compressive strength of RAC by 11% and 20% of its actual value, respectively. In the
case of 100% replacement of natural aggregates with recycled aggregates, the compressive
strength of RAC was found to be 30% lower than that of natural aggregate concrete [14].
It has been found that recycled aggregates tend to affect the compressive strength more
than the flexural or tensile strength [15]. Medina et al. [16] also reported 39% reduction
in the compressive strength of RAC when 40% of natural aggregates were replaced with
recycled aggregates. The particle density of RAC was found to be 5–10% lower than that of
concrete with natural aggregates attributed to mortar adhered to the surface of recycled
aggregates [17]. Jiang et al. [18] stated that the reduction in the mechanical properties of
RAC could be avoided by limiting the replacement ratio of natural aggregates below 30%.
Based on Nixon [19], the creep, shrinkage, and peak strain of concrete could be improved by
the addition of recycled aggregates. However, a consensus on the substandard mechanical
behavior of RAC is widely accepted [20].

The substandard properties of RAC have so far limited its use mainly to non-structural
applications [21]. However, the aim is to extend the use of RAC to structural applications
by improving its mechanical behavior. Numerous studies have pointed out the potential
of fiber-reinforced polymer (FRP) jackets in enhancing the behavior of structural mem-
bers [22–27]. A few studies are available highlighting the performance of FRP jackets in the
case of RAC. For instance, glass and carbon FRP jackets were utilized by Gao et al. [28] to
improve the ultimate compressive strength and strain of RAC. Tang et al. [29] noticed a
significant enhancement in the axial ductility and peak compressive strength of RAC after
strengthening with carbon FRP jackets. Han et al. [30] employed naphthalate/terephthalate
composites to strengthen RAC and reported improvements in the ultimate compressive
strength, strain, and axial ductility. Further, the enhancements in mechanical properties of
RAC were found to be more dependent on the confinement stiffness than on the replace-
ment ratio of natural aggregates. Though FRP composites have proved to improve the
substandard behavior of RAC, their high cost cannot be overlooked [31–35]. It is, therefore,
necessary to study alternate cheaper solutions with equivalent efficiency.

The present research work aims to investigate and enhance the substandard properties
of concrete constructed with recycled brick aggregates. For this purpose, a solution in
the form of internal steel fibers was selected. Steel fibers have previously been used
in strengthening applications of structural members. Harajli [36] utilized steel fibers to
improve the bond behavior between lap-spliced bars and surrounding concrete. It was
observed that the brittle splitting tensile failure of substandard lap splices could be avoided
by the addition of internal steel fibers. Song and Hwang [37] added steel fibers to concrete
at the volume fractions of 0.5%, 1.0%, 1.5%, and 2.0%. The maximum compressive strength
was witnessed at the volume fraction of 1.5%, whereas the splitting tensile strength of
concrete enhanced as the volume fraction of steel fibers increased. In addition, Olivito and
Zuccarello [38] reported substantial enhancement in the direct tensile strength of concrete
with the addition of steel fibers. Kachouh et al. [39] examined the performance of steel
fibers in improving the behavior of concrete fabricated using recycled concrete aggregates.
Recycled aggregates were utilized as 70% and 100% replacements of natural aggregates.
A RAC replacement ratio of 70% in conjunction with a steel fiber volume fraction of 1%
was suggested to produce concrete with a limited loss of up to 5% in the design cylinder
compressive strength. Kaplan et al. [40] varied recycled concrete aggregate percentages as
0%, 50%, and 100% in concrete and steel fibers volume fractions as 0%, 1%, and 2%. Test
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results indicated that concrete with the 50% replacement ratio of recycled aggregates and
strengthened with the 1% volume fraction of steel fibers provided the same or even better
mechanical properties than those of unstrengthened natural aggregate concrete.

The addition of steel fibers to concrete with volume fractions ranging from 0.5% to
3% can lead to noticeable enhancements in mechanical properties. The performance of
steel fibers in the case of recycled brick aggregate concrete (RBAC) is yet to be evaluated.
Therefore, this is a novel study that explores the improvements in mechanical properties
of RBAC imparted by steel fibers. This study aims to fill this gap by investigating (1) the
performance of RBAC with and without steel fibers, (2) the effect of the volume fraction
of steel fibers on the enhancements in mechanical properties, and (3) the development
of stress–strain models for RBAC strengthened with steel fibers. Accurate and reliable
analytical expressions are key to the design of structures, especially in the realm of the
performance-based design. Therefore, this research also proposes analytical expressions
to trace the complete compressive stress–strain response of RBAC strengthened with
steel fibers.

2. Experimental Program

2.1. Test Matrix

The test matrix involved a total of 16 specimen types, with three specimens tested for
each type. The specimens were categorized into four groups. Four specimen types were
tested in each group comprising one specimen type without strengthening, whereas the
remaining specimen types were strengthened with 1%, 2%, or 3% volume fractions of steel
fibers, as listed in Table 1. Each specimen type in Table 1 was tested under the compressive,
splitting tensile, and flexural loadings. Specimens in group 1 did not incorporate recycled
aggregates, while specimens in the remaining groups were prepared by replacing 50%
of natural coarse aggregates with recycled brick aggregates. Groups 2, 3, and 4 were
differentiated based on the type of bricks used for recycled aggregates. Recycled brick
aggregates were obtained from solid fired-clay bricks (Type A), hollow fired-clay bricks
(Type B), and cement–clay interlocking bricks (Type C) for groups 2, 3, and 4, respectively.
A four-part nomenclature was utilized to identify each specimen type. The first part,
i.e., CMP, SP, and FLX, represents specimens under the compressive, splitting tensile, and
flexural loadings, respectively. The second part indicates the presence or type of recycled
brick aggregates (i.e., NA = natural coarse aggregates, CBA = crushed brick of Type A,
CBB = crushed brick of Type B, and CBC = crushed brick of Type C). The third part, i.e., SF,
commonly denotes steel fibers, and the fourth part demonstrates the volume fraction of
steel fibers, i.e., 0%, 1%, 2%, or 3%. In addition, CON represents the control specimen.

Table 1. Details and categorization of test specimens.

Group Number
Name of Specimens

Steel Fiber (%)
Number of
SpecimensCompressive

Loading
Splitting Tensile

Loading
Flexural
Loading

1

1 CMP-NA-CON SP-NA-CON FLX-NA-CON 0 3
2 CMP-NA-SF-1 SP-NA-SF-1 FLX-NA-SF-1 1 3
3 CMP-NA-SF-2 SP-NA-SF-2 FLX-NA-SF-2 2 3
4 CMP-NA-SF-3 SP-NA-SF-3 FLX-NA-SF-3 3 3

2

1 CMP-CBA-CON SP-CBA-CON FLX-CBA-CON 0 3
2 CMP-CBA-SF-1 SP-CBA-SF-1 FLX-CBA-SF-1 1 3
3 CMP-CBA-SF-2 SP-CBA-SF-2 FLX-CBA-SF-2 2 3
4 CMP-CBA-SF-3 SP-CBA-SF-3 FLX-CBA-SF-3 3 3
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Table 1. Cont.

Group Number
Name of Specimens

Steel Fiber (%)
Number of
SpecimensCompressive

Loading
Splitting Tensile

Loading
Flexural
Loading

3

1 CMP-CBB-CON SP-CBB-CON FLX-CBB-CON 0 3
2 CMP-CBB-SF-1 SP-CBB-SF-1 FLX-CBB-SF-1 1 3
3 CMP-CBB-SF-2 SP-CBB-SF-2 FLX-CBB-SF-2 2 3
4 CMP-CBB-SF-3 SP-CBB-SF-3 FLX-CBB-SF-3 3 3

4

1 CMP-CBC-CON SP-CBC-CON FLX-CBC-CON 0 3
2 CMP-CBC-SF-1 SP-CBC-SF-1 FLX-CBC-SF-1 1 3
3 CMP-CBC-SF-2 SP-CBC-SF-2 FLX-CBC-SF-2 2 3
4 CMP-CBC-SF-3 SP-CBC-SF-3 FLX-CBC-SF-3 3 3

2.2. Details and Preparation of Test Specimens

The experimental tests were conducted on cylindrical-shaped specimens with the
height and diameter of 300 mm and 150 mm, respectively (Figure 1a), under the compressive
and splitting tensile loadings, in accordance with ASTM C39/C39M-21 [41]. Moreover,
three specimens corresponding to each type, with the dimensions as displayed in Figure 1b,
were tested under the flexural loading. Bricks were crushed using a crushing machine,
followed by the sieve analysis to yield coarse aggregates of the required size. The maximum
size of coarse aggregates was limited to 25 mm. Different types of coarse aggregates used
in this study are illustrated in Figure 2. Steel fibers utilized to strengthen the specimens
comprised hooked ends to improve their bond performance with concrete. A typical steel
fiber was 50–60 mm long, as depicted in Figure 3.
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Figure 3. Typical steel fibers used to strengthen RAC.

Steel fibers were mixed with concrete during the mixing stage. Steel molds were
employed to cast the specimens after mixing, whereas demolding was performed after one
day of casting. All the specimens were then subjected to curing for a period of 28 days in
the laboratory environment. The top and bottom surfaces of each specimen were ground to
yield smooth surfaces for load applications. The preparation process of the test specimens
is shown in Figure 4.
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2.3. Material Properties

The mechanical properties of three brick types were estimated by following ASTM
C1314-21 and ASTM C140/C140M-22a standards [42,43]. Previous studies have indicated
that a replacement ratio of recycled aggregates below 30% does not affect the mechanical
properties of RAC [44–46]. Therefore, 50% of natural aggregates were replaced with
recycled brick aggregates. The properties of bricks are summarized in Table 2. The mix
ratio of concrete corresponding to the target compressive strength of 15 MPa is presented
in Table 3.

Table 2. Mechanical properties of bricks.

Type of Bricks Density of Bricks (kg/m3)
Compressive Strength

of Bricks (MPa)
Water Absorption

of Bricks (%)

Type A 120 3.14 23.27
Type B 140 8.10 16.58
Type C 145 6.26 12.30
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Table 3. Mix ratio of concrete.

Mix Ingredients Quantity
(kg/m3)

Cement 242
Fine aggregates 726

Natural coarse aggregates 605
Clay brick aggregates 605

2.4. Test Setup and Instrumentation

The test setup involved a universal testing machine (UTM) of 500 kN capacity and
linear variable displacement transducers (LVDTs), as displayed in Figure 5. All the speci-
mens were subjected to a monotonic compressive load. Steel plates were attached to the
top and bottom surfaces of the specimens under compression to achieve a smooth and
uniform loading application. The specimens under the splitting tensile loading were placed
longitudinally within UTM.
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3. Experimental Results

3.1. Ultimate Failure Modes

The observed failure modes of all the specimens are illustrated in Figure 6. The control
specimens in all the groups exhibited typical crushing failure of the cylindrical specimens
by forming failure cones, splitting cracks along their heights, and exhibiting extensive
crushing. The specimens with a 1% volume fraction of steel fibers exhibited a delayed
failure as compared to that of the control specimens. In addition, the magnitude of splitting
and crushing was reduced. This issue can be attributed to the presence of steel fibers that
restrained the splitting opening along the height, as depicted in Figure 7. The extent of
brittleness in the failure mode decreased as the volume fraction of steel fibers increased
in all the groups. The failure modes of the specimens with 2% or 3% steel fibers mainly
demonstrated localized concrete crushing toward their top, whereas their bottom sides
indicated slight cracking.
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The specimens under the splitting tensile loading exhibited typical splitting along
their longitudinal axes, as shown in Figure 8. It is important to note that the type of
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splitting failure was independent of the presence or type of recycled brick aggregates. A
similar observation was made for the specimens under the flexural loading. All the flexural
specimens experienced transverse cracking and failed in a sudden manner (Figure 9).
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3.2. Splitting Tensile and Flexural Strengths

A comparison of the splitting tensile strength of the specimens in different groups is
displayed in Figure 10. In the figure, VF stands for the volume fraction of steel fibers. It is
observed that the splitting tensile strength of the specimens in group 1 (i.e., 100% natural
aggregates) was highest, irrespective of the presence and volume fraction of steel fibers. For
instance, for 1% VF, the splitting tensile strength of natural aggregate concrete was 2.02 MPa,
followed by 1.76 MPa, 1.70 MPa, and 1.54 MPa for CBC, CBB, and CBA aggregate type con-
crete, respectively. The lowest splitting tensile strength was demonstrated by group 2 speci-
mens (i.e., recycled aggregates obtained from solid fired-clay bricks), followed by group 3
(i.e., recycled aggregates obtained from hollow fired-clay bricks) and group 4 (i.e., recy-
cled aggregates obtained from cement–clay interlocking bricks) specimens, respectively.
Nonetheless, the specimens in each group exhibited an improvement in the splitting tensile
strength with the increase in the volume fraction of steel fibers.
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Figure 10. Comparison of splitting tensile strength.

Figure 11 presents a comparison of the flexural strength of the specimens in all the
groups. In the figure, VF represents the volume fraction of steel fibers. Like the splitting
tensile strength, the highest flexural strength was witnessed in group 1 specimens, and
the addition of recycled brick aggregates reduced the flexural strength. For example, for
2% VF, the flexural strength of natural aggregate concrete was 3.11 MPa, followed by
2.52 MPa, 2.43 MPa, and 2.27 MPa for CBC, CBB, and CBA aggregate type concrete,
respectively. Unlike the splitting tensile strength, no clear trend in the flexural strength of
the specimens with different recycled aggregates was seen. However, the specimens in all
the groups still showed an enhancement in their flexural strengths as the volume fraction
of steel fibers increased.
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Figure 11. Comparison of flexural strength.

The load applied on the flexural specimens was continuously monitored by using a
load cell in addition to the measured vertical displacement. The load–displacement curves
for the flexural specimens are depicted in Figure 12. It is important to mention that the
control flexural specimens in all the groups did not indicate any ductility and demonstrated
an abrupt drop in the flexural strength after reaching the peak load. The addition of
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1% volume fraction of steel fibers did not impart any noticeable ductility. However, a
substantial improvement in the ductility was witnessed for 2% and 3% volume fractions of
steel fibers. Further, the rate of the post-peak flexural strength degradation was reduced as
the volume fraction of steel fibers increased. This observation was consistent irrespective of
the presence or the type of recycled brick aggregates. Another important observation was
that the specimens with 2% or 3% volume fraction of steel fibers displayed a slight drop in
the peak flexural strength. Nevertheless, these specimens were able to regain the flexural
strength after the initial drop. This can be attributed to steel fibers that effectively bridged
the initial flexural cracks and helped RAC exhibit improved ductility.
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Figure 12. Flexural load–displacement curves for: (a) group 1, (b) group 2, (c) group 3, and (d) group
4 specimens.

A summary of the flexural strength and energy dissipation results is presented in
Table 4. Group 3 specimens provided the highest enhancement in the flexural strength,
followed by group 4 and group 2 specimens, respectively. The energy dissipation values
were achieved by calculating the area under the flexural load–displacement curves of the
specimens. The increase in the energy dissipation was more pronounced than the increase in
the flexural strength. It can be noted that up to 8765.69% increase in the energy dissipation
was observed in group 3 specimens, whereas the increase in the energy dissipation of
group 2 and group 4 specimens was 5823.61% and 6748.36%, respectively. Finally, the
improvement in the flexural ductility was least prominent in the case of group 1 specimens.
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Table 4. Flexural strength and corresponding energy dissipation values.

Group Specimen
Peak Flexural

Strength
(kN)

Standard
Deviation in
Peak Flexural

Strength

Increase in
Peak Flexural

Strength
(%)

Energy
Dissipation

(kN-mm)

Increase in
Energy

Dissipation
(%)

1

FLX-NA-CON 6.56 0.51 - 2.87 -
FLX-NA-SF-1 6.70 0.14 2.13 11.50 300.70
FLX-NA-SF-2 6.90 0.60 5.18 73.86 2473.52
FLX-NA-SF-3 7.18 0.29 9.45 108.59 3683.62

2

FLX-CBA-CON 4.87 0.10 - 1.44 -
FLX-CBA-SF-1 4.90 0.18 0.62 15.89 1003.47
FLX-CBA-SF-2 5.03 0.33 3.29 48.91 3296.53
FLX-CBA-SF-3 5.13 0.21 5.34 85.30 5823.61

3

FLX-CBB-CON 3.84 0.31 - 1.02 -
FLX-CBB-SF-1 4.62 0.25 20.31 29.89 2830.39
FLX-CBB-SF-2 5.40 0.26 40.62 40.11 3832.35
FLX-CBB-SF-3 5.77 0.19 50.26 90.43 8765.69

4

FLX-CBC-CON 4.84 0.18 - 1.22 -
FLX-CBC-SF-1 5.40 0.50 11.57 35.47 2807.38
FLX-CBC-SF-2 5.60 0.37 15.70 41.27 3282.79
FLX-CBC-SF-3 5.73 0.20 18.39 83.55 6748.36

In a similar way, the load–displacement curves corresponding to the splitting tensile
tests are illustrated in Figure 13. Like the flexural load–displacement curves, the splitting
tensile load–displacement responses also indicated an increased ductility as the volume
fraction of steel fibers increased. Generally, the maximum ductility was observed, cor-
responding to 3% volume fraction of steel fibers. The increase in the energy dissipation
was more significant than the increase in the splitting tensile strength (Table 5). It can be
mentioned that up to 477.85% enhancement in the energy dissipation was seen in group
3 specimens, while the enhancement in the energy dissipation of group 2 and group 4
specimens was 242.54% and 195.76%, respectively.
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Figure 13. Splitting tensile load–displacement curves for: (a) group 1, (b) group 2, (c) group 3, and
(d) group 4 specimens.

Table 5. Splitting tensile strength and corresponding energy dissipation values.

Group Specimen
Peak Splitting

Tensile Strength
(kN)

Standard
Deviation in

Peak Splitting
Tensile Strength

Increase in Peak
Splitting Tensile

Strength
(%)

Energy
Dissipation

(kN-mm)

Increase in
Energy

Dissipation
(%)

1

SP-NA-CON 121 3.50 - 21.42 -
SP-NA-SF-1 143 6.79 18.18 161.40 653.50
SP-NA-SF-2 157 5.55 29.75 279.83 1206.39
SP-NA-SF-3 164 4.42 35.53 342.31 1498.08

2

SP-CBA-CON 91 5.89 - 73.50 -
SP-CBA-SF-1 108 7.98 18.68 104.11 41.64
SP-CBA-SF-2 119 3.30 30.76 285.71 288.72
SP-CBA-SF-3 124 6.10 36.26 251.77 242.54

3

SP-CBB-CON 98 3.98 - 45.33 -
SP-CBB-SF-1 121 6.83 23.46 159.38 251.59
SP-CBB-SF-2 128 5.79 30.61 242.22 434.34
SP-CBB-SF-3 143 5.00 45.91 261.94 477.85

4

SP-CBC-CON 102 5.10 - 127.51 -
SP-CBC-SF-1 125 2.30 22.54 219.01 71.75
SP-CBC-SF-2 155 7.92 51.96 372.21 191.91
SP-CBC-SF-3 170 5.79 66.67 377.13 195.76

3.3. Peak Compressive Strength

Figure 14 shows a comparison of the peak compressive strength of the specimens in
all the groups. In the figure, VF designates the volume fraction of steel fibers. It is evident
that the effect of recycled aggregates on the peak compressive strength was highest in
the case of solid fired-clay bricks (i.e., group 2). The addition of steel fibers increased the
peak compressive strength in all the groups. However, this increase was maximum in the
case of group 2 specimens for all the volume fractions of steel fibers. However, steel fibers
could not improve the peak compressive strength of RAC to the value that corresponded to
natural aggregate concrete. For instance, for 1% VF, the compressive strength of natural
aggregate concrete was 16.83 MPa, followed by 13.51 MPa, 13.02 MPa, and 12.56 MPa for
CBB, CBC, and CBA aggregate type concrete, respectively.



Buildings 2023, 13, 2820 15 of 23Buildings 2023, 13, x FOR PEER REVIEW 15 of 23 
 

 
Figure 14. Comparison of peak compressive strength. 

3.4. Compressive Stress–Strain Curves 
The measured compressive stress–strain curves are depicted in Figure 15. The effect 

of steel fibers on the compressive stress–strain curves can be observed in the form of the 
elastic modulus as well as the peak compressive strength. Clearly, a greater volume frac-
tion of steel fibers resulted in an increased elastic modulus of concrete, irrespective of the 
presence and type of recycled brick aggregates. Similarly, an increased volume fraction of 
steel fibers led to higher peak compressive strength.  

  
(a) (b) 

 
(c) (d) 

Figure 15. Compressive stress–strain curves for: (a) group 1, (b) group 2, (c) group 3, and (d) group 
4 specimens. 

15
.4

5

16
.8

3

17
.9

5

19
.3

6

11
.6

6

12
.5

6

12
.9

2

14
.0

5

9.
92

13
.5

1

14
.4

3

14
.5

8

12
.7

3

13
.0

2

13
.5

14
.0

5

0

5

10

15

20

25

30

Control 1% VF 2% VF 3% VF

Co
m

pr
es

siv
e 

St
re

ng
th

 (M
Pa

)

Natural Aggregates Recycled Aggregates CBA
Recycled Aggregates CBB Recycled Aggregates CBC

0

10

20

30

0.000 0.010 0.020 0.030

St
re

ss
 (M

Pa
)

Strain

CMP-NA-SF-3
CMP-NA-SF-2
CMP-NA-SF-1
CMP-NA-CON

0

10

20

30

0.000 0.010 0.020 0.030

St
re

ss
 (M

Pa
)

Strain

CMP-CBA-SF-3
CMP-CBA-SF-2
CMP-CBA-SF-1
CMP-CBA-CON

0

10

20

30

0.000 0.010 0.020 0.030

St
re

ss
 (M

Pa
)

Strain

CMP-CBB-SF-3
CMP-CBB-SF-2
CMP-CBB-SF-1
CMP-CBB-CON

0

10

20

30

0.000 0.010 0.020 0.030

St
re

ss
 (M

Pa
)

Strain

CMP-CBC-SF-3
CMP-CBC-SF-2
CMP-CBC-SF-1
CMP-CBC-CON

Figure 14. Comparison of peak compressive strength.

3.4. Compressive Stress–Strain Curves

The measured compressive stress–strain curves are depicted in Figure 15. The effect of
steel fibers on the compressive stress–strain curves can be observed in the form of the elastic
modulus as well as the peak compressive strength. Clearly, a greater volume fraction of
steel fibers resulted in an increased elastic modulus of concrete, irrespective of the presence
and type of recycled brick aggregates. Similarly, an increased volume fraction of steel fibers
led to higher peak compressive strength.
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Figure 15. Compressive stress–strain curves for: (a) group 1, (b) group 2, (c) group 3, and (d) group
4 specimens.
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Table 6 summarizes the peak compressive strength, peak compressive strain, and
elastic modulus values. An increase of 24.52%, 20.51%, 61.62%, and 15.62% in the peak
compressive strength was obtained for 3% volume fraction of steel fibers in groups 1, 2,
3, and 4, respectively. The increase in the elastic modulus for 3% volume fraction of steel
fibers in groups 1, 2, 3, and 4 was 52.71%, 85.21%, 58.65%, and 57.41%, respectively.

Table 6. Peak compressive strength, peak compressive strain, and elastic modulus values.

Group Specimen

Peak
Compressive

Strength
(MPa)

Standard
Deviation in

Peak
Compressive

Strength

Increase in Peak
Compressive

Strength
(%)

Peak
Compressive

Strain

Elastic Modulus
(GPa)

Increase in
Elastic Modulus

(%)

1

CMP-NA-CON 15.5 1.11 - 0.0063 2.58 -
CMP-NA-SF-1 16.8 2.21 8.39 0.0062 2.88 11.63
CMP-NA-SF-2 17.9 2.09 15.48 0.0057 3.93 52.33
CMP-NA-SF-3 19.3 1.75 24.52 0.0056 3.94 52.71

2

CMP-CBA-CON 11.7 1.11 - 0.0081 1.42 -
CMP-CBA-SF-1 12.5 0.67 6.84 0.0077 1.73 21.83
CMP-CBA-SF-2 12.9 2.10 10.26 0.0078 2.12 49.29
CMP-CBA-SF-3 14.1 1.19 20.51 0.0071 2.63 85.21

3

CMP-CBB-CON 09.9 2.25 - 0.0051 2.08 -
CMP-CBB-SF-1 13.5 1.67 36.36 0.0063 2.38 14.42
CMP-CBB-SF-2 14.4 2.21 45.45 0.0061 2.70 29.81
CMP-CBB-SF-3 16.0 1.21 61.62 0.0059 3.30 58.65

4

CMP-CBC-CON 12.8 2.10 - 0.0096 1.62 -
CMP-CBC-SF-1 13.0 0.53 1.56 0.0083 1.62 0.00
CMP-CBC-SF-2 14.1 1.07 10.16 0.0073 1.90 17.28
CMP-CBC-SF-3 14.8 2.10 15.62 0.0062 2.55 57.41

4. Analytical Modeling

The knowledge of concrete parameters such as the compressive strength and strain
is essential to perform structural modeling. It was observed that RBAC possessed sub-
standard compressive strength, and its elastic modulus, as well as the post-peak modulus,
were dependent on the volume fraction of steel fibers. The following subsections present
individual regression models for each of these parameters by considering the volume
fraction of steel fibers and the type of recycled brick aggregates.

4.1. Peak Compressive Strength

It was resulted in Section 3 that the peak compressive strength, f ′cc, of RBAC improved
as the volume fraction of steel fibers increased. However, the increase in the peak compres-
sive strength was not consistent for different recycled brick aggregates. Therefore, it was
found necessary to include both the volume fraction of steel fibers and the compressive
strength of recycled bricks in the regression model as explanatory variables. Nonlinear
regression was performed by solving nonlinear least squares with the Gauss–Newton
algorithm. The initial values of all regression constants were taken as 1.0. The following
equation led to a good coefficient of determination, R2, i.e., 0.96. In the past, the peak
compressive strength was found to be closely related to the peak compressive strength of
unconfined concrete and the amount of external confinement [47–49]. Consequently, by
following the analogy, Equation (1) was proposed.

f ′cc = fco

[
1 + 0.037

(
Vf

)1.451
+ 107.866

(
Vf

)0.262
(

fbc
fco

)29.068
]

(1)

where f ′cc is the peak compressive strength of strengthened RBAC, fco is the peak compres-
sive strength of unstrengthened RBAC, fbc is the compressive strength of recycled bricks,
and Vf is the volume fraction of steel fibers. The performance of Equation (1) in predicting
the peak compressive strength, f ′cc, is displayed in Figure 16. It is evident from the figure
that the proposed equation resulted in a good agreement with the experimental results.
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4.2. Elastic Modulus

According to Table 6, the elastic modulus, Er, of RBAC enhanced as the volume
fraction of steel fibers increased. Like the peak compressive strength, the increase in the
elastic modulus was also inconsistent in different groups. Accordingly, the volume fraction
of steel fibers and the compressive strength of recycled bricks were considered in the
regression model. Equation (2) was found appropriate to predict the elastic modulus of
RBAC strengthened with steel fibers.

Er = 28.268
(

Vf

)0.356
(

fbc
fco

)0.060

( fco)
−1.104 (2)

where Er is the elastic modulus of RBAC. Figure 17 illustrates the performance of
Equation (2) in predicting the elastic modulus of RBAC. An R2 value of 0.95 suggested that
Equation (2) achieved a good agreement with the experimental results.

4.3. Rate of Post-Peak Modulus

It was observed in Section 3 that the rate of the compressive strength degradation in the
post-peak region was dependent on the volume fraction of steel fibers. Since this strength
degradation was inconsistent in all the groups, the compressive strength of recycled bricks
was also considered in the regression model. The modulus in the post-peak branch of
the compressive stress–strain curve was denoted by Epp, and the following equation
was proposed.

Epp = 1952.297
(

Vf

)−0.737
(

fbc
fco

)0.558

( fco)
0.090 (3)

where Epp is the post-peak modulus. The obtained R2 value of 0.93 in Figure 18 demonstrated
a close agreement of the results from using Equation (3) with the experimental results.
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4.4. Strain at Peak Compressive Strength

The strain at the peak compressive strength must be known to derive the compressive
stress–strain curves. It was witnessed that the strain at the peak compressive strength
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decreased as the volume fraction of steel fibers increased. The following equation was
proposed to predict the strain at the peak compressive strength.

εcc = εco

[
1 + 0.173

(
Vf

)−1.372
− 0.438

(
Vf

)−0.200
(

fbc
fco

)2.808
]

(4)

where εco is the strain at the peak compressive strength in an unstrengthened state and can
be taken as 0.007 for recycled brick aggregates, and εcc is the strain at the peak compressive
strength in a strengthened state. In accordance with Figure 19, Equation (4) led to a close
agreement with the experimental peak compressive strains of RBAC.
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4.5. Predicted Compressive Stress–Strain Curves of RBAC

A parabolic shape for the initial stress–strain response of RBAC was assumed up to
the peak compressive strength. For this purpose, the initial formulations of Popovics [50],
later modified by Mander et al. [51], were adopted. The stress, fc, at any arbitrary strain, ε,
is given as:

fc = f ′cc
x× r

r− 1 + xr (5)

x =
ε

εcc
(6)

r =
Er(

Er − f ′cc
εcc

) (7)

where separate equations for the initial slope, Er, f ′cc, and εcc have already been proposed.
For the post-peak branch, the proposed equation for the post-peak modulus, Epp, was
utilized. The comparison of the predicted and experimental stress–strain curves is depicted
in Figure 20. In the figure, Exp represents experimental and Pred designates predicted. In
general, a good agreement was achieved for specimens in groups 1 and 2, whereas some
discrepancies were experienced in the elastic and post-peak modulus of group 3 specimens.
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5. Conclusions

This study was performed to assess the performance of steel fibers in improving
the mechanical properties of concrete comprising recycled brick aggregates. The volume
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fractions of 1%, 2%, and 3% for steel fibers were mixed in concrete, whereas recycled brick
aggregates were obtained from solid fired-clay bricks (group 2), hollow fired-clay bricks
(group 3), and cement–clay interlocking bricks (group 3). However, group 1 specimens
were cast with natural aggregates. The behavior of RBAC in terms of the splitting tensile
strength, flexural strength, and compressive strength was investigated. The following
important conclusions were drawn.

• The control specimens in all the groups exhibited typical crushing failure of cylindrical
specimens by forming failure cones, splitting cracks along their heights, and exhibiting
extensive crushing. The specimens strengthened with steel fibers indicated a delayed
failure compared to that of the control specimens. In addition, the magnitude of
splitting and crushing was reduced.

• The control flexural specimens in all the groups did not show any ductility and
demonstrated an abrupt drop in the flexural strength after reaching the peak load.
The addition of 1% volume fraction of steel fibers did not impart any noticeable
ductility. However, a substantial improvement in the ductility was observed for 2%
and 3% volume fractions of steel fibers. Further, the rate of the post-peak flexural
strength degradation decreased as the volume fraction of steel fibers increased. The
enhancement in the energy dissipation was more pronounced than the increase in
the flexural strength. An 8765.69% increase in the energy dissipation by the flexural
specimens was witnessed in group 3 specimens, while this increase in group 2 and
group 4 specimens was 5823.61% and 6748.36%, respectively.

• Like the flexural specimens, the splitting tensile specimens also provided an increased
ductility as the volume fraction of steel fibers increased. Generally, the maximum
ductility was observed, corresponding to 3% volume fraction of steel fibers.

• The addition of steel fibers improved the peak compressive strength in all the groups.
However, this increase was maximum in the case of group 2 specimens for all the
volume fractions of steel fibers. Nonetheless, steel fibers could not enhance the
peak compressive strength of RBAC to the value that corresponded to natural aggre-
gates concrete.

• Separate equations were proposed to predict the peak compressive strength, strain
at the peak compressive strength, elastic modulus, and post-peak modulus of RBAC.
The proposed regression equations were utilized in combination with the existing
compressive stress–strain model. In general, a close agreement was achieved between
the experimental and predicted compressive stress–strain curves of RBAC.
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