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Abstract 

 
The study of graph width parameters holds significant importance in the fields of graph theory and 

combinatorics. Among these parameters, linear-width stands out as a well-established and esteemed measure. 

The notions of single Ideal and Linear obstacle act as obstacles to achieving optimal linear-width in a 

connectivity system. In this succinct paper, we offer an alternative proof establishing the equivalence between 

single ideal and linear obstacle. 
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1 Introduction 
 

The exploration of width parameters holds significant importance in the realms of graph theory and 

combinatorics, as evidenced by the plethora of publications dedicated to this subject (e.g., [1, 2-5, 6-11, 12-26]). 

Among these parameters, branch-width, a well-studied concept, has received considerable attention in numerous 

papers. Likewise, linear width, a constrained version of branch-width, has been thoroughly investigated in a 

multitude of publications. Therefore, the study of both branch-width and linear width assumes critical 

significance [27,28]. 

 

The concept of single Ideal, introduced in reference [29], serves as a modeling tool for fundamental 

mathematical “ideal” in Boolean algebra and topology. In the context of a connectivity system, single Ideal 

represents the dual concept of linear width (also see reference [30,31]). Additionally, the notion of linear 

obstacle on a connectivity system corresponds to the dual concept of linear width [3,21]. 

 

Building upon these findings, it is established that single Ideal and linear obstacle are equivalent. However, in 

this concise paper, we present an alternative proof of their equivalence. While the level of novelty may be 

modest, our objective is to make a valuable contribution to the advancement of research in areas such as Linear 

width. 

 

2 Definitions in this Paper 
 

This section provides mathematical definitions for each concept. 

 

2.1 Symmetric submodular function and connectivity system 
 

The definition of a symmetric submodular function is provided below. However, it is important to note that 

although symmetric submodular functions can generally take real values, this paper specifically focuses on the 

subset of functions that take only natural numbers. 

 

 

Definition 1: Let X be a finite set. A function f: X → ℕ is called symmetric submodular if it satisfies the 

following conditions: 

 

∀A⊆X, f(A) = f(X\A). 

 

∀A, B⊆X, f(A) + f(B) ≥ f(A∩B) + f(A∪B). 

 

A symmetric submodular function possesses the following properties. This lemma will be utilized in the proofs 

of lemmas and theorems presented in this paper. 

 

Lemma 1 [10]: A symmetric submodular function f satisfies: 

 

1. ∀A⊆X, f(A) ≥ f(∅) = f(X), 

 

2. ∀A, B⊆X, f(A) + f(B) ≥ f(A\B) + f(B\A). 

 

In this brief paper, a connectivity system is defined as a pair (X, f) consisting of a finite set (an underlying set) X 

and a symmetric submodular function f. Throughout this paper, we use the notation f to refer to a symmetric 

submodular function, a finite set (an underlying set) X, and natural numbers k, m. A set A is said to be k-efficient 

if f(A) ≤ k. 

 

2.2 Single ideal on a connectivity system (X,f) 
 

The definition of a single ideal on a connectivity system (X,f) is given below. 
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Definition 2 [2]: Let X represent a finite set and f denote a symmetric submodular function. In a connectivity 

system (X,f), the set family S ⊆2X is called a single ideal of order k+1 if the following axioms hold true: 

(IB) For every A ∈ S, f(A) ≤ k. 

 

(IH) If A, B ⊆ X, A is a proper subset of B, and B belongs to S, then A belongs to S. 

 

(SIS) If A belongs to S, e ∈ X, f({e}) ≤ k, and f(A ∪ {e}) ≤ k, then A ∪ {e} belongs to S. 

 

(IW) X does not belong to S. 

 

 

In this short paper, we also consider the following additional axiom: 

 

(IE) For each k-efficient subset A of X, exactly one of A or (X\A) is in S. 

 

It has been shown in literature [2] that the linear width of (X,f) is at least k+1 if and only if there exists a single 

ideal on (X,f) of order k+1 that satisfies axiom (S4). 

 

2.3 Linear obstacle on a connectivity system (X,f) 
 

The definition of Linear obstacle is shown below. This concept is deep relation to (k,m)-obstacle in literature [6]. 

Definition 3 [26]: Let X represent a finite set and f denote a symmetric submodular function. In a connectivity 

system (X,f), the set family O ⊆2X is called a linear obstacle of order k + 1 if the following axioms hold true: 

 

(O1) A ∈ O, f(A) ≤ k, 

 

(O2) A ⊆ B ⊆ X, B ∈ O, f(A) ≤ k ⇒ A ∈ O, 

 

(O3) A, B, C ⊆ X, A ∪ B ∪ C = X, A ∩ B = ∅, f(A) ≤ k, f(B) ≤ k, |C| ≤ 1 ⇒ either A ∈ O or B ∈ O. 

 

3 Results: Equivalence between Single Ideal and Linear Obstacle 
 

The result of this short paper is below. 

 

Theorem 1. Let X represent a finite set and f denote a symmetric submodular function. Assuming that f({e}) ≤ k 

for every e ∈ X, S is a single ideal of order k+1 on (X,f) satisfying the additional axiom (IE) if and only if S is a 

linear obstacle of order k+1 on (X,f). 

 

Proof of Theorem 1: 

 

(⇒) If S is a single ideal of order k + 1 satisfying the additional axiom (IE), then S is a linear obstacle of order k 

+ 1. 

 

Axiom (O1) is clearly true. Axiom (O2) follows from axiom (IE). 

 

To show axiom (O3), it is clear from axiom (IE) when |C| = 0. When |C| = 1, it is obvious from axiom (IE) if 

either C ⊆ A or C ⊆ B. Therefore, consider the case where both C ⊈ A and C ⊈ B hold. Assume, without loss 

of generality, that A ∉ S and B ∉ S, or A ∈ S and B ∈ S. Here, we use the fact that either A ∉ S or A ∉ S holds, 

following from axiom (IE). 

 

When A ∉ S and B ∉ S, we have (X\A) = B ∪ C ∈ S. Since f(B) ≤ k and B ⊆ B ∪ C, axiom (IH) implies B ∈ 

S, leading to a contradiction. When A ∈ S and B ∈ S, we have (X\A) = B ∪ C ∉ S. On the other hand, from 

axiom (SIS), we have B ∪ C ∈ S, which leads to a contradiction. 
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(⇐) If S is a linear obstacle of order k + 1, then S is a single ideal of order k + 1 satisfying the additional axiom 

(IE). 

 

Axiom (IH) and (IB) is obvious. 

 

To show axiom (IE), assume f(A) ≤ k. Since A ∪ (X\A) = X and A ∩ (X\A) = ∅, either A ∈ S or (X\A) ∈ S 

follows from axiom (O3).  

 

To show axiom (SIS), assume A ∈ S and f(A ∪ {e}) ≤ k. Then, we have f((X\A) ∩ (X\{e})) = f(A ∪ {e}) ≤ k, 

implying f((X\A) ∩ (X\{e})) ≤ k. Since A ∈ S and axiom (O1) hold, we have f(A) ≤ k. From A ∪ ((X\A) ∩ 

(X\{e})) ∪ {e} = X and A ∩ ((X\A) ∩ (X\{e})) = ∅, either A ∈ S or (X\A) ∩ (X\{e}) ∈ S follows from axiom 

(O3). Since A ∈ S, we obtain A ∩ (X\{e}) ∉ S. Using the previously shown axiom (IE), we obtain A ∪ {e} ∈ S. 

To show axiom (IW), assume X ∈ S, which leads to a contradiction. Using Lemma 1, we obtain f(X) = f(∅) ≤ k. 

Using the previously shown axiom (IE) with A = X and B = ∅, either X ∈ S or ∅ ∈ S follows. Since X ∈ S, we 

obtain ∅ ∉ S, contradicting axiom (IH) which implies ∅ ∈ S. This proof is completed. 
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