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The surgical treatment of injuries to the spine often requires the placement of pedicle
screws. To prevent damage to nearby blood vessels and nerves, the individual vertebrae
and their surrounding tissue must be precisely localized. To aid surgical planning in this
context we present a clinically applicable geometric flow based method to segment the
human spinal column from computed tomography (CT) scans. We first apply anisotropic
diffusion and flux computation to mitigate the effects of region inhomogeneities and partial
volume effects at vertebral boundaries in such data. The first pipeline of our segmentation
approach uses a region-based geometric flow, requires only a single manually identified
seed point to initiate, and runs efficiently on a multi-core central processing unit (CPU). A
shape-prior formulation is employed in a separate second pipeline to segment individual
vertebrae, using both region and boundary based terms to augment the initial
segmentation. We validate our method on four different clinical databases, each of
which has a distinct intensity distribution. Our approach obviates the need for manual
segmentation, significantly reduces inter- and intra-observer differences, runs in times
compatible with use in a clinical workflow, achieves Dice scores that are comparable to the
state of the art, and yields precise vertebral surfaces that are well within the acceptable
2 mm mark for surgical interventions.

Keywords: geometric flows, computed tomography, spine, vertebrae, segmentation (image processing), shape
priors, active contours, level sets

1 INTRODUCTION

Surgical treatment is required for many spine-related conditions including spinal tumours, herniated
discs, scoliosis, spinal stenosis, injuries to the cranio-cervical junction and osteoporosis. These
surgical procedures often require the placement of pedicle screws and rods to provide better
mechanical stability when adjacent vertebrae must be fused. A mal-positioned screw can have severe
neurological (Mac-Thiong et al., 2013), vascular or mechanical ramifications. Screw diameter errors
or slight deviations in orientation can cause medial and inferior cortical perforation leading to nerve
damage. Pedicle wall fractures associated with cortical perforations decrease screw fixation strength.
Length errors can also be critical; a screw that is too longmay injure the vessels anteriorly and a screw
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that is too short can be associated with weaker fixation.
Unfortunately, when using free-hand techniques, screw
malpositioning is relatively common, with rates ranging widely
in the literature from 0 to over 50% (Laine et al., 1997; Xu et al.,
1998; Kuklo et al., 2005; Di Silvestre et al., 2007; Kim et al., 2008;
Upendra et al., 2008; Şarlak et al., 2009; Cui et al., 2012) with more
common error rates of 20–30% reported in (Castro et al., 1996;
Schulze et al., 1998; Haberland et al., 2000; Laine et al., 2000;
Koller et al., 2008). Image-guided surgical navigation provide

tools to track the patient’s anatomy and surgical instruments to
ensure the accurate placement of these screws, while minimizing
potential complications or damage to nearby blood vessels, nerves
or tissues due to screw malpositioning (Goulet, 2010; Drouin
et al., 2017).

The first step in image-guided spinal surgery is the
segmentation of the vertebral column from a patient’s CT
images to build 3D surface models to be used by the surgical
navigation system. The success of downstream tasks such as the

FIGURE 1 | (A) Examples of challenges in spine segmentation. The image on the extreme left shows an anterior-posterior subluxation of the L4 and L5 vertebrae.
The image in the middle shows gaps on the vertebral boundary, which may be physiological due to vessel injection at this location. The image on the right has missing
boundaries as well, and a different intensity distribution due to the use of a different scanner and acquisition protocol. (B and C) Coronal and sagittal slices of the original
image (left column), edge-enhanced image (middle column) and flux-map (rightmost column). The application of the edge-enhancing diffusion process, as
explained in Section 2.2.1, on the original image (left column) results in the edge-enhanced image (middle column). The contrast between the vertebral cortical bone
surface and its nearby regions (rightmost image) is enhanced due to the flux computation step, as explained in Section 2.2.2.
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registration of pre-operative scans to a patient’s anatomy,
depends on the accuracy of the segmented vertebral models.
Manual segmentation is time consuming and subject to errors
that can cause inter- and intra-observer variability. Furthermore,
the 20–30 min required to manually segment vertebrae makes
this step difficult to justify for a busy surgeon. Automatic
segmentation of the spine is challenging since it is a complex
structure, with vertebrae changing in shape from the top to the
bottom of the spine, and with there being additional variations
between subjects. There might be gaps in the vertebral boundaries
due to partial volume effects, insufficient bone density or
fractures. The intensity distribution inside the trabecular bone
and outside the cortical bone can also be inhomogeneous. In
addition, the CT images may be acquired on different scanners,
with different parameters, causing additional variability.
Figure 1A provides qualitative examples of some of the
challenges faced in spine segmentation due to these reasons.

The limited availability of ground truth segmentations has
lead to the development of algorithms that are specialized for
specific datasets. In principle the segmentation method should
not be limited by the field-of-view of the image scans and it
should be able to segment vertebrae which are partially visible, if
necessary. Given the fact that the CT images are often obtained
using different protocols, the method should also be applicable to
different image intensity distributions. We begin with a review of
related work on vertebrae segmentation from CT images and
highlight some of its present drawbacks.

CT Vertebrae Segmentation
CT vertebrae segmentation approaches can be broadly classified
into the following categories: thresholding based techniques,
active contours and level-sets, graph-cuts, deformable shape-
based models, machine learning methods with handcrafted
features, and deep learning methods.

Thresholding based methods are used to separate regions
based on their raw intensity values. A fully automatic 3D
segmentation method using adaptive thresholding was
proposed in (Zhang et al., 2010). An initial segmentation is
followed by automatic flood-filling and is then refined by an
iterative and adaptive thresholding step, exploiting local
connectivity and intensity statistics. An interactive
segmentation tool was developed by Kaminsky et al. (2004),
combining different techniques including logical and
morphological operators, filtering, region growing, affine, and
rigid transformations. Whereas such methods may work in
practice, they rely on heuristics to select an appropriate range
of threshold values. They might fail in cases where there is no
clear demarcation between the foreground and the background
intensity values.

Active contours or surfaces evolve a deformable model to
extract the region of interest in two-dimensional (2D) image or a
three-dimensional (3D) volume. Such techniques have often been
used to segment vertebra. As an example, Tan et al. (2008) uses a
cascade of active contours, to segment vertebrae by exploiting
image information at multiple scales. Each level-set follows the
geodesic active contour (GAC) formulation (Caselles et al., 1995)
differing only in the criteria used for the gradient term. An edge

and region-based level-set (ERBLS) with an Otsu adaptive
threshold automatic initialization method was proposed by
Huang (2013), which reconstructs 3D vertebral models from
2D axial segmented slices. This method was not directly
applied to 3D volumes but rather was used to segment each
individual 2D slice. Lim et al. (2013) combined a Willmore force
term, a boundary energy functional, and a kernel density
estimation based shape-prior within a level-set framework to
produce good segmentations of the lumbar region in 3D. A
related method was proposed by Kim and Kim (2009) using
3D deformable fences (3DDF) to separate adjacent vertebrae, but
this approach required heuristic thresholds and an alternation
between 2D and 3D segmentations of vertebrae, discs and the
spinal cord.

The variation in vertebral shape complexity and pixel
intensities in CT data can be captured from a training dataset
of ground truth segmented volumes, to create an appearance
model. Klinder et al. (2009) described a pipeline for one of the
earliest appearance-based models to segment vertebrae in
previously aligned CT data, automatically detecting,
identifying, and segmenting vertebrae. Ibragimov et al. (2015)
and Korez et al. (2015a) have combined alignment and detection
with a shape-constrained model to segment vertebrae. The
detection is based on interpolation theory, consisting of an
alignment step between a 3D mean shape mesh and each
vertebra using an objective function, followed by a mesh
deformation step. A part-based active shape model (ASM)
decomposition and conditional shape model based
segmentation procedure was proposed by Pereañez et al.
(2015), to better resolve fine details that are not segmented by
standard shape models. Ibragimov et al. (2014a) used a landmark
based shape representation using concepts from the theory of
transport, and combined it with a landmark detection algorithm
to segment vertebrae in 3D. Forsberg (2015) proposed an atlas-
based registration method, while Stern et al. (2011) used a
parameterized 3D model to segment vertebral bodies. A
statistical multi-vertebrae shape and pose model was
developed by Rasoulian et al. (2013). This method depends
heavily on a training set to segment the entire lumbar region,
and assumes that the shape and pose of different vertebrae are
highly correlated. Castro-Mateos et al. (2015) introduced a
statistical inter-space model, which uses a multi-object
structure to learn the statistical distribution of relationships
between neighboring regions to segment the vertebral column.
Kadoury and Paragios (2010) used a training set of prior mesh
models to develop a low dimensional manifold embedding which
establishes patterns of global shape variations, followed by the
capture of appearance. At inference time, a higher-order Markov
Random Field (MRF) is used to measure the similarity between
data and shape. A graph-cuts formulation, which integrates a
linear combination of Gaussians (LCG), aMarkov Gibbs Random
Field (MGRF), and a distance probabilistic model obtained from
a 3D shape-prior, was developed by Aslan et al. (2010) to model
shape and appearance variations. A disadvantage of the above
appearance and shape-based methods is that they require the
manual identification of multiple landmark points, which can be
laborious.
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Amachine learning method by Chu et al. (2015) automatically
localizes and segments 3D vertebral bodies by using a random
forest regressor, and a Hidden Markov Model (HMM). As part of
a detection pipeline, Kelm et al. (2013) developed a segmentation
approach based on iterative marginal space learning,
incorporating pose prior information. Wang et al. (2015) used
a multi-kernel multi-dimensional support vector regressor to
segment multiple structures, i.e., axial and sagittal vertebral
slices and discs, in multiple imaging modalities. A
disadvantage of such algorithms is that they require training
data and thus cannot be easily adopted in clinical settings, where
such data may be scarce.

In recent years deep learning approaches have become very
popular for CT spine segmentation (Korez et al., 2016; Korez
et al., 2017; Sekuboyina et al., 2017; Janssens et al., 2018;
Lessmann et al., 2019; Khandelwal and Yushkevich, 2020;
Sekuboyina et al., 2020). Vertebrae are segmented in
succession using a convolutional neural network (ConvNet)
based approach by Lessmann et al. (2019). The network is
augmented with a memory component which acts as a prior,
and is used to iteratively constrain the search for the next vertebra
to be segmented. Korez et al. (2016) have designed a 3D ConvNet
architecture which is used to learn the appearance of the vertebral
bodies of MR images to generate 3D spatial probability maps,
which guide a deformable model toward their boundaries.
Janssens et al. (2018) used a cascade of fully convolutional
networks (FCNs) to localize the bounding-box around the
lumbar region as an initialization, together with a
segmentation network to label pixels as either belonging to the
foreground or the background.

A vertebrae detection and segmentation challenge, VerSe: “A
Vertebrae Labelling and Segmentation Benchmark for Multi-
detector CT Images” (Löffler et al., 2020; Sekuboyina et al.,
2020), consisting of a variety of fields of view, thoraco-lumbar
and cervico-thoraco-lumbar scans, a mix of sagittal and isotropic
reformatting, and cases with vertebral fractures, metallic
implants, and foreign materials, was introduced in 2019. A
total of eleven groups, using deep learning, participated in the
competition and benchmarked their segmentation algorithms on
a test set of 80 images using a training set of 80 images. A
disadvantage of deep learning methods is that the results of the
segmentations obtained by them are not directly interpretable in
that the learned network weights may not have a clear biological
meaning to a clinician or a radiologist. This can be an obstacle to
their acceptance in the clinic. Deep learning methods also depend
on a large number of annotated training images and the learned
models may not easily generalize to handle different data
distributions.

Contributions of This Paper
In this paper we propose two independent pipelines to segment
the entire spine, as well as each individual vertebra on standard
dose imaging. The first pipeline uses geometric flows within a
level-set framework to segment the entire spine as a single surface
object. The second pipeline incorporates knowledge of vertebral
geometry (shape) with information gained from the distributions
of the image intensities in their vicinity to segment individual

vertebrae. Such approaches are not only more intuitive and
practical than previous patch-based and complex shape based
methods, but also prove to be accurate and precise. We show that
it is possible to achieve close to state-of-the-art results for spine
segmentation from CT images, as well as for segmentations of
individual vertebrae, with a limited number of labelled vertebrae
to build the shape prior. In both cases the computation time on
multi-core CPUs is acceptable for use in clinical settings.

Our approach uses an anisotropic diffusion and flux integral
based geometric flow to pre-process the CT images, which helps
mitigate some of the challenges in spine segmentation due to poor
image quality. By having the clinician place one or more seeds on
the spine, which takes only a few seconds, we obviate the need to
automatically detect inter-vertebral discs or other structures to
segment the spine. We demonstrate the clinical relevance of the
method by validating it on three publicly available databases and
on one in-house database. The entire procedure takes only
15 min, making it easy to fit in the clinical workflow. We
highlight additional advantages of our approach, in
comparison to the methods reviewed above, in Section 4.

2 MATERIALS AND METHODS

2.1 Databases
Four sets of vertebral data were used to test our proposed
algorithm.

2.1.1 Database 1: Healthy Cases (Lumbar Vertebrae)
A publicly available database from Ibragimov et al. (2014b) of 50
vertebrae was extracted from 10 axially reconstructed CT images
of the lumbar region of the spine, with in-plane voxel size between
0.282 and 0.791 mm, and slice thickness between 0.725 and
1.530 mm. The lumbar vertebrae (L1-L5) were manually
segmented to obtain a binary mask for each vertebra.

2.1.2 Database 2: CSI MICCAI Challenge Database
(Thoracular-Lumbar Vertebrae)
The Department of Radiological Sciences, University of
California, Irvine, School of Medicine acquired data on the
Philips or Siemens multidetector CT scanners (Yao et al.,
2012). The datasets of spine CT were acquired during daily
clinical routine work in a trauma center from 10 adults
ranging in age from 16 to 35 years, without intravenous
contrast. The in-plane resolution is between 0.3125 and
0.3613 mm and the slice thickness is 1 mm. In each scan, all
12 thoracic and 5 lumbar vertebrae, totalling, 120 thoracic and 50
lumbar vertebrae across 10 subjects, have been manually
segmented and are provided as groundtruth references.

2.1.3 Database 3: Pathology Cases (Lumbar Vertebrae)
The Montréal Neurological Institute (MNI) provided CT images
of the lumbar region of 30 patients. The images were acquired
using a Picker International PQ6000 scanner. Manual voxel-
based segmentations of the L4 vertebra were provided for each
image. The in-plane resolution is 512 × 512 voxels with a voxel
size of 0.352 × 0.352 mm2. The number of slices ranges from 55 to
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200, with a slice thickness of 1.0–2.0 mm. The labels were
assigned by a person familiar with the anatomy and were then
checked and revised by a neurosurgeon. The non low-dose images
were acquired with 130 kVp tube potential and 175A tube current
with one image acquired with 225A tube current. The patients
consist of 22 females and 5 males, 48–79 years in age, with a
median age of 67. A manual voxel-based segmentation of the L4
vertebra was provided for each image. We note that we are
missing age and sex information for three subjects out of the
cohort of thirty.

2.1.4 Database 4: VerSe Dataset: Segmentation
Benchmark for Multi-Detector CT Images
We use the open source VerSe Database (Sekuboyina et al., 2020)
collected from multiple multi-detector CT scanners. The dataset
resembles a typical clinical distribution in terms of field-of-view
(FoV), scan setting, and findings in emergency as well as in
oncological and neurosurgical conditions. It consists of a variety
of field of FOVs, including thoraco-lumbar and cervico-thoraco-
lumbar scans, a mix of sagittal and isotropic reformatting, and
cases with vertebral fractures, metallic implants, and foreign
materials. The database provides manual segmentations of
cervical, thoracic and lumbar regions, where available, across
the different scans. Our method is not designed to work on low-
dose CT images and images with implants. Therefore, to have a
selection criterion for our method, we compute Signal-to-Noise
ratio (SNR), defined to be the ratio of the average signal value to
the standard deviation of the signal (Rowlands, 2017), for each
image. We then selected images with SNR in the top 50th
percentile from the training, validation, and test sets. This
leaves us with a set of 43 medium-to-high dose CT images
with which to evaluate our method.

2.2 Pre-processing of CT Volumes
We first normalized the intensity values to fall within a specified
range. We capped the values above the 95th percentile to be 1 and
the values below the 5th percentile to be 0. The rest of the
Hounsfield Units were then scaled proportionately to fall between
0 and 1. One subject (Subject number 06 in Database 2) was
found to have an intensity distribution that was quite different
from the representative distribution, i.e., the Hounsfield Units did
not follow the chosen 5th and 95th percentile thresholds.
Therefore, we removed this subject from further analysis.

2.2.1 Non-linear Anisotropic Diffusion Filtering
In most previous methods a Gaussian filter is used to smooth the
image to have well defined image gradients, and to avoid intensity
singularities. This often leads to an unnecessary loss in detail, for
example, a Gaussian filter might substantially blur the edges of
the vertebrae. Some of the earliest filtering methods are based on
the anisotropic edge preserving diffusion method proposed by
Perona and Malik (1990). In our approach we also propose to use
anisotropic diffusion-based filters to smooth the CT images. We
make use of the coherence and edge-enhancing diffusion filters of
Weickert and Scharr (2002), based on diffusion and structure
tensors. These filters have the advantage that they make the
vertebral edges sharper, while producing smooth homogeneous

regions inside and outside the vertebrae, as they adapt to the
underlying image structure (Frangakis and Hegerl, 2001). They
have been used for CT bone enhancement in Descoteaux et al.
(2005). In particular, we use the method proposed by Kroon and
Slump (2009), Kroon et al. (2010), which is described in the
Supplementary Appendix.

2.2.2 Flux-Maximizing Feature Map (Flux-Map)
We derive a flux map from the diffused volume to enhance image
contrast near the vertebral surface. Flux maximizing geometric
flows were first proposed by Vasilevskiy and Siddiqi (2002) and
later Law and Chung (2009) developed an efficient algorithmwith
linear running time. We exploit the result by Vasilevskiy and
Siddiqi (2002) to enhance the contrast of the vertebral edges.
Instead of evolving the flows as done in the two aforementioned
articles, we obtain the flux magnitude at every voxel of the edge-
enhanced diffused image and generate a flux-based feature image
(henceforth called the flux-map), based on the fast
implementation by Law and Chung (2009).

The main result in Vasilevskiy and Siddiqi (2002) is that the
direction in which the inward flux of the vector field V (which is
taken as the normalized gradient of the image) through the curve
C is increasing most rapidly is given by zC

zt � div(V)N . In other
words, the gradient flow which maximizes the rate of increase of
the total inward flux is obtained by moving each point of the
curve in the direction of the inward normal by an amount
proportional to the divergence of the vector field.

Figures 1B,C shows some qualitative examples which
highlight the differences between the images before and after
running the non-linear anisotropic diffusion scheme on the
normalized vertebrae scans and the obtained flux-map. The
most notable advantages of this scheme include the closing of
many of the fragmented edges, and the denoising of
inhomogeneous regions. The edges also appear to be sharper
than before. Qualitatively, the edge-enhanced flux-map looks
almost piece-wise constant.

2.3 Segmentation Methodology
We now describe our proposed segmentation pipelines. In
pipeline one, a number of vertebrae are segmented together as
a single spine object, with no training data required, but with
manual identification of at least one seed in a vertebrae. In a
separate second pipeline, a shape prior is coupled with a flow to
segment individual vertebrae. For this part some ground truth
data is required to build the shape-prior.

2.3.1 Pipeline 1: Region-Based Segmentation of the
Spine
Once a flux-map is obtained, the user is required to initialize the
surface evolution process by placing an initial seed on the cortical
bone of the vertebrae. A single seed is sufficient to initialize the
surface evolution. However, the user could choose to place
multiple seeds at several such locations, which could then
evolve simultaneously to speed up the segmentation. We then
run a region-based flow implemented using a sparse field method
(Whitaker, 1998) for stable numerical updates. Such a flow uses
feature measurements to devise a partition of a volume into
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regions for which there are similar feature statistics. In our case, we
simply use the flux-map intensities, since our goal is to extract the
exterior surface of the vertebral cortical bone of the spine. This
surface has a distinct intensity distribution from that of the

vertebral body and the region just outside the spine in the flux-
map. Whereas a variety of region-based geometric flows can be
used (Cremers and Soatto, 2003; Rousson et al., 2003; Rousson and
Cremers, 2005; Bresson et al., 2006; Brox and Weickert, 2006;

FIGURE 2 | (Left to right and top to bottom) The surface segmentation process for Database 1, using the region based flow on the flux-map, as explained in
Section 3.2. Samples of the entire evolution are shown, from initialization to the final extracted surface. Here we initialize the flow with multiple seeds to illustrate their
simultaneous evolution. In our experiments using Pipeline 1 we typically used two or three seeds placed within the vertebral surface, in the middle of the FoV. Note: The
adjoining sacrum and hips are manually removed using the methods in Yushkevich et al. (2006). In the text we explain how the subjects with larger holes on the
extracted surface are handled.
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Cremers et al., 2006; Cremers et al., 2006; Rathi et al., 2006;
Cremers et al., 2007; Dambreville et al., 2007; Michailovich
et al., 2007; Sandhu et al., 2008; Chung and Vese, 2009; Salah
et al., 2009; Li et al., 2010; Zhang et al., 2015), the results presented
in this paper are based on the flow of Chan and Vese (2001). Here,
an evolving surface C (embedded as the zero level-set of a higher
dimensional function ϕ) in an image domain Ω has a bi-partition
defined by inside(C) and outside(C), respectively, with each having
approximately piece-wise constant intensities. Let an object of
interest be represented by intensity value ui0 and the
background with an intensity value uo0. Thus, we have u0 � ui0
inside the object and u0 � uo0 outside the object. Let c1 and c2 be the
mean intensity values inside and outside the propagating interface.
The objective is then to minimize an energy functional F(c1, c2,C),
i.e., to compute Inf

c1 ,c2 ,C
F(c1, c2,C). The associated evolution equation

for ϕ is given by

zϕ

zt
� δ(ϕ)[μ∇. ∇ϕ∣∣∣∣∇ϕ∣∣∣∣ − v − λ1(u0 − c1)2 + λ2(u0 − c2)2], (1)

where, λ1 and λ2 are the weights for the inside and outside terms,
and μ and v are the weighting terms for the length of the curveC and
the area of the region bounded by the curveC, as given in (Chan and
Vese (2001). The two mean intensities represent the two partitions,
and this model is thus suited to problems where there is piece-wise
constant intensity within a region. Here, we set λ1, λ2, μ, v equal to 1.

Figure 2 shows the surface extraction process in 3D on the flux-
map. See Figure 3 for the complete segmentation process. We start
with placing a seed on the vertebral body. Next, the surface of the
spine is extracted using the region-based flow on the flux-map. The
extracted surface contains some holes due to a lack of signal at
portions of the boundary. It is possible to obtain a complete

segmentation of each vertebrae by employing the well established
geodesic active contour (Caselles et al., 1995; Kichenassamy et al.,
1996; Marquez-Neila et al., 2013) to “shrink-wrap” from the outside,
starting with a bounding-box. For this, an automatically placed
bounding-box is used to initialize the flow. The inward flow shrinks
the bounding-box towards the vertebral region and thus wraps
around the desired surface whose zero level-set gives the final
segmentation of the spine. This fills the interior of each of the
vertebrae present in the image, with the added advantage of closing
small gaps present on the surface of the spine.

2.3.2 Pipeline 2: Shape-Prior Based Flows for
Individual Vertebra Segmentation
In order to combat signal loss or partial volume effects, prior
knowledge about the desired object shape can be useful. Complex
anatomical structures, such as the spine, provide a suitable test case,
because they are largely rigid objects with a fixed part structure.
Images with occlusions or missing parts of the desired objects could
also benefit from shape-priors. In the present article we use shape-
priors to segment L4 lumbar vertebrae in a challenging database
containing pathology cases, as presented and discussed in Sections 3
and 4. This involves a shape modelling pipeline, where generic shape
characteristics are learnt from a training set, and a constrained
segmentation pipeline using an energy functional minimization
algorithm, which optimizes the required model parameters. Shape-
based segmentationmethods were popularized by Cootes et al. (1995)
in their landmark based active shape models (ASMs) formulation.
Leventon et al. (2000) were amongst the first to combine the edge and
curvature information in a geodesic active contour evolution with the
shape model, using a maximum a posteriori approach.

Figure 4A shows a training set of groundtruth binary volumes
for the L4 vertebra. These images are aligned with respect to the
same origin and the signed distance function (SDF) is then
computed for every shape in the training set. After applying
Principal Component Analysis (PCA) on these training images,
we obtain different eigenmodes {Φ1,Φ2,Φ3, . . . . . . ,Φn} which
can be permuted to get different eigenshapes which capture
variations in shape and pose of the vertebral anatomy.
Figure 4B depicts the obtained eigenshapes, the shape variations.

The PCA based shape model described above is built offline.
This model has to be integrated within a level-set framework to
obtain a constrained segmentation. Usually edge and region-
based terms are used in conjunction with the shape model to
optimize the parameters to obtain a final segmentation. We
employ the technique proposed by Tsai et al. (2003), which
iteratively minimizes an energy functional using gradient
descent to optimize the pose p and shape w parameters. The
gradient of the region-based energy functional (ECV ) defined by
Chan and Vese (2001) with respect to the parameters p and w, is
given by the following two equations:

∇wECV � −2(μ∇wSu + v∇wSv),+(μ2∇wAu) + v2∇wAv) (2)

∇pECV � −2(μ∇pSu + v∇pSv) + (μ2∇pAu) + v2∇pAv) (3)

where Ru and Rv are the regions inside and outside the evolving
front respectively. μ and v represent the mean intensities in the
two regions. S and A represent the sum of intensities and the area

FIGURE 3 | (A) The initialization by placing seeds, (B) the extracted
surface using the region-based flow on the flux-map, and (C) an
automatically-placed bounding-box placed around the extracted surface,
which starts the process of shrink-wrapping around the middle
segmentation, thus closing small holes in the surface. (D) The resulting spine
segmentation, which now contains a vertebral volume, (E) a ground truth
segmentation image obtained by manual segmentation, and (F) the obtained
segmentation overlaid on the ground truth. The process is detailed in
Section 2.3.1.
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for a given region, respectively. The parameters w and p are
updated using gradient descent at every iteration. At the end of an
iteration, a new shape is computed as:

ϕ[w, p](x, y, z) � Φ(~x,~y,~z) +∑k
i�1

wiϕi(~x,~y,~z) (4)

where,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
~x
~y
~z
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � T[p]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
y
z
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and T[p] is the transformation matrix. The zero level-set of ϕ
represents the evolving surface and upon convergence the final
segmentation. This algorithm is initialized by placing the mean
shape, obtained from the training set, near the vertebra which is
to be segmented. Figure 5 illustrates our segmentation approach
using a flowchart.

2.4 Segmentation Evaluation Metrics
We use the toolboxes by Taha and Hanbury (2015) and Maier
et al. (2019) to produce the comparison metrics for evaluating our
segmentation results. We report volume and surface based
metrics using the Dice score, Average Symmetric Surface
Distance (ASSD), Average Surface Distance (ASD), and
Hausdorff Distance 95th percentile (HD95). We report these
surface based distances because they are known to be less sensitive

to outliers. These metrics are described in further detail in the
Supplementary Appendix.

3 RESULTS

3.1 Pipeline 1: Region-Based Segmentation
of the Spine
We have evaluated our first pipeline, discussed in Section 2.3.1,
on Databases 1, 2, and 4.

3.1.1 Database 1
On Database 1, the application of our region-based flow
segmentation method on the edge-enhanced flux-maps yielded
an average Dice score of 92.36 ± 1.34%. This is comparable to
the results of Chu et al. (2015) and Ibragimov et al. (2014), but is
not as good as those of Lessmann et al. (2019). The average
symmetric surface distance is at 1.14 ± 0.29 mm, which is better
than that of Rasoulian et al. (2013). The average surface distance
is 0.99 ± 0.88 mm, which is comparable to that of the two other
techniques, indicating that there is very little bias in the extracted
surface position. This is very close to the 2 mm clinical accuracy
threshold reported in Cleary (2000). The 95th percentile
Hausdorff distance is at 2.90 ± 1.38 mm, indicating that 95%
of the surface extracted is within 2.90 mm of the gold standard
surface. Table 1 summarizes the results of using different metrics
for this database. Figure 6 shows box plots for the four different
metrics used for evaluation across all the subjects in each
database.

FIGURE 4 | (A) Sample gold standard volumes comprising the training set of groundtruth segmentations of L4 vertebra, with subtle differences in shape. This is a
representative database, with variations in the vertebral processes and in the thickness of the vertebral bodies. (B) Shape Variations. The first four eigenshapes are
depicted with the first and second negative and positive shape variations obtained by ϕ ± σ iλiϕi . Each row depicts one eigenshape. Left to right: in each row, one can see
how the eigenshape changes. There is a visible change in the structure of the vertebral processes. Top to bottom: there are clear visible differences amongst the
different eigenshapes, especially in the vertebral processes.
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3.1.2 Database 2
We have divided the vertebral region into two groups to report
results: the lumbar and thoracic regions, for two reasons. First,
this helps with CPU and memory constraints, since the image

volume is large. Second, thoracic and lumbar vertebrae have
different shapes and varying surrounding properties such as
tissue contrast and intensity distributions. Thus, separating the
different vertebral regions can help in assessing the quality of the

FIGURE 5 | A flowchart summarizing the two segmentation pipelines. In pipeline one, a number of vertebrae are segmented together as a single spine object, with
no training data required, but with manual identification of seed in a vertebrae. In a separate second pipeline, a shape prior is coupled with a flow to segment individual
vertebrae. For this part some ground truth data is required to build the shape-prior.
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TABLE 1 | Spine segmentation results reported for Database 1.

Paper Dice coefficient (%) HD95 (mm) ASSD (mm) ASD (mm)

Lessmann et al. (2019) 96.50 ± 0.80 - 0.20 ± 0.00 -
Rasoulian et al. (2013) - - 3.80 ± 1.60 -
Ibragimov et al. (2014a) 93.70 ± 1.12 - 0.75 ± 0.09 -
Korez et al. (2015a) 95.30 ± 1.40 - - -
Chu et al. (2015) 91.00 ± 7.00 - - 0.90 ± 0.30
Ours 92.36 ± 1.34 2.90 ± 1.38 1.14 ± 0.29 0.99 ± 0.88

FIGURE 6 |Box-plots for the four different metrics used for evaluation across all the subjects in each database. Columns show the plots for the four databases with
rows depicting the four metrics.

TABLE 2 | Spine segmentation results reported for Database 2: CSI database.

Paper Dice coefficient (%) HD95 (mm) ASSD (mm) ASD (mm)

Lessmann et al. (2019) 96.30 ± 1.30 - 0.10 ± 0.10 -
Hammernik et al. (2015) 93.00 ± 0.04 - - 0.47 ± 0.54
Korez et al. (2015a) 94.40 ± 2.10 - 0.30 ± 0.10 -
Thoracic (ours) 95.62 ± 1.72 1.61 ± 1.10 0.32 ± 0.14 0.19 ± 0.51
Lumbar (ours) 94.19 ± 7.30 2.74 ± 3.05 0.54 ± 0.51 0.60 ± 0.84
Average (ours) 94.94 ± 2.22 2.15 ± 1.20 0.41 ± 0.17 0.35 ± 0.20
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segmentations. Table 2 shows the segmentation results for the
thoracic and lumbar regions, and reports the metrics averaged over
the entire thoracic and lumbar regions for the CSI database.We report
an average Dice score of 94.97 ± 2.22%, which is comparable to the
results of Lessmann et al. (2019) and is better than the methods of
(Hammernik et al., 2015) and (Korez et al., 2015b), with the average
symmetric surface distance at 0.41 ± 0.17mm. The 95th percentile
Hausdorff distance is 2.15 ± 1.20mm, while the average surface
distance is 0.35 ± 0.20mm.

3.1.3 Database 4
We evaluate our method on 43 subjects from the VerSe database
(see Section 2.1.4). We report a mean Dice score of 84.90 ±
7.53%, ASSD: 1.39 ± 0.65 mm, ASD: 1.37 ± 0.64 mm, and
HD95: 5.64 ± 2.38 mm. We refer the reader to the Challenge
paper by Sekuboyina et al. (2020) for the tabulated results
(Table 3) from the eleven participating groups. The best
performing methods have a mean Dice score performance on
the public dataset of: Payer C. (90.90 %), Chen M. (93.01%),
Lessmann N. (85.08%), Hu Y. (84.07%), Sekuboyina A. (83.06%),
Jiang T. (82.70%), Dong Y. (76.74%), Wang X. (71.88%),
Amiranashvili T. (67.02%), and Brown K. (62.69%). We note
that our results are not directly comparable to those of the
methods proposed by the participating teams. Those teams
evaluated their methods on the full test set, which included
challenging cases, whereas in our evaluation we excluded the
low dose cases using our SNR selection criterion. At the same
time, for our method the results are reported on a combination of
images from the training, validation and test sets, since our
method does not have a training phase. For the participating
teams the reported results are on images from the test set only.

3.2 Pipeline 2: Shape-Prior Based Flows for
Individual Vertebra Segmentation
We use a six-fold cross-validation approach. We build the shape-
prior with 25 vertebrae and evaluate the method on the remaining
five. This procedure is then repeated for the six different folds.
When applied to Database 3, pipeline 2 yields an average Dice
score of 83.84 ± 3.10%, and an average symmetric surface
distance at 1.31 ± 0.24 mm. The 95th percentile Hausdorff
distance is 3.59 ± 0.90 mm.

4 DISCUSSION

We now discuss our segmentation results and compare them to
those of other approaches in the literature. Our geometric flow
based approach traverses the outer cortical bone of the vertebral
column to segment its surface, while also delineating the spinal

cord and the inter-vertebral discs. Pipeline 1 of the approach
relies on minimal user input to identify seed points, is simple to
implement, and can be applied to the segmentation of any
vertebral region of the spine or alternatively any visible spinal
region in a given volume. This is of direct clinical relevance since
the 3D model of the spine can be used for surgical planning and
downstream tasks. The proposed segmentation procedure is very
fast, even when implemented on a CPU. On an Intel(R) Xeon(R)
CPU running at 3.50 GHz with 12 cores, the edge-enhancing pre-
processing step takes around 4 min, and it takes another 15 s to
compute the flux-map. These pre-processing steps are carried out
offline. The surface extraction takes about 5 min while the shrink-
wrapping procedure takes another 5–10 min on average, for the
entire lumbar region in 3D.

4.1 Pipeline 1: Region-Based Segmentation
of the Spine
4.1.1 Database 1
The results in Table 1 demonstrate that our approach is
comparable to the other methods in terms of Dice coefficient
and surface based metrics. We point out that the Dice coefficient
on its own is not a sufficient measure for translation to what is
clinically acceptable for spine surgery, and for the latter the
surface based distance measures are important. The box plot
in Figure 6 show our ASD errors to peak at about 1mm, and to be
well below the clinically accepted threshold of 2 mm across all
surface voxels.

With regard to surface-evolution approaches, Lim et al. (2013)
use an edge-mounted Willmore flow with a kernelized shape-
prior based level-set method for lumbar vertebrae segmentation,
while Tan et al. (2008) use a series of geodesic active contours
(GAC) to segment the vertebral body. Lim et al. (2013) show that
for 2D slices the GAC and Chan-Vese based methods fail to
segment the CT vertebrae. This is in contrast to our approach,
likely because of the filtering method we have used in pre-
processing the volumes. Our one-click initialization (a few
voxel suffices) is also substantially less cumbersome than the
doughnut shaped initialization used by Lim et al. (2013). Our
method outperforms this approach, which reports a Dice score of
89.32 ± 1.70% and a Hausdorff distance of 14.03 ± 1.40 mm,
for the lumbar region.

Our approach is simpler in comparison to methods (Rasoulian
et al., 2013; Ibragimov et al., 2014a; Korez et al., 2015a; Castro-
Mateos et al., 2015; Pereañez et al., 2015) as it does not require
constrained optimization. For example, Pereañez et al. (2015)
segment the vertebral body and the processes separately and
independently, while we do not require such a restriction.
Rasoulian et al. (2013) make an assumption that there is a
strong correlation between the shapes and poses of different

TABLE 3 | Spine segmentation results reported for Database 3.

Paper Dice coefficient (%) HD95 (mm) ASSD (mm) ASD (mm)

Stephansen (2012) 80.86 (median) - - -
Ours 83.84 ± 3.10 3.59 ± 0.90 1.31 ± 0.24 1.46 ± 0.27

Frontiers in Computer Science | www.frontiersin.org July 2021 | Volume 3 | Article 59229611

Khandelwal et al. Spine Segmentation in Computed Tomography Images

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


vertebrae, within the same patient, an assumption that we avoid.
We outperform the approach of Rasoulian et al. (2013) (the
datasets used in Rasoulian et al. (2013) and Lim et al. (2013) are
not publicly available but involve the CT lumbar region) on the
comparable metric of HD95 with 2.90 ± 1.38 mm vs. 3.80 ±
1.61 mm on Database 1. We report comparable segmentation
results in terms of Dice coefficients and Hausdorff distances to
the methods of Korez et al. (2015); Ibragimov et al. (2014).

A recent competitive method based on deep learning, is that of
Lessmann et al. (2019). Here the different vertebrae are iteratively
segmented using amemory network, exploiting information from
the already segmented vertebrae. This approach, which is
automatic, yields an impressive Dice score of 96.50 ± 0.8%.
However, this requires keeping track of nearby segmented
vertebrae. In this formulation the images were cropped to the
region which contains the vertebrae to be segmented, to restrict
the field of view. In contrast, in our approach we segment the full
spine or a desired individual vertebra, relying on seed points from
the user. Our ASSD of 1.14 + 0.29 mm is well within the
acceptable surface error of 2 mm for facet joint injection
procedures (Gill et al., 2012). A possible reason that our

method reports slightly worse Dice score on Database 1 than
Lessmann et al. (2019) might be that of mis-segmentations at the
intersection of the processes of adjacent vertebrae because the
method in pipeline 1 does not segment each vertebrae
individually.

4.1.2 Database 2
For the segmentation of the thoracic vertebrae, where there is a
loss of signal at the boundaries, we apply our region-based flow
directly on the edge-enhanced image rather than the flux-map.
This leads to better segmentation of the vertebrae and their
processes, but with a few holes present inside the vertebral
bodies due to inhomogeneities in the signal. After this, we run
the shrink-wrapping step to obtain complete vertebral
segmentations, while filling small holes in the vertebral bodies
if present.

Figure 7 shows 2D slices of the segmented spine overlaid on
the ground truth for the two Databases 1 and 2. Figure 8 depicts
the segmented spine overlaid on the ground truth volume. In the
thoracic region, the ribs get segmented too as they are attached to
the vertebrae. The middle figure shows the zoomed in thoracic

FIGURE 7 | The boundary of the segmentation (yellow) and groundtruth (green) overlaid on top of the image for a subject from Database 1 (left column) and
Database 2 (right column). (From top to bottom) axial, sagittal and coronal views.Note:We noticed that some of the manually labelled segmentations provided in the CSI
Database had errors, especially in the thoracic regions, and this could adversely affect the quality metrics.
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region. Using ITK-SNAP (Yushkevich et al., 2006; Yushkevich
et al., 2019), wemanually crop the ribs, the coccyx and the sacrum
bones for the purpose of computing the evaluation metrics, with
the result of the cropping overlaid on the ground truth in the
rightmost figure.

Table 2 reports results separately for the thoracic and lumbar
regions. Our segmentation results are quite similar for these two
regions. Our method performs better than that of Hammernik
et al. (2015), for the lumbar and the thoracic regions, and thus the
entire spine as well. The approaches outlined in the thesis of
Hammernik (2015) and the CSI workshop article (Hammernik
et al., 2015) are similar in spirit to ours, since they are geometric
flow based. In contrast to our method, Hammernik et al. (2015)
use the “Rudin-Osher-Fatemi” (Rudin et al., 1992) model for
denoising, and they thenminimize a variational energy functional
in a convex optimization framework. The energy functional
consists of a structure tensor based geodesic active contour
term, a mean-shape model and a bone prior map.

Our approach outperforms the non deep-learning methods in
terms of both volume overlap and surface distance errors, as
demonstrated in Table 2. The box plot in Figure 6 shows the
voxel wise ASD errors to be very small, typically well below 1mm,
meeting the clinically acceptable threshold of 2 mm. The Dice
score of 94.94 ± 2.22% reported by our method is very close to
the current state of the art Dice score of 96.30 ± 1.3% of
Lessmann et al. (2019), an approach which relies on the
availability of large image databases for training. The other
methods rely on training data and can thus only segment the
vertebrae for which the ground truth segmentations are available.
In fact, deep learning based methods typically require days to
train, e.g., Lessmann et al. (2019) report that they trained their
network for 4–5 days on Nvidia Titan X GPUs with 12 gigabytes
of memory. But, deep learning methods are quite fast at the time
of inference, because they require a simple forward pass through
the network. In contrast, with no requirement for training our
pipeline 1 approach, from pre-processing to shrink-wrapping,
takes around 15 min per lumbar region on a CPU, as discussed
earlier.

4.1.3 Database 4
Figure 9 shows qualitative examples for seven subjects, where
our approach performs well. We provide segmentation results
on a variety of image distributions across different vendors
spanning the different vertebral regions for both healthy and
pathological cases. The resampling of the original volumes to
an isotropic grid might lead to inaccuracy in the groundtruth
labels which in turn would contribute to some of the
discrepancies (Figure 9). The main limitations of our
formulation are that the flow does not segment vertebrae
with surgical implants, and fails to work in low-dose (high
noise) images, with partially visible vertebrae. Our results are
not directly comparable to those reported in Sekuboyina et al.
(2020), since our method was only applied to a subset of the
dataset, as explained in Section 2.1.4.

4.2 Pipeline 2: Shape-Prior Based Flows for
Individual Vertebra Segmentation
We evaluate the shape-prior based segmentation method,
discussed in Section 2.3.2, on Database 3. To motivate the
need to use a shape prior, we first present some results of the
region based segmentation pipeline 1 on this challenging database
of patients with trauma, Database 3. A 2D slice obtained by the
surface extraction method is shown in Figure 10A (left) and the
filled volume is shown in Figure 10A (right). The segmentations
are accurate, as the flow evolves along the vertebral boundary, but
it is hard to demarcate each individual vertebrae separately
because several vertebrae are either fused, dislocated or are
fractured severely. Thus, we hypothesized that a shape-prior
based segmentation method applied to each individual
vertebra can help eliminate this problem, as illustrated in
Figure 10B. The algorithm is initialized with the mean-shape
of the training population, placed near the region of interest. This
PCA based shape-prior level-set method is not only fast, but also
requires very little effort to set up. The PCA modelling step takes

FIGURE 8 | Three-dimensional spine segmentation rendering. (A):
Shown in light grey is the vertebrae region that is common to both, the ground
truth and the segmentation obtained by our method. The extra regions
segmented such as the ribs, the coccyx and the sacrum, and other
voxels in the spinal column, are shown in red. (B): A zoomed-in image of the
upper thoracic region. (C): The segmented spine (shown in red) overlaid on
top of the ground truth (shown in light grey) after cropping-out the regions
manually using ITK-SNAP.Manual cropping of the extraneous regions such as
the ribs, the coccyx and the sacrum after segmentation could be regarded as
selecting a region of interest (ROI) before an input image is fed into an
automated segmentation method (Lessmann et al., 2019; Sekuboyina et al.,
2020). For example, in Lessmann et al. (2019), images are cropped to restrict
the field of view of the vertebrae that were not included in the reference
segmentation in order to avoid training the network with vertebra voxels
incorrectly labeled as background voxels. In contrast, we feed in the entire
image, consisting of the entire FoV, to our algorithm, which then produces the
desired segmentation of the spine. Our flow-based segmentation approach is
designed to also segment the ribs, and the sacrum when available. Therefore,
in order to compute volume and surface-based quantitative measurements of
the vertebral segmentations for which the ground truth segmentations are
available, we crop out the regions such as the ribs, and the sacrum using ITK-
SNAP.
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around a minute to complete for a set of 25 vertebrae. This step is
carried out offline, before the actual segmentation step. It takes a
couple of minutes to segment an individual vertebra, which is the
online step. A possible disadvantage of the shape-prior based
method proposed in the present article is that it might get trapped
in a local minimum.

We outperform the method of Stephansen (2012), based on
active shape and appearance models, both in terms of Dice score
and surface distance errors. Although the ASD errors are larger
than those for databases without pathology, the box plot in
Figure 6 shows them to still be well under the clinically
accepted threshold of 2 mm. Table 3 provides a comparison

FIGURE 9 | Example segmentation results on the VerSe database, shown in the sagittal plane for eight subjects (A–G). For each subject, a set of three images are
presented: left: the ground truth labels;middle: the segmentation by our method, right: the difference between our segmentation and the ground truth labels. In the latter
the voxels in blue are in the ground truth labels but not in our segmentation, and the voxels in green are segmented by our method but are not present in the ground truth
labels. We observe that the ground truth labels (blue) can be outside the vertebral boundaries. Our method correctly delineates the vertebrae, except at some
intervertebral discs.
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between the results of our method and those of Stephansen
(2012). Hammernik et al. (2015) use an energy functional that
incorporates a mean-shape and bone priors. A potential weakness
of this approach is that it relies on only the mean-shape of the
training population. We overcome this challenge by modelling
the variations in shape and pose. Additionally, we use the more
adaptive edge-enhancing method by Weickert and Scharr (2002)
along with flux integral of Vasilevskiy and Siddiqi (2002) to pre-
process the volumes, instead of the total variation norm based
(Rudin et al., 1992) method.

CONCLUSION

In summary, we have proposed two pipelines to segment the spine
in CT images, which employs geometric flows. Our use of
anisotropic diffusion filtering combined with flux maximizing
flows is new in this context, to the best of our knowledge. We
have validated our region-based surface extraction approach and
the subsequent shrink-wrapping step on three publicly available
databases. The shape-prior based method to segment individual
vertebrae has been evaluated on a database containing pathological
cases. We do not require tracking or segmentation of nearby
structures in the spinal column, which reduces computational
burden. We have shown that our method achieves accurate and
precise vertebral segmentations, with surface distance errors that
are well below the clinically acceptable threshold of 2 mm. Our
method works across different CT data distributions, because it
exploits information directly from the normalized CT images, using

the geometry of their isophotes. This novel semi-automatic
technique will obviate the need for time-consuming manual
segmentations and eliminate errors due to inter- and intra-
observer variability. The shape-based initialization technique
constrains the segmented surfaces to plausible locations, thus
avoiding local segmentation errors. In future we hope to
integrate our segmentation pipelines into a pre-operative
surgical planning platform, and improve the flow-based method
to segment vertebrae in low-dose and surgical implant images. This
would allow for better navigation, and would facilitate
downstream tasks.
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FIGURE 10 | Shape-prior based segmentation in pipeline 2. (A) Region-based segmentation Pipeline 1 applied to two example subjects from Database 3 with the
pathology cases. Left: Sample slices shown for the region-based surface extraction on the flux-map for Database 3. Right: Sample slices shown for the shrink-wrapping
process for Database 3. (B) Intermediate steps for the shape-prior based segmentation process for a subject fromDatabase 3. Left column: shape-prior initialization. The
middle and rightmost columns shows how the vertebral body and the spinous process are pulled-in (shown by orange and red arrows respectively) and evolve to
segment the individual vertebra.
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Supplementary Videos | Several movies illustrating our geometric flow based
segmentation of the spine are provided as supplementary data. A brief explanation
of the contents of each movie is below.

Supplementary Video 1 | Movie1. mp4 shows the surface extraction of the spine,
using the Chan-Vese flow, as explained in Section 2.3.1.

Supplementary Video 2 | Movie2. mp4 shows the positive eigenshapes. Themean
vertebra is shown in red and the first ten positive eigenshapes are shown in green
(Section 2.3.2).

Supplementary Video 3 | Movie3. mp4 shows the negative eigenshapes. The
mean vertebra is shown in red and the first ten negative eigenshapes are shown in
blue (Section 2.3.2).

Supplementary Video 4 | Movie4. mp4 illustrates the segmentation of individual
vertebra, using the shape prior based method (Section 2.3.2).
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