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ABSTRACT 
 

Since thermal stress influences the whole infection pathway, temperature is a critical factor in 
determining the efficiency of entomopathogenic fungi in microbial pest management. This study 
aimed to determine how temperature changes affect the germination rate of two isolating 
entomopathogenic fungi. In addition, we looked at how different entomopathogenic fungi performed 
against Spodoptera littoralis second-instar larvae after being incubated at various temperatures. 
Two locally isolated entomopathogenic fungi were identified morphologically as Beauveria bassiana 
and Purpureocillium lilacinum. Both fungi were incubated at 15, 20, 25, 30, 35, and 40° C to 
evaluate their germination and pathogenicity. Results showed that both fungi could germinate 
effectively at 20-35° C. Results also showed that P. lilacinum can germinate at all tested 
temperatures. No germination was obtained at 40° C for both fungi. B. bassiana was more 
pathogenic against S. littoralis larvae than P. lilacinum. The results showed that the isolated fungi 
can be developed as potential biopesticides against S. littoralis under different temperatures, 
although proper formulation is still required. 
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ABBREVIATIONS 
 
ANOVA : Analysis of variance 
EPF : Entomopathogenic fungi 
PDA : Potato Dextrose Agar 
SDA : Sabourad Dextrose Agar 
SDYA : Sabourad Dextrose Yeast Agar 
SPSS : Statistical Package for Social 
Sciences 
 

1. INTRODUCTION 
 
Spodoptera littoralis (Boisduval) (Lepidoptera: 
Noctuidae), commonly known as the Egyptian 
cotton leafworm, is a highly polyphagous and 
destructive pest that poses a significant threat to 
a variety of economically important crops 
worldwide [1–4]. Larvae of Lepidopteran insects 
are a matter of worldwide phytosanitary concern 
because of their capacity to infest various plant 
structures, resulting in detrimental effects on crop 
quality and significant economic losses [5]. An 
increased population can lead to leaf 
skeletonization, resulting in crop loss, damage to 
the shoot system, and significant economic 
implications [6]. The widespread utilization of 
traditional insecticides in controlling S. littoralis 
has led to resistance against prominent pesticide 
categories [6]. It can exert adverse effects on the 
surrounding ecosystem [7]. In light of the rise of 
resistance and environmental risks, it is 
imperative to explore alternative methods of pest 
control that offer greater cost-effectiveness and 
sustainability compared to traditional insecticides 
[8]. Finding safe substituents for these 
compounds is a crucial need. Bioinsecticides, 
such as compounds derived from bacteria, fungi, 
and viruses, should be considered more [9–11]. 
These groups have distinctive modes of action 
[11], and their properties may vary significantly 
from those of the conventional compounds to 
which producers are accustomed. 
Entomopathogenic fungi (EPF) can infect and kill 
arthropods. Even though they are primarily 
isolated from arthropod remains, their natural 
habitat is soil [12]. The primary function of EPF in 
the environment is insect population control. The 
literature provides information regarding the 
infectious properties of EPF, the infectious 
process [13,14], and the use of these 
microorganisms as biopesticides in commercial 
preparations [15]. EPF, with a focus on 
hypocrealean ascomycetes, are unique among 
entomopathogenic microorganisms due to their 
mode of action through the cuticle, which gives 

them a significant advantage in integrated pest 
management; conidia of EPF adhere to the 
cuticle, germinate, penetrate the host (without 
the need for ingestion), grow inside the 
hemocoel, and ultimately cause the death of the 
host due to nutrient deficiencies [16]. These fungi 
can control a wide variety of arthropod pest 
species, including locusts and grasshoppers, 
soil-dwelling insects, penetrating and sucking 
insects, mites, stored-grain pests, several 
forestry pests, and invasive, medicinal, and 
veterinary pests [17]. Temperature is a critical 
determinant of the efficacy of EPF in microbial 
pest control, as thermal stress influences the 
entire infection pathway [18]. In general, EPFs 
are mesophilic microorganisms with growth 
potential between 10 and 40°C, and optimal 
growth between 25 and 35°C, and the 
geographical origin of an entomopathogenic 
fungal strain is a significant factor in determining 
tolerance to high or low temperature[18–23]. 
Entomopathogenic fungi (EPF) such as 
Beauveria and Metarhizium development is 
significantly constrained by extremely high and 
low temperatures [24,25]. A recent analysis by 
Tong and Feng [26] has examined the 
phenotypic and molecular aspects of heat 
tolerance in entomopathogenic fungi (EPF). This 
review presents substantial data indicating that 
Beauveria and Metarhizium, two often studied 
EPFs, exhibit a heightened sensitivity to high 
temperatures exceeding their upper thermal 
limits (32–35°C) during the summer. The 
effectiveness of mycoinsecticide field 
applications is limited by heat tolerance in 
Mediterranean climatic conditions [26]. In light of 
these facts, the present investigation aims to 
assess the direct effect of temperature 
fluctuations on the germination ability of two 
isolated entomopathogenic fungi. Furthermore, 
the virulence of tested entomopathogenic fungi 
after growing under different temperatures 
against the 2

nd
 instar larvae of S. littoralis was 

investigated. 
 

2. MATERIALS AND METHODS 
 

1. Collection and isolation of 
entomopathogenic fungi 

 
Insect cadavers suspected of fungal infection 
were collected from cotton fields infested with S. 
littoralis. Collected samples were surface-
sterilized with 1% sodium hypochlorite (NaOCl) 
for 30 sec., followed by three washes with sterile 
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distilled water to prevent external saprophytic 
contaminations. The samples were placed in 
sterilized polyethylene bags and stored at 4° C 
until fungal analysis [27]. 
 

2. Selective medium for isolation of 
entomopathogenic fungi 

 
ollected samples were placed on Sabouraud 
Dextrose Yeast Agar (SDYA) composed of 
peptone (10 gm), glucose (40 gm), yeast extract 
(2 gm), and Agar (15 gm). All ingredients were 
settled in 1000 ml of distilled water. The pH was 
set at 5.6±0.3 by diluted HCl at 25° C [28]. 
Cultivated fungi were transferred onto a potato 
dextrose agar (PDA) petri dish to identify isolated 
fungi morphologically. All fungal colonies were 
incubated at 25±1° C and 95±5% R. H. 
 

3. Fungal characteristics and 
morphological identification 

 
Each colony's macroscopic morphological 
characteristics were evaluated based on color, 
texture, and reverse color. Suspensions of the 
investigated fungus were generated by placing a 
culture disc from the center of a 14-day fungal 
colony into a 50 mL flask containing 20 mL sterile 
0.05% Tween 80 and stirring the mixture for 10 
minutes with a magnetic stirrer. A hemocytometer 
was used to determine the conidial suspension's 
concentration. Isolated fungi were 
morphologically identified according to the 
description provided by Barnett and Hunter [29]. 
For microscopic examination, the mycelium of 
the fungus was placed on a coverslip after 
sporulation. After a drop of the mounting medium 
was applied, the growth was gingerly examined. 
The second coverslip was placed on top for light 
microscopy analysis, followed by high-definition 
digital photographs taken at 40X magnification 
[30]. 
 

4. Effect of temperature fluctuations on 
fungal growth 

 
To determine the influence of temperature on 
germination, 0.1 ml of conidial suspension 
containing 1×10

8
 conidia ml

-1
 was spread-plated 

on SDA plates in Petri dishes. On each plate, 
sterile microscope coverslips were inserted. 
Inoculated dishes were sealed with Parafilm M 
and incubated in total darkness at 15, 20, 25, 30, 
and 35° C and 95±5% R. H. Twenty-four hours 
after inoculation, 1 ml of formaldehyde (0.5%) 
was added to each plate to prevent germination. 
Using a hemocytometer, the germination 

percentage was calculated by counting 100 
spores per plate under a magnification of X40. 
Each plate was a replicate, with four replicates 
per treatment [31]. 
 

5. Effect of temperature on fungal 
virulence 

 
Spores were scraped from the surface of cultures 
and utilized to make spore suspensions (distilled 
water with 0.1% Tween 80). By immersing newly 
molted 2

nd
 instar larvae in the prepared solutions 

for 10 seconds, all isolated fungal species were 
evaluated at a constant concentration of 1×10

8
 

conidia ml
-1

 in 0.1% Tween 80. The control group 
was treated with sterile distilled water with 0.1% 
Tween 80. Following treatment, treatment was 
replicated four times, and each replicate of 20 
insects was put in a rearing container and 
incubated for 48 hours at 25°±2 C and 95±5% R. 
H. Larval mortality was recorded daily 48h post-
treatment for 14 days till pupation. It was 
corrected according to Abbott’s formula [32,33]. 
Dead larvae were placed in a petri dish lined with 
moistened filter paper. Mortality due to fungal 
infection was confirmed by observation of hyphal 
and spore growth on the surface of the dead 
insect’s body (Fig. 1) [31]. 
 

 
 

Fig. 1. Sporulation of entomopathogenic 
fungi on larval cadavers confirming the 

fungal infection 
 

6. Statistical analysis 
 
Germination data were subjected to analysis of 
variance (ANOVA) for a completely randomized 
design using SPSS 22.0 (Statistical Package for 
Social Sciences, USA) version 22.0.0 software. 
The results were presented as the mean and 
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standard deviation. Significant differences 
between means were identified at the P < 0.05 
level [33]. After culturing at different 
temperatures, the pathogenicity of isolated fungi 
was analyzed using ANOVA, and results were 
expressed as the mean and standard deviation. 
The variance ratio (Eta

2
) was measured to 

assess the effect of temperature on fungal 
germination and virulence using SPSS 22.0 
software. 
 

3. RESULTS 
 

1. Identification and morphological 
characterization of isolated fungi 

 
Two entomopathogenic fungi were identified 
based on the morphological features of isolated 
fungi. Beauveria bassiana (Bala.-Criv.) Vuill. 
(Hypocreales: Cordycipitaceae) was identified as 

the initial fungus. The B. bassiana colony was 
discovered to be white and granular smooth. On 
a microscopic scale, it was observed that the 
hyphae had branched and produced 
conidiogenetic cells and a network of branching 
hyphae. The conidium of solitary cells of B. 
bassiana was both round and oval (Fig. 2). 
 
In addition, the second fungus was identified as 
Purpureocillium lilacinum ((Thom) Luangsa-ard, 
Hou-braken, Hywel-Jones & Samson) 
(Hypocreales: Ophiocordycipitaceae). Conidia 
were ovoid to spindle-shaped, single-celled, 
chain-like spores with a 3.1-4.0 µm diameter. The 
formation of white colonies with white outlines 
characterized early phases. The growth 
eventually obtained purple tints. The colonies 
were purple, spherical, and inflated after seven 
days. The surface had no secretion, and the 
consistency resembled cotton (Fig. 3). 

 
a 

 

b 

 

 
Fig. 2. Culture characteristics of the 14-day colony (a) and microscopic examination showing 

the conidiophore and conidia (b) for Beauveria bassiana 
 
a 

 

b 
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c 

 
 

Fig. 3. Culture characteristics of the 7-day colony (a), 14-day colony (b), and microscopic 
examination showing the conidiophore and conidia (c) for Purpureocillium lilacinum 

 
 
a 

 

b 

 
c 

 

d 
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e

  
 

Fig. 4. Beauveria bassiana fungal germination at different temperatures for 14-day; (a) 15°C, 
(b) 20°C,(c) 25°C,(d) 30°C, and (e) 30°C 

 
2. Effect of temperature on isolated 

fungi germination 
 
The impact of temperature on fungal germination 
of B. bassiana and P. lilacinum is presented in 
Table 1 regarding conidial count. The 
morphological appearance of B. bassiana colony 
germination under different temperatures is 
shown in Fig. 4. It was noticed that the optimal 
fungal germination was obtained at 20, 25, and 
30° C. The fungal growth was almost observed at 
35°C, but no fungal growth at 40°C. Furthermore, 
the conidial count of B. bassiana was lowered at 
low (15°C) and high (35°C) temperatures 
(2.9×10

4
 conidia ml

-1
 and 0.3×10

2
 conidia ml

-1
, 

respectively). The highest conidial counts were 
observed at 20 and 25°C (4.3×10

9
 and 4.5×10

9
 

conidia ml
-1

, respectively). 
 
The morphological appearance of P. lilacinum 
colony germination under different temperatures 
is shown in Fig. 5. P. lilacinum can combat high 
temperatures, and high fungal growth was 
obtained at all temperatures. There was no 
fungal growth at 40°C. Furthermore, the                 
conidial count of P. lilacinum was directly               
related to temperature; as the temperature 
raised, the conidial count increased. The  
conidial count rarely declined at 30 and 35°C 
(Table 1). 

 
a 

 

b 

 
c 

 

d 
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e 

 
 

Fig. 5. P. lilacinum fungal germination at different temperatures for 14-day; (a) 15°C, (b) 
20°C,(c) 25°C,(d) 30°C, and (e) 30°C 

 
Table 1. Fungal conidial count of Beauveria bassiana and Purpureocillium lilacinum in different 

temperatures 
 
Treatment Conidial count at different temperatures (Mean ± S.E.) (Conidia ml

-1
) 

15° 20° 25° 30° 35° 

Beauveria bassiana 2.9×10
4
±0.003* 4.3×10

9
±0.03* 4.5×10

9
±0.02* 2.7×10

9
±0.003* 0.3×10

2
±0.03* 

Purpureocillium 
lilacinum 

3.1×10
6
±0.002* 5.8×10

9
±0.01* 8.3×10

9
±0.002* 1.7×10

10
±0.00* 2.4×10

8
±0.001* 

*: Significant at P ≤ 0.05 

 
Table 2. Virulence of tested entomopathogens under temperature intervals concerning larval 

mortality 
 

Treatment Larval mortality at different temperatures (Mean ± S.E.) P-value 

15° 20° 25° 30° 35° 

Beauveria bassiana 8.0±0.58* 16.0±1.15* 17.0±0.58* 13.0±0.58* 5.0±0.58* 0.00 
Purpureocillium lilacinum 4.0±0.57* 9.0±0.57* 7.0±0.57* 6.0±0.00* 4.0±0.54* 0.00 
Control 0 0 0 0 0  

*: Significant at P ≤ 0.05 

 
Measurement of the association of fungal 
germination and temperature showed a high 
association in both B. bassiana and P. lilacinum 
(Eta

2
= 1.00 for both fungi). 

 
3. Effect of temperature on fungal 

virulence 
 
The fungal virulence of B. bassiana and P. 
lilacinum regarding their pathogenicity against 
the 2

nd
 instar larvae of S. littoralis is shown in 

Table 2. Results showed that B. bassiana has 
high larvicidal activity than P. lilacinum. In 
addition, the temperature affected the virulence 
of both fungi, as confirmed by larval mortality. 
Both fungi caused low larval mortality when 
fungal isolates were incubated at 15 and 35° C. 
High larval mortality was acquired when larvae 
were treated with fungi incubated at 20, 25, and 
30° C for B. bassiana and at 20°C for P. 
lilacinum. Moreover, B. bassiana was more 
infective than P. lilacinum against the 2

nd
 instar 

larvae of S. littoralis. Measurement of the 
association of fungal virulence and temperature 
showed that B. bassiana virulence against the 
2

nd
 instar larvae was temperature dependant 

(Eta
2
= 0.976) regarding the untreated larvae. On 

the other hand, P. lilacinum virulence against the 
2

nd
 instar larvae was temperature dependant 

(Eta
2
= 0.933) considering the control. 

 
 

4. DISCUSSION 
 
Temperature is a crucial determinant of the 
efficacy of EPF in microbial pest control, as 
thermal stress affects the entire infection 
pathway [18]. The role of temperature in 
influencing biological processes is crucial, and its 
association with geographic location results in 
regional variability that must be considered when 
dealing with live organisms. This feature 
becomes particularly pertinent when considering 
the significant environmental strain linked to 
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global warming and the escalating harsh 
circumstances that are increasingly encountered.  
In this context, the present investigation aimed to 
assess the effect of temperature fluctuations on 
the germination and virulence of two local 
entomopathogenic fungi, B. bassiana, and P. 
lilacinum. Results revealed that both fungi could 
germinate effectively under optimum 
temperatures ranging from 20-30°C. 
Furthermore, results showed that P. lilacinum 
was heat tolerant compared to B. bassiana. In 
addition, both fungi failed to germinate at 40°C. 
In general, EPFs are mesophilic microorganisms 
with a growth potential between 10 and 40° C 
and an optimal growth ranging from 25 to 35° C, 
and a strain's geographical origin is a major 
factor in determining its tolerance to high or low 
temperature [21,23,34]. B. bassiana was more 
toxic against the 2

nd
 instar larvae of S. littoralis. 

De Croos et al. [35] found that proteins in cold-
active fungi strains differed from those in a non-
cold-active strain when cultivated at 8 °C 
compared to 25 °C. These differently produced 
proteins may affect the pathogenicity of fungi. 
Thermotolerance-related genes may be present 
in certain strains, influencing their pathogenicity 
[36]. The development of entomopathogenic 
fungi (EPF) such as Beauveria is significantly 
constrained by high and low temperatures 
[24,25]. A recent analysis by Tong and Feng [26] 
has examined the phenotypic and molecular 
aspects of heat tolerance in EPF. The research 
presented extensive data indicating that 
Beauveria and Metarhizium exhibited high 
sensitivity to elevated temperatures that 
exceeded their top thermal limits (32-35 °C) 
during the summer months. The effectiveness of 
mycoinsecticide field applications is limited by 
heat tolerance in Mediterranean climatic 
conditions [26]. Results also show that B. 
bassiana was more toxic to the 2

nd
 instar larvae 

of S. littoralis than P. lilacinum. Previous findings 
revealed that P. lilacinum and B. bassiana could 
be isolated from infected insect pests and 
potentially control many insects [37–44]. 
According to previous reports, P. lilacinum also 
showed varied insecticidal activities against 
insects [42,44–46]. 
 

5. CONCLUSION 
 
Locally isolated B. bassiana and P. lilacinum 
showed larvicidal activity against the S. littoralis 
larvae. Besides, heat tolerance capabilities make 
them good alternatives to conventional 
insecticides to be used under hot weather. 
Accordingly, both fungi can be developed as 

potential biopesticides against S. littoralis, 
although the development of proper formulation 
is still required. 
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