
Readability Enhancement for PDF
Documents
Chen-Hsiang Yu*, Zachary Shelton, Omar Abou Nassif Mourad and Mohamed A. Oulal

Wentworth Institute of Technology, School of Computing and Data Science, Boston, MA, United States

Readability has been studied for decades, ranging from traditional paper reading to digital
document reading, Web page reading, etc. Different audiences have different needs and
the needs trigger the researchers to investigate innovative solutions. For example, in recent
years, researchers have studied readability enhancement of English articles for non-native
English readers, either on paper reading or hypertext document reading. Using a variety of
methods, researchers were able to enhance the reading comprehension and the users’
satisfaction on hypertext document reading, such as changing content presentation with
visual-syntactic text formatting (VSTF) format or Jenga format. In terms of dynamically
changing content presentation for reading, one less explored format is Portable Document
Format (PDF), which was traditionally viewed within a modern Web browser or Adobe
Acrobat reader on the desktop. PDF format was standardized as an open format in 2008
and has been widely used to keep a fixed-layout content. However, a fixed layout
document presents a challenge to apply existing transformation methods, not mention
on mobile devices. In this paper, we not only present a system that uses a novel algorithm
to decode PDF documents and apply content transformation to enhance its readability,
but we also generalize it to a framework that allows the users to apply customizations and
the developers to customize their needs. Although we used Jenga format as an example to
enhance the readability of PDF documents, we envision the proposed framework can be
used to adopt different customizations and transformation methods. The current result is
promising, and we believe it is worth further investigation to make PDF documents
readable and accessible for different populations, such as non-native English readers,
people with dyslexia or special needs, etc.

Keywords: readability enhancement, PDF documents, mobile devices, content transformation, accessibility

INTRODUCTION

About five thousand years ago, the first mature writing systems were introduced by Egyptian and
Sumerian scholars. Appropriate symbols were used to represent word’s phonology (McGuinness,
2004). The writing systems keep evolving and the humans pass knowledge to next generation with it.
To learn this knowledge, reading is an essential behavior. Although reading can be considered as an
easy task for many people, it is not true for some people, such as people with dyslexia, people with
visual impairment, the readers whose first language is not the same as the one used in the written
article, etc.

In terms of improving reading in general, many topics have been explored in the past, such as
recognition of cohesive ties in reading (Williams, 1983), interaction techniques [navigation in dual
display (Chen et al., 1779), active reading support (Schilit et al., 1998), etc.] and factors influencing

Edited by:
Carlos Duarte,

University of Lisbon, Portugal

Reviewed by:
Patricia Acosta-Vargas,

University of the Americas, Ecuador
Rosa Navarrete,

Escuela Politécnica Nacional, Ecuador

*Correspondence:
Chen-Hsiang Yu

yuj6@wit.edu

Specialty section:
This article was submitted to

Human-Media Interaction,
a section of the journal

Frontiers in Computer Science

Received: 13 November 2020
Accepted: 22 July 2021

Published: 05 August 2021

Citation:
Yu C-H, Shelton Z,

Abou Nassif Mourad O and Oulal MA
(2021) Readability Enhancement for

PDF Documents.
Front. Comput. Sci. 3:628832.

doi: 10.3389/fcomp.2021.628832

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288321

ORIGINAL RESEARCH
published: 05 August 2021

doi: 10.3389/fcomp.2021.628832

http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2021.628832&domain=pdf&date_stamp=2021-08-05
https://www.frontiersin.org/articles/10.3389/fcomp.2021.628832/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.628832/full
http://creativecommons.org/licenses/by/4.0/
mailto:yuj6@wit.edu
https://doi.org/10.3389/fcomp.2021.628832
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2021.628832

reading [reading goal vs. reading time and comprehension
(Protopsaltis and Bouki, 2006), the effectiveness of reading on
screen (Gould et al., 1987), etc.]. Instead of traditional
approaches, some researchers proposed a new direction to
transform the presentation of the content to enhance
readability, such as VSTF (Walker et al., 2005) and Jenga
format (Yu and Miller, 2010; Yu, 2012). Although content
transformation is interesting and helpful in online reading,
such as Web pages, these works are not yet applicable to be
used in a fixed-layout document, such as Portable Document
Format (PDF) format, which was developed by Adobe in the
1990s and has been widely used to present a document in its
original text formatting on the Web. In nowadays, people have
been using PDF documents frequently to exchange firsthand
information. For example, technical report in business field
and research papers published in academia.

On the other hand, a platform of having reading activity also
evolves, ranging from tradition paper, PC, laptops, tablets to
smartphones. Since mobile devices are getting cheaper and people
used them to absorb information daily, we are specifically
interested in this media. According to the GSM Association,
the expected number of subscribers with mobile Internet will
increase by 1.7 billion from 2017 to 2025 (The Mobile Economy
2018, 2018). Although it is a downward facing trend, 52.3% of
Internet content reported being in the English language
(Historical yearly trends, 2020). There is an estimate that 1.5
billion people will be learning English (Ammon, 2015) and there
is a great potential for people to learn and interact with English
articles on mobile devices. To maintain the original design of
English articles, more and more authors try to use a fixed-layout
format, such as PDF document, but this format presents a
readability issue for some readers, such as non-native English
readers and readers with a special need.

The research question we want to address is: Can we enhance
the readability of PDF documents for people with different needs,
such as people with visual impairment, dyslexia, and non-native
English readers? In this paper, we have three contributions:

• We investigated the issue of reading PDF documents on
mobile devices and implemented a prototype system,
PDFroggy, to make content transformation possible on
the fixed-layout documents.

• Based on the experience learned from building above
prototype system, we proposed a new scalable framework
to generalize the process for different user-defined
configurations.

• We adopted the proposed framework to create another new
PDF reading environment, PDFroggy++, to enhance PDF
document readability on mobile devices.

In the following of the paper, we will start with the related
work in the field, including paper reading, techniques and tools
for reading, Web page reading and reading with PDF documents.
PDFroggy, our first trial of applying content transformation to the
PDF document, will be introduced. In A Scalable Framework for
Readability Enhancement on PDF Documents, we will explain the
new proposed framework and introduce a new system,

PDFroggy++, that adopts this new proposed framework.
Discussion, Conclusions and Future Work will be presented at
the end of this paper.

ARTICLE TYPES

A-Type Articles: Original Research.

RELATED WORK

Since the first mature writing systems were introduced by
Egyptian and Sumerian scholars in about five thousand years
ago, reading has become a common behavior for people to learn
knowledge (McGuinness, 2004). The research of reading has also
evolved from understanding this behavior to how to teach
reading (McGuinness, 2004) and how to help and support
people to conduct this process (Walker et al., 2005; Yu and
Miller, 2010; Yu, 2012). In terms of helping and supporting
reading in general, many topics have been explored in the
past. For example, researchers found that the recognition of
cohesive ties in reading (Williams, 1983) can help paper reading.

Moving from traditional paper to digital format content, some
factors influence reading, including reading goal vs. reading time
and comprehension (Protopsaltis and Bouki, 2006), the
effectiveness of reading on screen (Gould et al., 1987), etc. To
support reading on a digital platform, new interaction techniques
were proposed to support the reading, such as navigation in dual
display (Chen et al., 1779), active reading support (Schilit et al.,
1998), etc.

Instead of traditional approaches, some researchers proposed
a new direction to explore the reading domain in electronic or
hypertext reading, i.e., transforming the presentation of the
content to enhance readability for the user groups, such as
visual-syntactic text formatting (VSTF) (Walker et al., 2005)
and Jenga format (Yu and Miller, 2010; Yu, 2012). Previous
work (Walker et al., 2005; Yu and Miller, 2010; Yu, 2012)
have shown that content transformation can help enhance
readability for specific users, such as children or non-native
English readers. Both works conducted extensive user studies
to verify readability from different directions, such as reading
comprehension, reading speed, user satisfaction, etc. However,
the studied content are online reading and Web pages, not fixed-
layout documents. There was one unexplored domain in daily
reading, i.e. PDF documents, which have been widely used for
information exchange.

As defined in IETF RFC 3778 (- The application/pd), “PDF,
the ‘Portable Document Format’, is a general document
representation language that has been in use for document
exchange on the Internet since 1993.” Because it is popular,
this format was standardized as an open format in 2008 (O
32000-1:2008 - Docume, 2000). It has a full set of features,
including embedded fonts and images, a small file size and the
ability to look the same on different platforms. PDF is a static
format that elements stay at the same location no matter the
screen or platform changes. Compared with hypertext contents,

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288322

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

which are written in HTML and can be manipulated by using
JavaScript with Document Object Model (DOM) APIs (N web
docs - Document O), PDF documents do not have such interfaces
to programmatically control the presentation. Although
MaxTract (Josef and Volker, 2012) and Infty (Suzuki et al.,
2003) shared a similar idea of re-engineering the
transformation for PDF documents, they are mainly for
Mathematics and accessibility, not readability enhancement
per se.

In terms of usability and accessibility, Çakir’s (Çakir, 2016)
work identified issues with PDF documents and proposed
solutions to address them, i.e. altering an article to enhance
the readers’ experience depending on their preferences. The
proposed solutions include using Optical Character
Recognition (OCR) to scan and transform a PDF document to
.doc files and improving the search functionality on multi-
language PDF documents. While these solutions embark on
improving the usability and accessibility of PDF documents,
they do not provide readability support for the readers, such
as improving the readers’ comprehension. Fundamentally, the
contents of a PDF file are absolute, and each letter is arranged
strictly (Adobe Systems Incorporate). This is perfect if the

intention is to preserve layout. However, there is no guarantee
the content is laid out in a way to maximize readability. Our idea
of improving readability of PDF documents was based on
previous work (Walker et al., 2005; Yu and Miller, 2010; Yu,
2012) that scientifically proved that content transformation can
be used to enhance reading comprehension and extended to PDF
documents.

PDFROGGY—CONTENT
TRANSFORMATION FOR PDF
DOCUMENTS
In this section, we would like to introduce our first prototype
system, PDFroggy, which focused on enhancing readability for
PDF documents on mobile devices (Shelton and Yu, 2020).

System Design
Based on the results done by (Walker et al., 2005; Yu and Miller,
2010; Yu, 2012), we believe content transformation can provide a
way to enhance readability for PDF documents. We studied and
investigated a way to apply content transformation to a PDF

FIGURE 1 | The process of applying content transformation to a PDF document.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288323

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

document, which does not have DOM APIs-like design to
manipulate content presentation. In addition, we are interested
in using mobile device as a platform.

The main design idea is to load and decode the PDF document
and then apply a specified transformation to the rendered
content. PDFroggy is an Android application that
demonstrates the idea. PDFroggy allows the user to open up
and display a PDF document on their mobile device. Then, it can
apply a specified transformation method to the PDF content,
either in a paragraph or sentence level, to re-render the content
(Figure 1).

System Implementation
Parsing the PDF Document
There are different Java libraries available to be used to parse and
render PDF files. Our first attempt was to use default APIs built in
Android SDK. As part of API level 21, Android provided a native
solution for displaying PDFs, named PdfRenderer (AndroidK -
PdfRenderer). However, it does not allow for any editing

functionality to the rendered content. This limitation makes
content transformation infeasible.

Instead, we chose Apache’s PDFBox, which is a library that
allows for getting detailed information of a PDF document.
Although PDFBox uses classes from the java.awt package,
these classes are not included in the distributed Android SDK
libraries. Fortunately, PdfBox-Android, an Apache PDFBox
project ported to work on Android, replaces java.awt with
compatible Android libraries such that PDF documents can be
read and parsed by PDFBox (PdfBox-Android) on Android
devices.

Basically, PDFBox provides a functionality for text stripping,
but the challenge of making content transformation available on a
PDF document is to recreate a new PDF document with a desired
format. This recreation process needs more information,
including font family, weight, size, character location, etc. This
information isn’t readily available to the programmer, as it
remains protected within PDFBox’s TextStripper class. To
access it, we created a child class of TextStripper class and

FIGURE 2 | The algorithm of extracting document structure.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288324

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

placed all required information for having a new PDF document
into this child class.

Extracting Document Structure
After parsing the PDF file, the next step is to extract the layout
information from the file such that we can separate sentences and
apply content transformation. Unfortunately, because PDFBox does
not provide sentence or paragraph-level information, we need to
reconstruct this information from character-level information. The
algorithm designed and used is illustrated as Figure 2.

When the system finishes this process, i.e. the first iteration of
the characters, the data will be split into a more usable data
structure like: Document → Page → Paragraph → Sentence →
Word [Word/(LineSplice → SimpleWord)]. It achieves this by
using simple needle and haystack techniques to look for
punctuation and change in character location. The data
structure also maintains some import meta-data that is,
extracted from PDFBox, such as font size, font family and
weight. In addition, it also stores the exact position
information for each character such that the document can be
rendered on the mobile device with an accuracy (Figure 3).

During the first iteration, the system also stores the maximum
and minimum x and y position. Based on this information, the
margins of the document are known for the second iteration.
During the second iteration, it uses the previous data structure
and other information to convert it to: Document → Page →
Paragraph → LineSplice (SubSentence) → SimpleWord format.

Rendering Content With Native APIs
To render the text stripped from the PDF document, we tried
different UI components and decided to use the simplest one, i.e.
TextView. TextView is a native text rendering component in
Android and is created for each LineSplice.

Each SimpleWord is added to a SpannableStringBuilder that
can provide different styles to each individual word within a
LineSplice. Each of these generated TextViews gets its location
based on its original location in the PDF file. To provide flexible
screen size, these TextViews are added into a ScrollView element.
The TextView is assigned an index-based ID for each structure
level. The format is similar to the following:

(page_no): (paragraph_no): (sentence_no): (splice_no)
Now that each TextView has an assignable address within the

rendered screen, the content transformation method can take
over and modify the contents of the PDF displayed on the screen.

Applying Content Transformation
There are different types of content transformation methods and
they can be applied to the rendered content, such as naïve
sentence separation (making sentences separated and
presented at different lines), VSTF (Walker et al., 2005), Jenga
format (Yu and Miller, 2010), etc. To demonstrate the effect,
PDFroggy uses Jenga format as an example (Figure 4). In the
current design and implementation, the content transformation
method is abstracted out to a separate file so that new and
different content transformation methods can be added. This
mechanism makes the system scalable for the future extension.

A SCALABLE FRAMEWORK FOR
READABILITY ENHANCEMENT ON PDF
DOCUMENTS
Lessons From Previous Work
Although our first prototype system, PDFroggy (Shelton and Yu,
2020) (PDFroggy–Content Transformation for PDF documents),
was able to address the readability issue by implementing a

FIGURE 3 | PDFroggy—Data structure visual breakdown.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288325

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

transformation method, this results in a considerable sacrifice in
accessibility.

The lessons learned from our previous project are three folds.
Firstly, compared with regular web pages, which are normally
written in HTML and can be manipulated by JavaScript with
DOM APIs, PDF documents were not designed with such
interfaces to programmatically control the presentation.
Secondly, even if we can have such interfaces to control the
presentation, the users’ preferences cannot be dynamically
configured for PDF documents. In addition to VSTF format
(Walker et al., 2005) and Jenga format (Yu and Miller, 2010),
we believe there will be more useful and creative content
transformations for people with special needs. Thirdly, in
terms of comfortability level in reading, PDFroggy was not
able to address it. For example, some people like to read
content in a contrast environment (white text and black
background), but some people prefer a configured
environment, such as a larger font size, double spacing, or
keywords highlighted.

Based on above lessons, we believe there is a need to design a
scalable framework for readability enhancement on PDF
documents. The goal of the framework is not only to
generalize the users’ needs into multiple levels, but it should
also be applicable to PDF documents and configurable for mobile
platforms, such as smartphones and tablets.

Framework
Previous work has demonstrated that content transformation
(Walker et al., 2005; Yu and Miller, 2010; Yu, 2012) is a way to
enhance readability. We also believe the users’ needs or
preferences are another important factor, such as font size,
font family, contrast, keyword highlighting . . ., etc. Therefore,
in addition to content transformation, we take user customization
into the framework design. It is important that the application
built with the framework can accommodate any combination of
the users’ preferences and content transformation. In terms of the
users’ preferences, the users should be able to customize their
preferences with three levels of content formatting, including
paragraph level, sentence level, and word level (such as each
sentence’s leading word). Each level has a potential to be
customized further as one would normally do in rich text. In
addition, we also want to introduce the concept of dynamic
transformations. These are special formatting options, defined
by the user, that only occurs upon tapping a paragraph. All
existing transformationmethods, such as VSTF and Jenga format,
can be part of this design. Aside from one more layer of
customization, this introduces a layer of interaction to the
viewing content. The framework we proposed allows the users
to develop their own formatting preferences that are stored in a
JavaScript Object Notation (JSON) (Introducing) format file.
JSON can be considered as a light-weight data-exchange

FIGURE 4 | PDFroggy—The execution results of applying Jenga transformation to a PDF file.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288326

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

format and it has been used to encode information in structured
text. Rather than writing their own JSON file, the users can create
preferences on a user-friendly setting page to indicate how they
want the content to be rendered or formatted. For example, the
user can decide the font color, background color or font family of
the PDF document. The users can also define two different
formatting preferences: page formatting and gesture
formatting. While the page formatting changes the layout

structure of the PDF document, such as headers, paragraphs
and sentences, the gesture formatting is to change the format of
the selected area that the users interact with. This can be done
with gestures such as tapping a paragraph. Both page formatting
and gesture formatting are able to be toggled respectively. For
example, if the users decide to view the original document but still
want to format particular content with gesture formatting, they
are able to toggle the page formatting off and keep the gesture
formatting on. The framework diagram is illustrated in Figure 5.

We also believe a good configuration (JSON file) should be
shared to benefit people with the same need, such as people with
visual impairment, dyslexia and non-native English readers. The
framework considering the model of sharing configurations is
illustrated in Figure 6.

PDFroggy++—An Implementation for
Proposed Framework
Based on the proposed framework, we are interested in knowing
if it is possible to implement a new PDF reading environment to
demonstrate some of the proposed ideas. In this section, we
would like to introduce the details of the design and
implementation of such new prototype system, PDFroggy++,
which is an Android application with SDK version 11 (API
level 30).

Content Loading—The PDFContentManager
Inspired by the PDFroggy (PDFroggy–Content Transformation for
PDF documents), PDFroggy++ continues to use Apache’s
PDFBox (PdfBox-Android) for parsing PDF documents.
However, we found the document processing was time

FIGURE 5 | Framework diagram.

FIGURE 6 | The shared model of configurations (JSON file) in the
community.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288327

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

consuming in PDFroggy project. In PDFroggy++, we addressed
the issue by creating the PDFContentManager, a singleton
running on a separated thread, and the performance of this
approach dramatically improved the processing time. After the
investigation, we found the root cause of the lagging mainly
comes from the interruptions of PDDocument.load () to the main
UI thread. The PDFContentManager is responsible for all
operations related to the preprocessing of PDF document.

Text Striping With InfoScraper
As for the actual extraction process, it is handled entirely by a
custom InfoScraper object which extends PDFBox’s
PDFTextStripper and overrides the writeString () method.
Similar to the method found in the default PDFTextStripper,
InfoScraper’s writeString () builds a string encompassing all text
found in a page. However, whereas default behavior of the
function would return all text separated by line, the
overridden method returns the text separated by paragraph,
which is important for readability enhancement since readers
normally read articles paragraph by paragraph and is easier for
interaction design.

Text Formatting With FormatterObjects
Upon the completion of the loading and text extraction processes,
the PDFContentManager records the boundaries of each
paragraph, sentence, and leading word and then applies

transformations to these spans in accordance with the user’s
preferences. This process is done via the instantiation of
FormatterObjects, objects tasked with applying ParceableSpan
objects to the text in accordance to the user’s preferences. The
PDFContentManager instantiates a FormatterObject object for
every span and keeps a reference to all of them such that it can
undo the transformation when necessary.

Content Layout and Display
In PDFroggy, we treated the viewer as a document and essentially
recreated the PDF document using Android TextView objects
arranged, character by character, in such a way that they respect
the original layout of the document. This is a perfectly sound
approach as the result of this is a similar PDF view in which each
of the original text objects, each contained in separated
TextViews, can be transformed dynamically.

However, PDFroggy++ does not recreate PDF documents but
instead uses the same layout information its predecessor used to
arrange the TextView objects to construct a single string in which
text from the appropriate text objects in the PDF document can
share paragraphs. This text is then represented by a single
TextView object built from a SpannableString, effectively
circumventing the need to follow the original PDF’s layout
information.

This change brings in an advantage of offering a flexibility.
Since the original absolute positions play no role in

FIGURE 7 | PDFroggy++—the usage diagram.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288328

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

determining where TextView objects are rendered in
PDFroggy++, the need to respect margins as text would be
in a document is not there. This means that PDFroggy++ is
inherently more capable of dynamically utilizing a wider
range of formatting options since it does not have to
follow the rules of a document when transformations are
applied, such as using a smartphone or tablet, displaying
content in portrait mode or landscape mode, etc.
Additionally, the existence of spannable text objects allows
a high-level dynamic formatting.

Shared JSON for Community
There are two formatting methods defined: page formatting
and gesture formatting. For the gesture formatting, a user can
also load a JSON file that has more specific configurations for
the interaction on the viewing page. An example of these
configurations is the Jenga format (Walker et al., 2005; Yu
and Miller, 2010). The users can create a specific JSON file that
defines how they want to format the text to make it more
readable. In Jenga format, the user can change the sentence
structure or environment to enhance readability, such as
increasing the spacing between sentences or making a
strong contrast for the specified area. We plan to create a
community to allow the users to share defined configuration
(JSON files) via using RESTful APIs in the server and
HttpURLConnection in the Android side (Figure 6). The
format files can be created by the users or the format
developers.

RESULTS

The usage diagram of PDFroggy++ is illustrated in Figure 7. It
starts from application launch to load PDF documents and
configurations, and then render the document. The
screenshots of current implementation of PDFroggy++ can be
found in Figures 8–11. As Figure 8 illustrates, the left-hand side
is an example of page formatting and the right-hand side is an
example of gesture formatting. Figures 9, 10 show the
presentation changes of a PDF document after applying page
formatting and gesture formatting respectively. Figure 11 is the
settings page for content presentation. In short, PDFroggy++
follows the proposed framework to implement a new reading
environment for PDF documents, which can be customized by
using different configurations (JSON files) to have page
formatting and gesture formatting. While page formatting is
used to customize page level customization, gesture formatting
can be used to customize interaction on selected area. For
example, the content transformation methods proposed by
(Walker et al., 2005; Yu and Miller, 2010; Yu, 2012) can be
encoded into gesture formatting to provide interaction on the
viewing page.

DISCUSSION

Applying content transformation to enhance readability has been
studied in the past (Walker et al., 2005; Yu and Miller, 2010; Yu,

FIGURE 8 | An example of JSON file used for configuring content presentation (A): Page Formatting, (B): Gesture Formatting.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 6288329

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

FIGURE 9 | (A) An example of page formatting JSON file; (B) Original PDF view; (C) Formatted content.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 62883210

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

2012), but the idea was not yet extended to a PDF document,
which presents more restrictions in its format. Generally
speaking, PDF document is read in the Adobe Acrobat Reader
or within the browser. Although we can transform a PDF
document to HTML document and apply transformation
methods in the end, we believe creating a suite in which the
user can dynamically transform the content of a PDF document
on mobile devices can provide a better accessibility for the
mobile users.

PDFroggy demonstrates that we are able to apply content
transformation to a PDF document, but it is still a standalone

mobile application and not yet integrated into a mobile Web
browser. Part of the reasons is that there is no browser extension
mechanism available in default mobile Web browser. Even
existed mobile Web browsers, such as Chrome, Opera,
Firebox, etc., not all of them provide extensions mechanism to
customize the web pages, not mention fixed-layout PDF
documents. However, it is possible to extend mobile
applications to support Web accessibility by adding WebView
component, which is a browser engine that can be used to render
web contents and merge the results into one presentation.
PDFroggy is our first attempt to address PDF readability from

FIGURE 10 | (A) An example of gesture formatting JSON file; (B)Original PDF view; (C) Formatted content of selected paragraph—leading characters are enlarged
and marked with blue colors, and selected paragraph is marked with red color.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 62883211

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

application perspective. There is need to improve current
rendering such that it can be integrated into regular mobile
Web content.

Based on the learning from PDFroggy, we designed a new
framework that considers content transformation via page
formatting or gesture formatting. PDFroggy++ uses the
proposed framework and expands the idea of formatting PDF
documents to make them readable. Furthermore, it introduces
customization options to reformatting PDF documents. These
customization options help the users reformat documents for the
need and improve the readability and accessibility of PDF
documents.

One special topic we not yet able to address is multiple
columns and embedded multimedia. As we notice, academic
research papers or journal articles are written in multiple
columns and some news or textbook-like PDF documents
might contain multimedia data, such as audio, video, and
interactive content. In terms of multiple columns,
unfortunately, PDFBox does not provide enough information
to reconstruct the document. All of them need further
investigations.

CONCLUSIONS AND FUTURE WORK

PDF document format was designed to maintain its fix-layout
content for delivering information. Although it can keep the
original structure, this format presents usability, and accessibility
issues (Çakir, 2016). Many techniques and methods were created
in the past for paper and online (including Web pages) readings,

but none of them can be used directly for PDF documents. This
research aims at enhancing readability for PDF documents for
people with different needs.

Parsing a PDF file is challenging but recreating a new PDF
document with a desired content transformation for readability
enhancement is meaningful for some people, especially there are
more and more people using PDF format to deliver first-hand
information written in English. In addition, different content
transformation methods are beneficial to different user groups,
such as VSTF format for children, Jenga format for non-native
English reading, etc. We believe more and more useful
transformation methods will be proposed. Therefore, our first
attempt, PDFroggy (Shelton and Yu, 2020), was to shorten a gap
between static PDF document and customizable PDF content on
mobile devices for different user groups. To the best of our
knowledge, this was the first research that targets at the
readability of PDF documents on mobile devices, and more
specifically it tried to apply transformation method to the
content to enhance the readability and accessibility for readers
with a special need, such as ESL readers.

However, there are some limitations in this work (Shelton and
Yu, 2020). For example, the current results are good for text-
heavy articles lacking complex document structures, such as
multiple columns, embedded multimedia, tables, etc.
Supportive and meta information (footnotes, headers, footers,
etc.) are not yet covered. If a PDF document uses embedded fonts,
which aren’t shipped as parts of the mobile operating system, the
content rendering can only use default fonts. The content
transformation method is not flexible to extend to support
other usability and accessibility needs. In terms of the

FIGURE 11 | Settings for content presentation.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 62883212

Yu et al. Readability Enhancement for PDF Documents

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

performance, there was an unexplainable lag spike caused by
PDFBox in PDFroggy.

We learned from our work (Shelton and Yu, 2020) and started
to redesign a scalable framework, which not only allows the users
to configure their transformation need, but it also provides
different types of transformation, i.e. page formatting vs.
gesture formatting. Based on this framework, we were able to
re-implement another system, PDFroggy++, to demonstrate the
ideas. In PDFroggy++, the users can define their preferences as a
configuration into a JSON file (Introducing) and then load it to
provide content transformation to the viewing page. In addition,
the design of PDFroggy++ allows the users to share the
configurations in the community. The users will be able to
upload their JSON formatting files, view and download the
interested files. After downloading the desired JSON file, the
users can load the file via the settings page to see the content
transformation.

The current result indicates that it is possible to apply content
transformation to enhance PDF readability on mobile devices.
We believe it is worth further investigations to make PDF
documents readable and accessible for different people with
different needs, such as non-native English readers, people
with dyslexia or special needs, etc. Although we still have a
long way to achieve the ultimate goal, the current result is a
good foundation to explore related issues further.

In the future, there are two directions of this research. Firstly,
we will continue to improve PDFroggy++ and refine the
framework. As mentioned in Discussions, one special topic we
not yet able to address is multiple columns and embedded
multimedia. Although current implementation demonstrates
the possibility of applying content transformation to a simple
PDF document, some materials, such as academic research
papers or journal articles, are written in multiple columns and
some news or textbook-like PDF documents might contain
multimedia data, such as audio, video, and interactive content.
All of these topics need further investigations to make

PDFroggy++ useful. Secondly, we would like to evaluate the
acceptability of the framework for people with different needs.
To achieve this goal, we need to understand how certain
modifications to PDF documents can help specific accessibility
issues, such as people with dyslexia, visual impairment, and non-
native English readers. As long as we can understand this topic
better, we can integrate these modifications into the
configurations to make the system easy to use.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

C-HY was the principal investigator of this research and
responsible for ideas of the research, framework design,
systems design and implementation support. ZS contributed to
design and implement the first prototype system, PDFroggy, to
apply a content transformation to PDF documents. OANM and
MO co-designed a scalable framework with C-HY and
implemented a new prototype system, PDFroggy++, for the
Android platform. All authors contributed to the article and
approved the submitted version.

ACKNOWLEDGMENTS

The authors would like to thank Wentworth Institute of
Technology to provide an opportunity for all authors to know
each other and work together as a team to address an identified
research topic.

REFERENCES

Adobe Systems Incorporated, “Adobe Portable Document Format Version 1.4”, PDF
Reference, third edition, pp. 9–12.

Ammon, U. (2015). The Status of the German Language in the World, Cited in
Noack, R and Gamio, L (2015) the World’s Languages, in 7 Maps and Charts
Washington Post 23 April 2015. Available at: https://www.washingtonpost.
com/ news/worldviews/wp/2015/04/23/the-worlds-languages-in7-maps-and-
charts/?utm_term�.c7342219767b.

Android SDK - Pdf Renderer Class. Available at: https://developer.android.com/
reference/android/graphics/pdf/PdfRenderer.

Çakir, A. (2016). Usability and Accessibility of Portable Document Format,
Behaviour & Information Technology, 35 Issue 4. , p324–334. doi:10.1080/
0144929x.2016.1159049

Chen, N., Guimbretiere, F., Dixon, M., Lewis, C., and Agrawala, M. (1779).
Navigation Techniques for Dual-Display E-Book Readers. Proceeding of the
Twenty-Sixth Annual CHI Conference on Human Factors in Computing
Systems (CHI ’08). New York, New York, USA: ACM Press.

Gould, J. D., Alfaro, L., Finn, R., Haupt, B., and Minuto, A. (1987). Why readingWas
Slower fromCRTDisplays Than fromPaperSIGCHI Bull. In CHI ’87 Proceedings
of the SIGCHI/GI Conference on Human Factors in Computing Systems and
Graphics Interface, 18. New York: ACM Press, 7–11. doi:10.1145/1165387.30853

Historical Yearly Trends in the Usage Statistics of Content Languages forWebsites,
W3Techs (Web Technology Surveys), 2020. Available at: https://w3techs.com/
technologies/history_overview/content_language/ms/y

IETF - the Application/pdf Media Type. Availableat: https://tools.ietf.org/html/
rfc3778

Introducing, J. S. O. N. Available at: https://www.json.org/json-en.html.
ISO 32000-1:2008 - Document management - Portable Document Format - Part 1:

PDF 1.7. Available at: https://www.iso.org/standard/51502.html
Josef, B., Alan, P. S., and Volker, S. (2012). MaxTract: Converting PDF to LATEX,

MathML and Text.” AISC/DML/MKM/Calculemus. 7362 of Lecture Notes in
Computer Science, volume. Springer, 422–426.

McGuinness, D. (2004). Early Reading Instruction - what Science Really Tells Us
about How to Teach Reading. Cambridge, Massachusetts: The MIT Press.
doi:10.7551/mitpress/2545.001.0001

MDN Web Docs - Document Object Model (DOM): Available at: https://
developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

The Mobile Economy 2018, 2018 GSM Association. Available at: https://www.
gsmaintelligence.com/research/?file�061ad2d2417d6ed1ab002da0dbc9ce22&download

PdfBox-Android. Available at: https://github.com/TomRoush/PdfBox-Android
Protopsaltis, A., and Bouki, V. (20062006). The Effects of reading Goals in

Hypertext reading. Proceedings of The24th Annual Conference on Design
of Communication (SIGDOC ’06), 29–34. New York, New York, USA: ACM
Press. doi:10.1145/1166324.1166332, pages

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 62883213

Yu et al. Readability Enhancement for PDF Documents

https://www.washingtonpost.com/%20news/worldviews/wp/2015/04/23/the-worlds-languages-in7-maps-and-charts/?utm_term=.c7342219767b
https://www.washingtonpost.com/%20news/worldviews/wp/2015/04/23/the-worlds-languages-in7-maps-and-charts/?utm_term=.c7342219767b
https://www.washingtonpost.com/%20news/worldviews/wp/2015/04/23/the-worlds-languages-in7-maps-and-charts/?utm_term=.c7342219767b
https://www.washingtonpost.com/%20news/worldviews/wp/2015/04/23/the-worlds-languages-in7-maps-and-charts/?utm_term=.c7342219767b
https://developer.android.com/reference/android/graphics/pdf/PdfRenderer
https://developer.android.com/reference/android/graphics/pdf/PdfRenderer
https://doi.org/10.1080/0144929x.2016.1159049
https://doi.org/10.1080/0144929x.2016.1159049
https://doi.org/10.1145/1165387.30853
https://w3techs.com/technologies/history_overview/content_language/ms/y
https://w3techs.com/technologies/history_overview/content_language/ms/y
https://tools.ietf.org/html/rfc3778
https://tools.ietf.org/html/rfc3778
https://www.json.org/json-en.html
https://www.iso.org/standard/51502.html
https://doi.org/10.7551/mitpress/2545.001.0001
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://www.gsmaintelligence.com/research/?file=061ad2d2417d6ed1ab002da0dbc9ce22&download
https://www.gsmaintelligence.com/research/?file=061ad2d2417d6ed1ab002da0dbc9ce22&download
https://www.gsmaintelligence.com/research/?file=061ad2d2417d6ed1ab002da0dbc9ce22&download
https://github.com/TomRoush/PdfBox-Android
https://doi.org/10.1145/1166324.1166332
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Schilit, B. N., Golovchinsky, G., and Price, M. N. (1998). Beyond Paper: Supporting
Active reading with Free Form Digital Ink Annotations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’98). New
York, New York, USA, January: ACM Press, 249–256.

Shelton, Z., and Yu, C-H. (20202020). A Framework for PDF Readability
Enhancement. The 17th International Web for All Conference. W4A.
doi:10.1145/3371300.3383352

Suzuki, M., Fumikazu, T., Fukuda, R., Uchida, S., and Toshihiro, K. (2003). Infty:
an Integrated Ocr System for Mathematical Documents. In DocEng ’03:
Proceedings of the 2003 ACM Symposium on Document Engineering. New
York, NY, USA: ACM Press, 95–104.

Walker, S., Schloss, P., Fletcher, C. R., Vogel, C. A., and Walker, R. C. (2005).
Visual-Syntactic Text Formatting: A New Method to Enhance Online Reading.
Reading Online Electron. J. 8 (6).

Williams, R. (1983). Teaching the Recognition of Cohesive Ties Tin Reding a
Foreign Language. Reading a Foreign Lang. 1 (1), 35–53.

Yu, C-H., and Miller, R. C. (2010). Enhancing Web page Readability for Non-
native Readers. “Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). Atlanta, Georgia, USA. April 10-15, 2010.
doi:10.1145/1753326.1753709

Yu, C-H. (2012). Web Page Enhancement on Desktop and Mobile Browsers.
Ph.D. Thesis. Department of Electrical Engineering and Computer
Science, MIT.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Yu, Shelton, Abou Nassif Mourad and Oulal. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computer Science | www.frontiersin.org August 2021 | Volume 3 | Article 62883214

Yu et al. Readability Enhancement for PDF Documents

https://doi.org/10.1145/3371300.3383352
https://doi.org/10.1145/1753326.1753709
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	Readability Enhancement for PDF Documents
	Introduction
	Article Types
	Related Work
	PDFroggy—Content Transformation for PDF Documents
	System Design
	System Implementation
	Parsing the PDF Document
	Extracting Document Structure
	Rendering Content With Native APIs
	Applying Content Transformation

	A Scalable Framework for Readability Enhancement on PDF Documents
	Lessons From Previous Work
	Framework
	PDFroggy++—An Implementation for Proposed Framework
	Content Loading—The PDFContentManager
	Text Striping With InfoScraper
	Text Formatting With FormatterObjects
	Content Layout and Display
	Shared JSON for Community

	Results
	Discussion
	Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

