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ABSTRACT
In this paper, we introduce and investigate the generalized Narayana matrix sequence and we deal
with, in detail, three special cases of this sequence which we call them Narayana, Narayana-Lucas
and Narayana-Perrin matrix sequences. We present Binet’s formulas, generating functions, and
the summation formulas for these sequences. We present the proofs to indicate how these sum
formulas, in general, were discovered. Of course, all the listed sum formulas may be proved by
induction, but that method of proof gives no clue about their discovery. Moreover, we give some
identities and matrices related with these sequences. Furthermore, we show that there always
exist interrelation between generalized Narayana, Narayana, Narayana-Lucas and Narayana-Perrin
matrix sequences.
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Soykan and Koç; JSRR, 27(6): 31-64, 2021; Article no.JSRR.70350

1 INTRODUCTION AND
PRELIMINARIES

In this paper we define generalized Narayana
matrix sequence and investigate their properties.
First, we present some information on
generalized Narayana sequence and its special
cases.

The Narayana numbers was introduced by the
Indian mathematician Narayana in the 14th
century, while studying the problem of a herd of
cows and calves, see [1,2] for details. Narayana’s
cows problem is a problem similar to the
Fibonacci’s rabbit problem which can be given as
follows: A cow produces one calf every year and

beginning in its fourth year, each calf produces
one calf at the beginning of each year. How
many calves are there altogether after 20 years?
This problem can be solved in the same way
that Fibonacci solved its problem about rabbits
(see [3]). If n is the year, then the Narayana
problem can be modelled by the recurrence
Nn+3 = Nn+2 + Nn, with n ≥ 0, N0 = 0, N1 =
1, N2 = 1, see [1]. The first few terms are
0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28..., (the sequence
A000930 in [4]). This sequence is called
Narayana sequence. Recently, there has been
considerable interest in the Narayana sequence
and its generalizations (for more details, see
[1,5,6,7,8,9,10,11,12 and the references given
therein]).

A generalized Narayana sequence {Vn}n≥0 = {Vn(V0, V1, V2)}n≥0 is defined by the third-order
recurrence relations

Vn = Vn−1 + Vn−3 (1.1)
with the initial values V0 = c0, V1 = c1, V2 = c2 not all being zero. The sequence {Vn}n≥0 can be
extended to negative subscripts by defining

V−n = −V−(n−2) + V−(n−3)

for n = 1, 2, 3, .... Therefore, recurrence (1.1) holds for all integer n.For more details on generalized
Narayana numbers, see [11]. Binet formula of generalized Narayana numbers can be given as

Vn =
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)
(1.2)

where

b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0. (1.3)

Here, α, β and γ are the roots of the cubic equation x3 − x2 − 1 = 0. Moreover

α =
1

3
+

(
29

54
+

√
31

108

)1/3

+

(
29

54
−
√

31

108

)1/3

,

β =
1

3
+ ω

(
29

54
+

√
31

108

)1/3

+ ω2

(
29

54
−
√

31

108

)1/3

,

γ =
1

3
+ ω2

(
29

54
+

√
31

108

)1/3

+ ω

(
29

54
−
√

31

108

)1/3

,

where

ω =
−1 + i

√
3

2
= exp(2πi/3).

Note that

α+ β + γ = 1,

αβ + αγ + βγ = 0,

αβγ = 1.
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The first few generalized Narayana numbers with positive subscript and negative subscript are given
in the following Table 1.

Table 1. A few generalized Narayana numbers

n Vn V−n

0 V0 ...
1 V1 V2 − V1

2 V2 V1 − V0

3 V2 + V0 −V2 + V1 + V0

4 V2 + V1 + V0 V2 − 2V1 + V0

5 2V2 + V1 + V0 V2 − 2V0

6 3V2 + V1 + 2V0 −2V2 + 3V1

7 4V2 + 2V1 + 3V0 −2V1 + 3V0

8 6V2 + 3V1 + 4V0 3V2 − 3V1 − 2V0

9 9V2 + 4V1 + 6V0 −2V2 + 5V1 − 3V0

10 13V2 + 6V1 + 9V0 −3V2 + V1 + 5V0

11 19V2 + 9V1 + 13V0 5V2 − 8V1 + V0

12 28V2 + 13V1 + 19V0 V2 + 4V1 − 8V0

13 41V2 + 19V1 + 28V0 −8V2 + 9V1 + 4V0

Now we define three special case of the sequence {Vn}. Narayana sequence {Nn}n≥0, Narayana-
Lucas sequence {Un}n≥0 and Narayana-Perrin sequence {Hn}n≥0 are defined, respectively, by the
third-order recurrence relations

Nn+3 = Nn+2 +Nn, N0 = 0, N1 = 1, N2 = 1,

Un+3 = Un+2 + Un, U0 = 3, U1 = 1, U2 = 1,

Hn+3 = Hn+2 +Hn, H0 = 3, H1 = 0, H2 = 2,

The sequences {Nn}n≥0, {Un}n≥0 and {Hn}n≥0 can be extended to negative subscripts by defining

N−n = −N−(n−2) +N−(n−3)

U−n = −U−(n−2) + U−(n−3)

H−n = −H−(n−2) +H−(n−3)

for n = 1, 2, 3, ... respectively.

Note that Nn is the sequence A000930 in [4] associated with the Narayana’s cows sequence and
the sequence A078012 in [4] associated with the expansion of (1 − x)/(1 − x − x3) and Un is the
sequence A001609 in [4].

Next, we present the first few values of the Narayana, Narayana-Lucas and Narayana-Perrin numbers
with positive and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative
subscripts

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Nn 0 1 1 1 2 3 4 6 9 13 19 28 41 60
N−n 0 1 0 −1 1 1 −2 0 3 −2 −3 5 1
Un 3 1 1 4 5 6 10 15 21 31 46 67 98 144
U−n 0 −2 3 2 −5 1 7 −6 −6 13 0 −19 13
Hn 3 0 2 5 5 7 12 17 24 36 53 77 113 166
H−n 2 −3 1 5 −4 −4 9 0 −13 9 13 −22 −4
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For all integers n, Narayana, Narayana-Lucas and Narayana-Perrin numbers (using initial conditions
in (1.3)) can be expressed using Binet’s formulas as

Nn =
αn+1

(α− β)(α− γ)
+

βn+1

(β − α)(β − γ)
+

γn+1

(γ − α)(γ − β)
,

Un = αn + βn + γn,

Hn =
(3 + 2α)αn−1

(α− β)(α− γ)
+

(3 + 2β)βn−1

(β − α)(β − γ)
+

(3 + 2γ)γn−1

(γ − α)(γ − β)
,

respectively.

Next, we give the ordinary generating function
∞∑

n=0

Vnx
n of the sequence Vn.

Lemma 1.1. Suppose that fVn(x) =
∞∑

n=0

Vnx
n is the ordinary generating function of the generalized

Narayana sequence {Vn}n≥0. Then,
∞∑

n=0

Vnx
n is given by

∞∑
n=0

Vnx
n =

V0 + (V1 − V0)x+ (V2 − V1)x
2

1− x− x3
. (1.4)

The previous lemma gives the following results as particular examples.

Corollary 1.2. Generated functions of Narayana, Narayana-Lucas and Narayana-Perrin numbers are
∞∑

n=0

Nnx
n =

x

1− x− x3
,

∞∑
n=0

Unx
n =

3− 2x

1− x− x3
,

∞∑
n=0

Hnx
n =

3− 3x+ 2x2

1− x− x3
,

respectively.

2 THE MATRIX SEQUENCES
OF NARAYANA AND
NARAYANA-LUCAS NUMB-
ERS

Recently, there have been so many studies
of the sequences of numbers in the literature
that concern about subsequences of the
Horadam (generalized Fibonacci) numbers
and generalized Tribonacci numbers such as
Fibonacci, Lucas, Pell and Jacobsthal numbers;

third-order Pell, third-order Pell-Lucas, Padovan,
Perrin, Padovan-Perrin, Narayana, third order
Jacobsthal and third order Jacobsthal-Lucas
numbers. The sequences of numbers were
widely used in many research areas, such as
physics, engineering, architecture, nature and
art. On the other hand, the matrix sequences
have taken so much interest for different type
of numbers. We present some works on matrix
sequences of the numbers in the following
Table 3.

Table 3. A few special study on the matrix sequences of the numbers

Name of sequence work on the matrix sequences of the numbers
Generalized Fibonacci [13,14,15,16,17,18,19,20,21]
Generalized Tribonacci [22,23,24,25,26,27,28]
Generalized Tetranacci [29]
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In this section we define generalized Narayana matrix sequence and investigate its properties.

Definition 2.1. For any integer n ≥ 0, the generalized Narayana matrix (Vn) is defined by

Vn = Vn−1 + Vn−3 (2.1)

with initial conditions

V0 =

 V1 V2 − V1 V0

V0 V1 − V0 V2 − V1

V2 − V1 V0 + V1 − V2 V1 − V0

 ,

V1 =

 V2 V0 V1

V1 V2 − V1 V0

V0 V1 − V0 V2 − V1

 ,

V2 =

 V0 + V2 V1 V2

V2 V0 V1

V1 V2 − V1 V0

 .

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −V−(n−2) + V−(n−3)

for n = 1, 2, 3, ... respectively. Therefore, recurrence (2.1) holds for all integers n.

Three special cases of generalized Narayana matrix sequence (take Vn = Nn, Vn = Un, Vn = Hn,
respectively) can be defined as follows.

Definition 2.2. For any integer n ≥ 0, the Narayana matrix (Nn) and Narayana-Lucas matrix (Un)
and Narayana-Perrin matrix (Hn) are defined by

Nn = Nn−1 +Nn−3,

Un = Un−1 + Un−3,

Hn = Hn−1 +Hn−3,

respectively, with initial conditions

N0 =

 1 0 0
0 1 0
0 0 1

 ,N1 =

 1 0 1
1 0 0
0 1 0

 ,N2 =

 1 1 1
1 0 1
1 0 0

 ,

U0 =

 1 0 3
3 −2 0
0 3 −2

 ,U1 =

 1 3 1
1 0 3
3 −2 0

 ,U2 =

 4 1 1
1 3 1
1 0 3

 ,

H0 =

 0 2 3
3 −3 2
2 1 −3

 ,H1 =

 2 3 0
0 2 3
3 −3 2

 ,H2 =

 5 0 2
2 3 0
0 2 3


The sequences {Nn}n≥0, {Un}n≥0 and {Hn}n≥0 can be extended to negative subscripts by defining

N−n = −N−(n−2) +N−(n−3),

U−n = −U−(n−2) + U−(n−3),

H−n = −H−(n−2) +H−(n−3),

for n = 1, 2, 3, ... respectively.

The Narayana matrix (Nn) and Narayana-Lucas matrix (Un) were defined and studied in [25].

The following theorem gives the nth general terms of the generalized Narayana matrix sequence.
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Theorem 2.1. For any integer n, we have the following formulas of the generalized Narayana matrix
sequence:

Vn =

 Vn+1 Vn−1 Vn

Vn Vn−2 Vn−1

Vn−1 Vn−3 Vn−2

 (2.2)

Proof. Suppose that n ≥ 0. We prove (2.2) by strong mathematical induction on n. If n = 0 then,
since V−1 = V2 − V1, V−2 = V1 − V0, V−3 = V0 + V1 − V2, we have

V0 =

 V1 V−1 V0

V0 V−2 V−1

V−1 V−3 V−2

 =

 V1 V2 − V1 V0

V0 V1 − V0 V2 − V1

V2 − V1 V0 + V1 − V2 V1 − V0


which is true. Assume that the equality holds for n ≤ k. For n = k + 1, we have

Vk+1 = Vk + Vk−2

=

 Vk+1 Vk−1 Vk

Vk Vk−2 Vk−1

Vk−1 Vk−3 Vk−2

+

 Vk−1 Vk−3 Vk−2

Vk−2 Vk−4 Vk−3

Vk−3 Vk−5 Vk−4


=

 Vk−1 + Vk+1 Vk−1 + Vk−3 Vk + Vk−2

Vk + Vk−2 Vk−2 + Vk−4 Vk−1 + Vk−3

Vk−1 + Vk−3 Vk−3 + Vk−5 Vk−2 + Vk−4


=

 Vk+2 Vk Vk+1

Vk+1 Vk−1 Vk

Vk Vk−2 Vk−1


=

 Vk+1+1 Vk+1−1 Vk+1

Vk+1 Vk+1−2 Vk+1−1

Vk+1−1 Vk+1−3 Vk+1−2

 .

Thus, by strong induction on k + 1, this proves (2.2).

For the case n ≤ 0, similarly,(2.2) can be proved by strong mathematical induction on n. �

The following theorem gives the nth general terms of the Narayana, Narayana-Lucas and Narayana-
Perrin matrix sequences.

Corollary 2.2. For any integer n, we have the following formulas of the matrix sequences:

Nn =

 Nn+1 Nn−1 Nn

Nn Nn−2 Nn−1

Nn−1 Nn−3 Nn−2

 ,

Un =

 Un+1 Un−1 Un

Un Un−2 Un−1

Un−1 Un−3 Un−2

 ,

Hn =

 Hn+1 Hn−1 Hn

Hn Hn−2 Hn−1

Hn−1 Hn−3 Hn−2

 .

We now give the Binet’s formula for the generalized Narayana matrix sequence.

Theorem 2.3. For every integer n, the Binet’s formula of the generalized Narayana matrix sequence
are given by

Vn = Aαn +Bβn + Cγn
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where

A =
αV2 + α(α− 1)V1 + V0

α (α− γ) (α− β)
, B =

βV2 + β(β − 1)V1 + V0

β (β − γ) (β − α)
, C =

γV2 + γ(γ − 1)V1 + V0

γ (γ − β) (γ − α)

Proof. We need to prove the theorem only for n ≥ 0. By the assumption, the characteristic equation
of (2.1) is x3 − x2 − x− 1 = 0 and the roots of it are α, β and γ. So it’s general solution is given by

Vn = Aαn +Bβn + Cγn.

Using initial condition which is given in Definition 2.1, and also applying lineer algebra operations, we
obtain the matrices A,B,C as desired. This gives the formula for Vn. �

The following theorem gives the Binet’s formulas of the Narayana, Narayana-Lucas and Narayana-
Perrin matrix sequences.

Corollary 2.4. For every integer n, the Binet formulas of the Narayana and Narayana-Lucas matrix
sequences are given by

Nn = A1α
n +B1β

n + C1γ
n,

Un = A2α
n +B2β

n + C2γ
n,

Hn = A3α
n +B3β

n + C3γ
n,

where

A1 =
αN2 + α(α− 1)N1 +N0

α (α− γ) (α− β)
, B1 =

βN2 + β(β − 1)N1 +N0

β (β − γ) (β − α)
, C1 =

γN2 + γ(γ − 1)N1 +N0

γ (γ − β) (γ − α)
,

A2 =
αU2 + α(α− 1)U1 + U0

α (α− γ) (α− β)
, B2 =

βU2 + β(β − 1)U1 + U0

β (β − γ) (β − α)
, C2 =

γU2 + γ(γ − 1)U1 + U0

γ (γ − β) (γ − α)
,

A3 =
αH2 + α(α− 1)H1 +H0

α (α− γ) (α− β)
, B3 =

βH2 + β(β − 1)H1 +H0

β (β − γ) (β − α)
, C3 =

γH2 + γ(γ − 1)H1 +H0

γ (γ − β) (γ − α)
.

The well known Binet formulas for generalized Narayana numbers is given in (1.2). But, we will obtain
these functions in terms of generalized Narayana matrix sequence as a consequence of Theorems
2.1 and 2.3. To do this, we will give the formulas for these numbers by means of the related matrix
sequences. In fact, in the proof of next corollary, we will just compare the linear combination of the
2nd row and 1st column entries of the matrices.

Corollary 2.5. For every integers n, the Binet’s formulas for the generalized Narayana numbers is
given as

Vn =
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)

where

b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0.
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Proof. From Theorem 2.3, we have

Vn = Aαn +Bβn + Cγn

=
αV2 + α(α− 1)V1 + V0

α (α− γ) (α− β)
αn +

βV2 + β(β − 1)V1 + V0

β (β − γ) (β − α)
βn

+
γV2 + γ(γ − 1)V1 + V0

γ (γ − β) (γ − α)
γn

=
αn−1

(α− γ) (α− β)

 . . .
αV2 + α (α− 1)V1 + V0 . .

. . .


+

βn−1

(β − γ) (β − α)

 . . .
βV2 + β (β − 1)V1 + V0 . .

. . .


+

γn−1

(γ − β) (γ − α)

 . . .
γV2 + γ (γ − 1)V1 + V0 . .

. . .

 .

(we only write the 2nd row and 1st column entries of the matrices). By Theorem 2.1, we know that

Vn =

 Vn+1 Vn + Vn−1 Vn

Vn Vn−1 + Vn−2 Vn−1

Vn−1 Vn−2 + Vn−3 Vn−2

 .

Now, if we compare the 2nd row and 1st column entries with the matrices in the above two equations,
then we obtain

Vn =
αn−1

(α− γ) (α− β)
(αV2 + α (α− 1)V1 + V0)

+
βn−1

(β − γ) (β − α)
(βV2 + β (β − 1)V1 + V0)

+
γn−1

(γ − β) (γ − α)
(γV2 + γ (γ − 1)V1 + V0)

=
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)

where

b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0.

Note that

αV2 + α (α− 1)V1 + V0 = α(V2 + (α− 1)V1 +
1

α
V0)

= α(V2 − (β + γ)V1 + βγV0) = αb1,

βV2 + β (β − 1)V1 + V0 = β(V2 + (β − 1)V1 +
1

β
V0)

= β(V2 − (α+ γ)V1 + αγV0) = βb2,

γV2 + γ (γ − 1)V1 + V0 = γ(V2 + (γ − 1)V1 +
1

γ
V0)

= γ(V2 − (α+ β)V1 + αβV0) = γb3.

�
Now, we present summation formulas for the generalized Narayana matrix sequence.
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Theorem 2.6. For all integers m, j we have

n−1∑
k=0

Vmk+j =
Vmn+m+j + Vmn−m+j + (1− Um)Vmn+j − Vm+j − Vj−m + (Um − 1)Vj

Um + (1− U−m)− 1
(2.3)

Proof. Note that

n−1∑
i=0

Vmi+j =

n−1∑
i=0

(Aαmi+j +Bβmi+j + Cγmi+j)

= Aαj

(
αmn − 1

αm − 1

)
+Bβj

(
βmn − 1

βm − 1

)
+ Cγj

(
γmn − 1

γm − 1

)
Simplifying and rearranging the last equalities in the last two expression imply (2.3) as required. �

As in Corollary 2.5, in the proof of next Corollary, we just compare the linear combination of the 2nd
row and 1st column entries of the relevant matrices to obtain summation formula for the generalized
Narayana sequence..

Corollary 2.7. For all integers m, j we have

n−1∑
k=0

Vmk+j =
Vmn+m+j + Vmn−m+j + (1− Um)Vmn+j − Vm+j − Vj−m + (Um − 1)Vj

Um + (1− U−m)− 1
.

We now give generating functions of Vn .

Theorem 2.8. The generating function for the generalized Narayana matrix sequences is given as

∞∑
n=0

Vnx
n =

V0 + (V1 − V0)x+ (V2 − V1)x
2

1− x− x3

=
1

1− x− x3

 a11 a12 a13

a21 a22 a23

a31 a32 a33


where

a11 = V0x
2 + (−V1 + V2)x+ V1

a21 = (−V1 + V2)x
2 + (−V0 + V1)x+ V0

a31 = (−V0 + V1)x
2 + (V0 + V1 − V2)x− V1 + V2

a12 = (−V0 + V1)x
2 + (V0 + V1 − V2)x− V1 + V2

a22 = (V0 + V1 − V2)x
2 + (V0 − 2V1 + V2)x− V0 + V1

a32 = V0 + V1 − V2 + x2 (V0 − 2V1 + V2) + x (V2 − 2V0)

a13 = (−V1 + V2)x
2 + (−V0 + V1)x+ V0

a23 = (−V0 + V1)x
2 + (V0 + V1 − V2)x− V1 + V2

a33 = (V0 + V1 − V2)x
2 + (V0 − 2V1 + V2)x− V0 + V1
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Proof. Suppose that g(x) =
∑∞

n=0 Vnx
n is the generating function for the sequence {Vn}n≥0.

Using the definition of the matrix sequence of generalized Narayana numbers (2.1), and substracting
x
∑∞

n=0 Vnx
n and x3∑∞

n=0 Vnx
n from

∑∞
n=0 Vnx

n we obtain

(1− x− x3)

∞∑
n=0

Vnx
n =

∞∑
n=0

Vnx
n − x

∞∑
n=0

Vnx
n − x3

∞∑
n=0

Vnx
n

=
∞∑

n=0

Vnx
n −

∞∑
n=0

Vnx
n+1 −

∞∑
n=0

Vnx
n+3

=

∞∑
n=0

Vnx
n −

∞∑
n=1

Vn−1x
n −

∞∑
n=3

Vn−3x
n

= (V0 + V1x+ V2x
2)− (V0x+ V1x

2) +
∞∑

n=3

(Vn − Vn−1 − Vn−3)x
n

= V0 + V1x+ V2x
2 − V0x− V1x

2

= V0 + (V1 − V0)x+ (V2 − V1)x
2.

Rearranging above equation, we obtain

∞∑
n=0

Vnx
n =

V0 + (V1 − V0)x+ (V2 − V1)x
2

1− x− x3

which equals the
∑∞

n=0 Vnx
n in the Theorem. This completes the proof. �

The following corollary gives the generating functions of the Narayana, Narayana-Lucas and Narayana-
Perrin matrix sequences.

Corollary 2.9. The generating functions for the Narayana, Narayana-Lucas and Narayana-Perrin
matrix sequences are given as

∞∑
n=0

Nnx
n =

1

1− x− x3

 1 x2 x
x 1− x x2

x2 x− x2 1− x

 ,

∞∑
n=0

Unx
n =

1

1− x− x3

 3x2 + 1 3x− 2x2 3− 2x
3− 2x 3x2 + 2x− 2 3x− 2x2

3x− 2x2 2x2 − 5x+ 3 3x2 + 2x− 2

 ,

∞∑
n=0

Hnx
n =

1

1− x− x3

 3x2 + 2x −3x2 + x+ 2 2x2 − 3x+ 3
2x2 − 3x+ 3 x2 + 5x− 3 −3x2 + x+ 2
−3x2 + x+ 2 5x2 − 4x+ 1 x2 + 5x− 3

 .

The well known generating function for generalized Narayana numbers is as in (1.4). However, we
will obtain these functions in terms of generalized Narayana matrix sequences as a consequence of
Theorem 2.8. To do this, we will again compare the the 2nd row and 1st column entries with the
matrices in Theorem 2.8. Thus we have the following corollary.

Corollary 2.10. The generating function for the generalized Narayana sequence {Vn} is given as

∞∑
n=0

Vnx
n =

V0 + (V1 − V0)x+ (V2 − V1)x
2

1− x− x3
.
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Using Theorem 2.1 and Corollary 2.2, we see that

V−1 =

 V0 V1 − V0 V2 − V1

V2 − V1 V0 + V1 − V2 V1 − V0

V1 − V0 V0 − 2V1 + V2 V0 + V1 − V2

 ,

V−2 =

 V2 − V1 V0 + V1 − V2 V1 − V0

V1 − V0 V0 − 2V1 + V2 V0 + V1 − V2

V0 + V1 − V2 V2 − 2V0 V0 − 2V1 + V2

 ,

and

N−1 =

 0 1 0
0 0 1
1 −1 0

 ,N−2 =

 0 0 1
1 −1 0
0 1 −1

 ,

U−1 =

 3 −2 0
0 3 −2
−2 2 3

 ,U−2 =

 0 3 −2
−2 2 3
3 −5 2

 ,

H−1 =

 3 −3 2
2 1 −3
−3 5 1

 ,H−2 =

 2 1 −3
−3 5 1
1 −4 5

 .

We now give generating functions of the generalized Narayana matrix sequence Vn for negative
indices.

Theorem 2.11. For negative indices, the generating function for the generalized Narayana matrix
sequence is given as

∞∑
n=0

V−nx
n =

V0 + (V0 + V−1)x+ (V−1 + V−2)x
2

1 + x− x3

=
1

1 + x− x3

 b11 b12 b13
b21 b22 b23
b31 b32 b33


where

b11 = (V0 − V1 + V2)x
2 + (V0 + V1)x+ V1

b21 = (−V0 + V2)x
2 + (V0 − V1 + V2)x+ V0

b31 = V2 − V1 − x (V0 − V2)− x2 (V2 − 2V1)

and

b12 = V2 − V1 − x (V0 − V2)− x2 (V2 − 2V1)

b22 = V1 − V0 − x (V2 − 2V1)− x2 (V1 − 2V0)

b32 = V0 + V1 − V2 − x (V1 − 2V0)− x2 (V0 + 2V1 − 2V2)

and

b13 = (−V0 + V2)x
2 + (V0 − V1 + V2)x+ V0

b23 = V2 − V1 − x (V0 − V2)− x2 (V2 − 2V1)

b33 = V1 − V0 − x (V2 − 2V1)− x2 (V1 − 2V0)
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Proof. Then, using Definition 2.1, and adding xg(x) to g(x) and also substracting x3g(x) we obtain
(note the shift in the index n in the third line)

(1 + x− x3)g(x) =
∞∑

n=0

V−nx
n + x

∞∑
n=0

V−nx
n − x3

∞∑
n=0

V−nx
n

=

∞∑
n=0

V−nx
n +

∞∑
n=0

V−nx
n+1 −

∞∑
n=0

V−nx
n+3

=

∞∑
n=0

V−nx
n +

∞∑
n=1

V−n+1x
n −

∞∑
n=3

V−n+3x
n

= (V0 + V−1x+ V−2x
2) + (V0x+ V−1x

2)

+
∞∑

n=3

(V−n + V−n+1 − V−n+3)x
n

= (V0 + V−1x+ V−2x
2) + (V0x+ V−1x

2)

= V0 + (V0 + V−1)x+ (V−1 + V−2)x
2

Rearranging above equation, we get

g(x) =
V0 + (V0 + V−1)x+ (V−1 + V−2)x

2

1 + x− x3

which equals the
∑∞

n=0 V−nx
n in the Theorem. �

The following corollary gives the generating functions of the Narayana, Narayana-Lucas and Narayana-
Perrin matrix sequences with negative indices .

Corollary 2.12. The generating functions for the Narayana, Narayana-Lucas and Narayana-Perrin
matrix sequences with negative indices are given as

∞∑
n=0

N−nx
n =

1

1 + x− x3

 x+ 1 x2 + x x2

x2 −x2 + x+ 1 x2 + x
x2 + x −x −x2 + x+ 1

 ,

∞∑
n=0

U−nx
n =

1

1 + x− x3

 3x2 + 4x+ 1 x2 − 2x −2x2 + 3x+ 3
−2x2 + 3x+ 3 5x2 + x− 2 x2 − 2x

x2 − 2x −3x2 + 5x+ 3 5x2 + x− 2

 ,

∞∑
n=0

H−nx
n =

1

1 + x− x3

 5x2 + 3x −2x2 − x+ 2 −x2 + 5x+ 3
−x2 + 5x+ 3 6x2 − 2x− 3 −2x2 − x+ 2
−2x2 − x+ 2 x2 + 6x+ 1 6x2 − 2x− 3

 ,

respectively.

Now, we will obtain generating functions for generalized Narayana numbers in terms of generalized
Narayana matrix sequences with negative indices as a consequence of Theorem 2.11. To do this, we
will again compare the the 2nd row and 1st column entries with the matrices in Theorem 2.11. Thus
we have the following corollary.

Corollary 2.13. The generating functions for the generalized Narayana sequence {V−n}n≥0 is given
as

∞∑
n=0

V−nx
n =

V0 + (V0 − V1 + V2)x+ (−V0 + V2)x
2

1 + x− x3
.
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The previous corollary gives the following results as particular examples.

Corollary 2.14. Generated functions of Narayana, Narayana-Lucas and Narayana-Perrin numbers
with negative indices are

∞∑
n=0

N−nx
n =

x2

1 + x− x3
,

∞∑
n=0

U−nx
n =

3 + 3x− 2x2

1 + x− x3
,

∞∑
n=0

H−nx
n =

3 + 5x− x2

1 + x− x3
,

respectively.

3 SOME IDENTITIES

In this section, we assume that m and n are arbitrary integers, unless otherwise mentioned. In
this section, we obtain some identities of generalized Narayana and Narayana, Narayana-Lucas and
Narayana-Perrin numbers. We need these identities in the next section. First, we can give a few basic
relations between {Vn} and {Nn}.

Lemma 3.1. The following equalities are true:

(a) Vn = (V0 + V1 − V2)Nn+4 + (V2 − 2V0)Nn+3 + (V0 − 2V1 + V2)Nn+2.

(b) Vn = (V1 − V0)Nn+3 + (V0 − 2V1 + V2)Nn+2 + (V0 + V1 − V2)Nn+1.

(c) Vn = (V2 − V1)Nn+2 + (V0 + V1 − V2)Nn+1 + (V1 − V0)Nn.

(d) Vn = V0Nn+1 + (V1 − V0)Nn + (V2 − V1)Nn−1.

(e) Vn = V1Nn + (V2 − V1)Nn−1 + V0Nn−2.

Proof. Note that all the identities hold for all integers n. We prove (a). Writing

Vn = a×Nn+4 + b×Nn+3 + c×Nn+2

and solving the system of equations

V0 = a×N4 + b×N3 + c×N2

V1 = a×N5 + b×N4 + c×N3

V2 = a×N6 + b×N5 + c×N4

we find that a = V0 + V1 − V2, b = V2 − 2V0, c = V0 − 2V1 + V2. The other equalities can be proved
similarly. �

Note that all the identities in the above lemma can be proved by induction as well.

Next, we present a few basic relations between {Nn} and {Vn}.

Lemma 3.2. The following equalities are true:

(a) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Nn = (V 2
2 − V1V2 − V0V1)Vn+4 +

(V 2
1 + V1V2 + V0V1 − V 2

2 − V0V2)Vn+3 + (V 2
0 + V2V0 − V1V2)Vn+2.
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(b) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Nn = (V 2
1 − V0V2)Vn+3 + (V 2

0 +
V2V0 − V1V2)Vn+2 + (V 2

2 − V1V2 − V0V1)Vn+1.

(c) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Nn = (V 2
0 +V 2

1 −V2V1)Vn+2+(V 2
2 −

V1V2 − V0V1)Vn+1 + (V 2
1 − V0V2)Vn.

(d) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Nn = (V 2
0 − V0V1 + V 2

1 − 2V1V2 +
V 2
2 )Vn+1 + (V 2

1 − V0V2)Vn + (V 2
0 + V 2

1 − V2V1)Vn−1.

(e) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Nn = (V 2
0 − V0V1 − V0V2 + 2V 2

1 −
2V1V2 + V 2

2 )Vn + (V 2
0 + V 2

1 − V2V1)Vn−1 + (V 2
0 − V0V1 + V 2

1 − 2V1V2 + V 2
2 )Vn−2.

Now, we give a few basic relations between {Vn} and {Un}.

Lemma 3.3. The following equalities are true:

(a) 31Vn = (V0 − 14V1 + 11V2)Un+4 + (10V0 + 15V1 − 14V2)Un+3 + (10V1 − 14V0 + V2)Un+2.

(b) 31Vn = (11V0 + V1 − 3V2)Un+3 + (10V1 − 14V0 + V2)Un+2 + (V0 − 14V1 + 11V2)Un+1.

(c) 31Vn = (11V1 − 3V0 − 2V2)Un+2 + (V0 − 14V1 + 11V2)Un+1 + (11V0 + V1 − 3V2)Un.

(d) 31Vn = (9V2 − 3V1 − 2V0)Un+1 + (11V0 + V1 − 3V2)Un + (11V1 − 3V0 − 2V2)Un−1.

(e) 31Vn = (9V0 − 2V1 + 6V2)Un + (11V1 − 3V0 − 2V2)Un−1 + (9V2 − 3V1 − 2V0)Un−2.

Next, we present a few basic relations between {Un} and {Vn}.

Lemma 3.4. The following equalities are true:

(a) (V 3
0 +V 2

0 V2 +V0V
2
1 − 3V0V1V2 +V 3

1 +V 2
1 V2 − 2V1V

2
2 +V 3

2 )Un = (3V 2
1 +2V1V2 +2V0V1 − 2V 2

2 −
3V0V2)Vn+4 +(3V 2

0 − 2V0V1 +5V0V2 − 2V 2
1 − 5V1V2 +2V 2

2 )Vn+3 +(−2V 2
0 − 2V0V2 − 3V1V0 +

3V 2
2 − V1V2)Vn+2.

(b) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Un = (3V 2
0 +V 2

1 +2V0V2−3V1V2)Vn+3+
(−2V 2

0 − 2V0V2 − 3V1V0 + 3V 2
2 − V1V2)Vn+2 + (3V 2

1 − 2V 2
2 + 2V0V1 − 3V0V2 + 2V1V2)Vn+1.

(c) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Un = (V 2
0 − 3V0V1 + V 2

1 − 4V1V2 +
3V 2

2 )Vn+2 + (3V 2
1 + 2V1V2 + 2V0V1 − 2V 2

2 − 3V0V2)Vn+1 + (3V 2
0 + 2V2V0 + V 2

1 − 3V2V1)Vn.

(d) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Un = (V 2
0 − V0V1 − 3V0V2 + 4V 2

1 −
2V1V2 +V 2

2 )Vn+1 +(3V 2
0 +2V2V0 +V 2

1 − 3V2V1)Vn +(V 2
0 − 3V0V1 +V 2

1 − 4V1V2 +3V 2
2 )Vn−1.

(e) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Un = (4V 2
0 −V0V1−V0V2+5V 2

1 −5V1V2+
V 2
2 )Vn+(V 2

0 −3V0V1+V 2
1 −4V1V2+3V 2

2 )Vn−1+(V 2
0 −V0V1−3V0V2+4V 2

1 −2V1V2+V 2
2 )Vn−2.

Now, we give a few basic relations between {Vn} and {Hn}.

Lemma 3.5. The following equalities are true:

(a) 53Vn = (15V2 − 11V1 − 10V0)Hn+4 + (25V0 + V1 − 11V2)Hn+3 + (25V1 − 11V0 − 10V2)Hn+2.

(b) 53Vn = (15V0 − 10V1 + 4V2)Hn+3 + (25V1 − 11V0 − 10V2)Hn+2 + (15V2 − 11V1 − 10V0)Hn+1.

(c) 53Vn = (4V0 + 15V1 − 6V2)Hn+2 + (15V2 − 11V1 − 10V0)Hn+1 + (15V0 − 10V1 + 4V2)Hn.

(d) 53Vn = (4V1 − 6V0 + 9V2)Hn+1 + (15V0 − 10V1 + 4V2)Hn + (4V0 + 15V1 − 6V2)Hn−1.

(e) 53Vn = (9V0 − 6V1 + 13V2)Hn + (4V0 + 15V1 − 6V2)Hn−1 + (4V1 − 6V0 + 9V2)Hn−2.

Next, we present a few basic relations between {Hn} and {Vn}.

Lemma 3.6. The following equalities are true:
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(a) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Hn = (2V 2
0 +3V0V1 − V0V2 +3V 2

1 +
V1V2−3V 2

2 )Vn+4+(V 2
0 −5V0V1+4V0V2−3V 2

1 −6V1V2+5V 2
2 )Vn+3+(−3V 2

0 −V0V1−5V0V2+
2V 2

1 + 2V1V2 + V 2
2 )Vn+2.

(b) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Hn = (3V 2
0 +3V0V2−2V1V0+2V 2

2 −
5V1V2)Vn+3 + (−3V 2

0 − V0V1 − 5V0V2 + 2V 2
1 + 2V1V2 + V 2

2 )Vn+2 + (2V 2
0 + 3V0V1 − V0V2 +

3V 2
1 + V1V2 − 3V 2

2 )Vn+1.

(c) (V 3
0 +V 2

0 V2 +V0V
2
1 − 3V0V1V2 +V 3

1 +V 2
1 V2 − 2V1V

2
2 +V 3

2 )Hn = (2V 2
1 − 3V1V2 − 3V0V1 +3V 2

2 −
2V0V2)Vn+2 + (2V 2

0 + 3V0V1 − V0V2 + 3V 2
1 + V1V2 − 3V 2

2 )Vn+1 + (3V 2
0 + 3V0V2 − 2V1V0 +

2V 2
2 − 5V1V2)Vn.

(d) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Hn = (2V 2
0 −3V2V0+5V 2

1 −2V2V1)Vn+1+
(3V 2

0 + 3V0V2 − 2V1V0 + 2V 2
2 − 5V1V2)Vn + (2V 2

1 − 3V1V2 − 3V0V1 + 3V 2
2 − 2V0V2)Vn−1.

(e) (V 3
0 +V 2

0 V2 +V0V
2
1 − 3V0V1V2 +V 3

1 +V 2
1 V2 − 2V1V

2
2 +V 3

2 )Hn = (5V 2
0 − 2V0V1 +5V 2

1 − 7V1V2 +
2V 2

2 )Vn + (2V 2
1 − 3V1V2 − 3V0V1 + 3V 2

2 − 2V0V2)Vn−1 + (2V 2
0 − 3V2V0 + 5V 2

1 − 2V2V1)Vn−2.

4 RELATION BETWEEN GENERALIZED NARAYANA MATRIX
SEQUENCES AND IT’S SPECIAL CASES

In this section, we assume that m and n are arbitrary integers, unless otherwise mentioned.

The following theorem shows that there always exist interrelation between generalized Narayana and
Narayana matrix sequences.

Theorem 4.1. For the matrix sequences {Vn} and {Nn}, we have the following identities.

(a) Vn = (V0 + V1 − V2)Nn+4 + (V2 − 2V0)Nn+3 + (V0 − 2V1 + V2)Nn+2.

(b) Vn = (V1 − V0)Nn+3 + (V0 − 2V1 + V2)Nn+2 + (V0 + V1 − V2)Nn+1.

(c) Vn = (V2 − V1)Nn+2 + (V0 + V1 − V2)Nn+1 + (V1 − V0)Nn.

(d) Vn = V0Nn+1 + (V1 − V0)Nn + (V2 − V1)Nn−1.

(e) Vn = V1Nn + (V2 − V1)Nn−1 + V0Nn−2.

(f) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Nn = (V 2
2 − V1V2 − V0V1)Vn+4 +

(V 2
1 + V1V2 + V0V1 − V 2

2 − V0V2)Vn+3 + (V 2
0 + V2V0 − V1V2)Vn+2.

(g) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Nn = (V 2
1 − V0V2)Vn+3 + (V 2

0 +
V2V0 − V1V2)Vn+2 + (V 2

2 − V1V2 − V0V1)Vn+1.

(h) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Nn = (V 2
0 +V 2

1 −V2V1)Vn+2+(V 2
2 −

V1V2 − V0V1)Vn+1 + (V 2
1 − V0V2)Vn.

(i) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Nn = (V 2
0 − V0V1 + V 2

1 − 2V1V2 +
V 2
2 )Vn+1 + (V 2

1 − V0V2)Vn + (V 2
0 + V 2

1 − V2V1)Vn−1.

(j) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Nn = (V 2
0 − V0V1 − V0V2 + 2V 2

1 −
2V1V2 + V 2

2 )Vn + (V 2
0 + V 2

1 − V2V1)Vn−1 + (V 2
0 − V0V1 + V 2

1 − 2V1V2 + V 2
2 )Vn−2.

Proof. From Lemmas 3.1 and 3.2, (a)-(j) follow. �

The following theorem shows that there always exist interrelation between generalized Narayana and
Narayana-Lucas matrix sequences.

Theorem 4.2. For the matrix sequences {Vn} and {Un}, we have the following identities.
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(a) 31Vn = (V0 − 14V1 + 11V2)Un+4 + (10V0 + 15V1 − 14V2)Un+3 + (10V1 − 14V0 + V2)Un+2.

(b) 31Vn = (11V0 + V1 − 3V2)Un+3 + (10V1 − 14V0 + V2)Un+2 + (V0 − 14V1 + 11V2)Un+1.

(c) 31Vn = (11V1 − 3V0 − 2V2)Un+2 + (V0 − 14V1 + 11V2)Un+1 + (11V0 + V1 − 3V2)Un.

(d) 31Vn = (9V2 − 3V1 − 2V0)Un+1 + (11V0 + V1 − 3V2)Un + (11V1 − 3V0 − 2V2)Un−1.

(e) 31Vn = (9V0 − 2V1 + 6V2)Un + (11V1 − 3V0 − 2V2)Un−1 + (9V2 − 3V1 − 2V0)Un−2.

(f) (V 3
0 +V 2

0 V2 +V0V
2
1 − 3V0V1V2 +V 3

1 +V 2
1 V2 − 2V1V

2
2 +V 3

2 )Un = (3V 2
1 +2V1V2 +2V0V1 − 2V 2

2 −
3V0V2)Vn+4 +(3V 2

0 − 2V0V1 +5V0V2 − 2V 2
1 − 5V1V2 +2V 2

2 )Vn+3 +(−2V 2
0 − 2V0V2 − 3V1V0 +

3V 2
2 − V1V2)Vn+2.

(g) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Un = (3V 2
0 +V 2

1 +2V0V2−3V1V2)Vn+3+
(−2V 2

0 − 2V0V2 − 3V1V0 + 3V 2
2 − V1V2)Vn+2 + (3V 2

1 − 2V 2
2 + 2V0V1 − 3V0V2 + 2V1V2)Vn+1.

(h) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Un = (V 2
0 − 3V0V1 + V 2

1 − 4V1V2 +
3V 2

2 )Vn+2 + (3V 2
1 + 2V1V2 + 2V0V1 − 2V 2

2 − 3V0V2)Vn+1 + (3V 2
0 + 2V2V0 + V 2

1 − 3V2V1)Vn.

(i) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Un = (V 2
0 − V0V1 − 3V0V2 + 4V 2

1 −
2V1V2 +V 2

2 )Vn+1 +(3V 2
0 +2V2V0 +V 2

1 − 3V2V1)Vn +(V 2
0 − 3V0V1 +V 2

1 − 4V1V2 +3V 2
2 )Vn−1.

(j) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Un = (4V 2
0 −V0V1−V0V2+5V 2

1 −5V1V2+
V 2
2 )Vn+(V 2

0 −3V0V1+V 2
1 −4V1V2+3V 2

2 )Vn−1+(V 2
0 −V0V1−3V0V2+4V 2

1 −2V1V2+V 2
2 )Vn−2.

Proof. From Lemmas 3.3 and 3.4, (a)-(j) follow. �

The following theorem shows that there always exist interrelation between generalized Narayana and
Narayana-Perrin matrix sequences.

Theorem 4.3. For the matrix sequences {Vn} and {Hn}, we have the following identities.

(a) 53Vn = (15V2 − 11V1 − 10V0)Hn+4 + (25V0 + V1 − 11V2)Hn+3 + (25V1 − 11V0 − 10V2)Hn+2.

(b) 53Vn = (15V0 − 10V1 + 4V2)Hn+3 + (25V1 − 11V0 − 10V2)Hn+2 + (15V2 − 11V1 − 10V0)Hn+1.

(c) 53Vn = (4V0 + 15V1 − 6V2)Hn+2 + (15V2 − 11V1 − 10V0)Hn+1 + (15V0 − 10V1 + 4V2)Hn.

(d) 53Vn = (4V1 − 6V0 + 9V2)Hn+1 + (15V0 − 10V1 + 4V2)Hn + (4V0 + 15V1 − 6V2)Hn−1.

(e) 53Vn = (9V0 − 6V1 + 13V2)Hn + (4V0 + 15V1 − 6V2)Hn−1 + (4V1 − 6V0 + 9V2)Hn−2.

(f) (V 3
0 + V 2

0 V2 + V0V
2
1 − 3V0V1V2 + V 3

1 + V 2
1 V2 − 2V1V

2
2 + V 3

2 )Hn = (2V 2
0 +3V0V1 − V0V2 +3V 2

1 +
V1V2−3V 2

2 )Vn+4+(V 2
0 −5V0V1+4V0V2−3V 2

1 −6V1V2+5V 2
2 )Vn+3+(−3V 2

0 −V0V1−5V0V2+
2V 2

1 + 2V1V2 + V 2
2 )Vn+2.

(g) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Hn = (3V 2
0 +3V0V2−2V1V0+2V 2

2 −
5V1V2)Vn+3 + (−3V 2

0 − V0V1 − 5V0V2 + 2V 2
1 + 2V1V2 + V 2

2 )Vn+2 + (2V 2
0 + 3V0V1 − V0V2 +

3V 2
1 + V1V2 − 3V 2

2 )Vn+1.

(h) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Hn = (2V 2
1 −3V1V2−3V0V1+3V 2

2 −
2V0V2)Vn+2 + (2V 2

0 + 3V0V1 − V0V2 + 3V 2
1 + V1V2 − 3V 2

2 )Vn+1 + (3V 2
0 + 3V0V2 − 2V1V0 +

2V 2
2 − 5V1V2)Vn.

(i) (V 3
0 +V 2

0 V2+V0V
2
1 −3V0V1V2+V 3

1 +V 2
1 V2−2V1V

2
2 +V 3

2 )Hn = (2V 2
0 −3V2V0+5V 2

1 −2V2V1)Vn+1+
(3V 2

0 + 3V0V2 − 2V1V0 + 2V 2
2 − 5V1V2)Vn + (2V 2

1 − 3V1V2 − 3V0V1 + 3V 2
2 − 2V0V2)Vn−1.

(j) (V 3
0 +V 2

0 V2 +V0V
2
1 − 3V0V1V2 +V 3

1 +V 2
1 V2 − 2V1V

2
2 +V 3

2 )Hn = (5V 2
0 − 2V0V1 +5V 2

1 − 7V1V2 +
2V 2

2 )Vn + (2V 2
1 − 3V1V2 − 3V0V1 + 3V 2

2 − 2V0V2)Vn−1 + (2V 2
0 − 3V2V0 + 5V 2

1 − 2V2V1)Vn−2.

Proof. From Lemmas 3.5 and 3.6, (a)-(j) follow. �

To prove the following Lemma 4.5 (c) we need the next lemma.
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Lemma 4.4. Let A,B,C as in Theorem 2.3 and A1, B1, C1;A2, B2, C2;A3, B3, C3 as in Corollary 2.4.
Then the following relations hold:

A2
1 = A1, B

2
1 = B1, C

2
1 = C1,

AB = BA = AC = CA = CB = BC = (0) ,

A1B1 = B1A1 = A1C1 = C1A1 = C1B1 = B1C1 = (0) ,

A2B2 = B2A2 = A2C2 = C2A2 = C2B2 = B2C2 = (0) ,

A3B3 = B3A3 = A3C3 = C3A3 = C3B3 = B3C3 = (0) .

Proof. Using α+ β + γ = 1, αβ + αγ + βγ = 0 and αβγ = 1, required equalities can be established
by matrix calculations. See also [25]. �

Lemma 4.5. For all integers m and n, we have the following identities.

(a) N0Vn = VnN0 = Vn.

(b) V0Nn = NnV0 = Vn.

(c) NmNn = NnNm = Nm+n.

(d) NmVn = VnNm = Vm+n.

(e) NmUn = UnNm = Um+n.

(f) NmHn = HnNm = Hm+n.

(g) V0Vn = VnV0.

(h) VnVm = VmVn = V0Vm+n.

(i) N−n = (Nn)
−1.

(j) V−n = (V0)
1−n(V−1)

n

Proof. Identities can be established easily.

(a) Since N0 is the identity matrix, (a) follows.

(b) It can be seen by using Lemma 3.1.

(c) (c) is given in [25]. We supply the proof for completeness. Using Lemma 4.4 we obtain

NmNn = (A1α
m +B1β

m + C1γ
m)(A1α

n +B1β
n + C1γ

n)

= A2
1α

m+n +B2
1β

m+n + C2
1γ

m+n +A1B1α
mβn +B1A1α

nβm

+A1C1α
mγn + C1A1α

nγm +B1C1β
mγn + C1B1β

nγm

= A1α
m+n +B1β

m+n + C1γ
m+n

= Nm+n.

(d) From (b), we have
NmVn = NmNnU0.

Now from (c) and again from (b), we obtain NmVn = Nm+nV0 = Vm+n.

It can be shown similarly that VnNm = Vm+n.

(e) Take Vn = Un in (d).

(f) Take Vn = Hn in (d).

(g) After matrix multiplication, just compare the row and column entries of the matrices.
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(h) Using (d) and (g) and (b) we get

V0Vm+n = V0VnNm = VnV0Nm = VnVm.

Again, using (d) and (g) and (b), we obtain

V0Vm+n = V0VmNn = VmV0Nn = VmVn.

This completes the proof of (h).

(i) Suppose first that n ≥ 0. We prove by mathematical induction. If n = 0 then we have

N0 =

 1 0 0
0 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1

−1

= (N0)
−1

which is true and

N−1 =

 0 1 0
0 0 1
1 −1 0

 =

 1 0 1
1 0 0
0 1 0

−1

= (N1)
−1

which is true. Assume that the equality holds for n ≤ k. For n = k + 1, by using (c), we obtain

(Nk+1)
−1 = (NkN1)

−1 = (N1)
−1(Nk)

−1 = N−1N−k

=

 0 1 0
0 0 1
1 −1 0

 N−k+1 N−k−1 N−k

N−k N−k−2 N−k−1

N−k−1 N−k−3 N−k−2


=

 N−k N−k−2 N−k−1

N−k−1 N−k−3 N−k−2

N1−k −N−k N−k−1 −N−k−2 N−k −N−k−1


=

 N−k N−k−2 N−k−1

N−k−1 N−k−3 N−k−2

N−k−2 N−k−4 N−k−3


=

 N−(k+1)+1 N−(k+1)−1 N−(k+1)

N−(k+1) N−(k+1)−2 N−(k+1)−1

N−(k+1)−1 N−(k+1)−3 N−(k+1)−2


= N−(k+1)

Thus, by induction on n, this proves (g) for n ≥ 0. Suppose now that n ≤ 0. Say m = −n.
Then (g) can be written as

Nm = (N−m)−1

and we prove this. Since m ≥ 0, from the first part of the proof, we have

N−m = (Nm)−1

and so
(N−m)−1 = ((Nm)−1)−1 = Nm

which completes the proof.

(j) Taking −n+ 1 for m and 1 for n in V0Vm+n = VmVn which is given in (h), we obtain that

V0V−n = V−n+1V−1. (4.1)
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If we multiply both side of the equation (4.1) with V0 we have the relation

V0V0V−n = V0V−n+1V−1

= V−n+2V−1V−1.

Repeating this process we then obtain

Vn−1
0 V−n = Vn

−1.

Thus, it follows that
V−n = V1−n

0 Vn
−1.

This completes the proof. �

Note that using Lemma 4.5 (j) and (d), we obtain

V−n = (V0)
1−n(V−1)

n = (VnN−n)
1−nVn

−1 = N 1−n
−n V1−n

n Vn
−1

and then by Lemma (i), we get
V−n = Nn−1

n V1−n
n Vn

−1.

Using Lemma 4.5 and comparing matrix entries, we have next result.

Corollary 4.6. For generalized Narayana, Narayana, Narayana-Lucas and Narayana-Perrin numbers,
we have the following identities:

(a) Vm+n = NmVn+1 +Nm−2Vn +Nm−1Vn−1 = Nm+1Vn +Nm−1Vn−1 +NmVn−2.

(b) Nm+n = NmNn+1 +Nm−2Nn +Nm−1Nn−1 = Nm+1Nn +Nm−1Nn−1 +NmNn−2.

(c) Um+n = NmUn+1 +Nm−2Un +Nm−1Un−1 = Nm+1Un +Nm−1Un−1 +NmUn−2.

(d) Hm+n = NmHn+1 +Nm−2Hn +Nm−1Hn−1 = Nm+1Hn +Nm−1Hn−1 +NmHn−2.

(e) Vm+1Vn+Vm−1Vn−1+VmVn−2 = VmVn+1+Vm−2Vn+Vm−1Vn−1 = V0Vm+n+1+(V1−V0)Vm+n+
(V2 − V1)Vm+n−1.

(f) Nm+1Nn +Nm−1Nn−1 +NmNn−2 = NmNn+1 +Nm−2Nn +Nm−1Nn−1 = Nm+n.

(g) Um+1Un + Um−1Un−1 + UmUn−2 = UmUn+1 + Um−2Un + Um−1Un−1 = 3Um+n+1 − 2Um+n.

(h) Hm+1Hn+Hm−1Hn−1+HmHn−2 = HmHn+1+Hm−2Hn+Hm−1Hn−1 = 3Hm+n+1−3Hm+n+
2Hm+n−1.

Proof. We prove (a) and (e) by using Lemma 4.5 (d) and (h). The others are special cases of (a) and
(e). Lemma 4.5 (d), i.e., NmVn = VnNm = Vm+n, can be writtten as Vm+n+1 Vm+n−1 Vm+n

Vm+n Vm+n−2 Vm+n−1

Vm+n−1 Vm+n−3 Vm+n−2

 =

 Nm+1 Nm−1 Nm

Nm Nm−2 Nm−1

Nm−1 Nm−3 Nm−2

 Vn+1 Vn−1 Vn

Vn Vn−2 Vn−1

Vn−1 Vn−3 Vn−2


=

 Vn+1 Vn−1 Vn

Vn Vn−2 Vn−1

Vn−1 Vn−3 Vn−2

 Nm+1 Nm−1 Nm

Nm Nm−2 Nm−1

Nm−1 Nm−3 Nm−2

 .

Now, by multiplying the matrices and then by comparing the 2nd rows and 1st columns entries, we
get the required identities in (a).
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Lemma 4.5 (h), i.e., VnVm = VmVn = V0Vm+n, can be writtten as Vn+1 Vn−1 Vn

Vn Vn−2 Vn−1

Vn−1 Vn−3 Vn−2

 Vm+1 Vm−1 Vm

Vm Vm−2 Vm−1

Vm−1 Vm−3 Vm−2


=

 Vm+1 Vm−1 Vm

Vm Vm−2 Vm−1

Vm−1 Vm−3 Vm−2

 Vn+1 Vn−1 Vn

Vn Vn−2 Vn−1

Vn−1 Vn−3 Vn−2


=

 V1 V2 − V1 V0

V0 V1 − V0 V2 − V1

V2 − V1 V0 + V1 − V2 V1 − V0

 Vm+n+1 Vm+n−1 Vm+n

Vm+n Vm+n−2 Vm+n−1

Vm+n−1 Vm+n−3 Vm+n−2


Now, by multiplying the matrices and then by comparing the 2nd rows and 1st columns entries, we
get the required identities in (e). �

As an application of Lemma 4.5 (i) and Corollary 4.6 (b), we present the following example.

Example 4.7. For all integers n, we have the following identities.

N−n = N2
n−1 −NnNn−2

and

N3
n+1 +N3

n +N3
n−1 − 2NnN

2
n+1 + (Nn−1 +Nn+1)N

2
n − (3Nn −Nn−1)Nn+1Nn−1 = 1.

Solution. By comparing the 2nd rows and 1st columns entries of both sides of the relation N−n =
(Nn)

−1 which is given in Lemma 4.5 (i), we get

N−n =
N2

n−1 −NnNn−2

Nn−3N2
n − 2NnNn−1Nn−2 +N3

n−1 −Nn+1Nn−3Nn−1 +Nn+1N2
n−2

(4.2)

=
N2

n−1 −NnNn−2

N3
n+1 +N3

n +N3
n−1 − 2NnN2

n+1 + (Nn−1 +Nn+1)N2
n − (3Nn −Nn−1)Nn+1Nn−1

where we used the identities

Nn = Nn−1 +Nn−3 ⇒ Nn −Nn−1 = Nn−3,

Nn+1 = Nn +Nn−2 ⇒ Nn+1 −Nn = Nn−2.

Using (taking m = n in) Corollary 4.6 (b), we get

N2n = N2
n−1 +NnNn+1 +NnNn−2. (4.3)

In [30, Corollary 12 (a)], the following formula is presented for N−n :

N−n = 2N2
n +N2n − 3Nn+1Nn.

which (using (4.3)) can be written as

N−n = NnNn−2 − 2NnNn+1 + 2N2
n +N2

n−1. (4.4)

Note that

N2
n−1 −NnNn−2 = (NnNn−2 − 2NnNn+1 + 2N2

n +N2
n−1)− 2Nn (Nn −Nn+1 +Nn−2)

= NnNn−2 − 2NnNn+1 + 2N2
n +N2

n−1

because Nn −Nn+1 +Nn−2 = 0. So the rights sides of the equations (4.2) and (4.4) must be equal.
This completes the solution. �
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Theorem 4.8. For all integers m and n, we have the following identities.

(a) VmVn = VnVm = (V1 − V2)
2Nm+n+4 − 2(V1 − V2)(V0 + V1 − V2)Nm+n+3 + (V 2

2 − V 2
1 + V 2

0 +
4V0V1 − 4V0V2)Nm+n+2 + 2(V1 − V0) (V0 + V1 − V2)Nm+n+1 + (V0 − V1)

2Nm+n.

(b) VmVn = VnVm = (V2 − V1)Vm+n+2 + (V0 + V1 − V2)Vm+n+1 + (V1 − V0)Vm+n.

(c) NmVn = VnNm = (V2 − V1)Nm+n+2 + (V0 + V1 − V2)Nm+n+1 + (V1 − V0)Nm+n.

(d) 31NmVn = 31VnNm = (11V1−3V0−2V2)Um+n+2+(V0−14V1+11V2)Um+n+1+(11V0+V1−3V2)
Um+n.

(e) 53NmVn = 53VnNm = (4V0 + 15V1 − 6V2)Hm+n+2 + (15V2 − 11V1 − 10V0)Hm+n+1 + (15V0 −
10V1 + 4V2)Hm+n.

Proof.

(a) It follows from Theorem 4.1 (c) and Lemma 4.5 (c).

(b) It follows from Theorem 4.1 (c) and Lemma 4.5 (d).

(c) It follows from Theorem 4.1 (c) and Lemma 4.5 (c).

(d) It follows from Theorem 4.2 (c) and Lemma 4.5 (e).

(e) It follows from Theorem 4.3 (c) and Lemma 4.5 (f). �

Note that in Theorem 4.8 we use (c)’s of Theorems 4.1, 4.2 and 4.3. Using (a),(b),(d),(e),(f),(g)(h),(i),(j)’s
of Theorems 4.1, 4.2 and 4.3 we can establish other recurence relations.

Using Theorem 4.8 and comparing matrix entries, we have next result.

Theorem 4.9. For generalized Narayana, Narayana, Narayana-Lucas and Narayana-Perrin numbers,
we have the following identities:

(a) VmVn+1 + Vm−2Vn + Vm−1Vn−1 = Vm+1Vn + Vm−1Vn−1 + VmVn−2 = (V1 − V2)
2Nm+n+4 +

2(V2 − V1)(V0 + V1 − V2)Nm+n+3 + (V 2
0 + 4V0V1 − 4V0V2 − V 2

1 + V 2
2 )Nm+n+2 + (2V1 −

2V0) (V0 + V1 − V2)Nm+n+1 + (V0 − V1)
2Nm+n.

(b) VmVn+1 + Vm−2Vn + Vm−1Vn−1 = Vm+1Vn + Vm−1Vn−1 + VmVn−2 = (V2 − V1)Vm+n+2 + (V0 +
V1 − V2)Vm+n+1 + (V1 − V0)Vm+n.

(c) NmVn+1 + Nm−2Vn + Nm−1Vn−1 = Nm+1Vn + Nm−1Vn−1 + NmVn−2 = (V2 − V1)Nm+n+2 +
(V0 + V1 − V2)Nm+n+1 + (V1 − V0)Nm+n.

(d) 31(NmVn+1 +Nm−2Vn +Nm−1Vn−1) = 31(Nm+1Vn +Nm−1Vn−1 +NmVn−2) = (11V1 − 3V0 −
2V2)Um+n+2 + (V0 − 14V1 + 11V2)Um+n+1 + (11V0 + V1 − 3V2)Um+n.

(e) 53(NmVn+1 +Nm−2Vn +Nm−1Vn−1) = 53(Nm+1Vn +Nm−1Vn−1 +NmVn−2) = (4V0 +15V1 −
6V2)Hm+n+2 + (15V0 − 10V1 + 4V2)Hm+n + (15V2 − 11V1 − 10V0)Hm+n+1.

Proof. By multiplying matrices and then by comparing the 2nd rows and 1st columns entries in
Theorem 4.8 (a), we get the required identities in (a). The remaining of identities can be proved by
considering again Theorem 4.8. �

Taking Vn = Nn in Theorem 4.9, we obtain the following corollary.

Corollary 4.10. For Narayana numbers, we have the following identities:

(a) NmNn+1 +Nm−2Nn +Nm−1Nn−1 = Nm+1Nn +Nm−1Nn−1 +NmNn−2 = Nm+n.

(b) 31(NmNn+1 +Nm−2Nn +Nm−1Nn−1) = 31(Nm+1Nn +Nm−1Nn−1 +NmNn−2) = 9Um+n+2 −
3Um+n+1 − 2Um+n.
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(c) 53(NmNn+1 +Nm−2Nn +Nm−1Nn−1) = 53(Nm+1Nn +Nm−1Nn−1 +NmNn−2) = 9Hm+n+2 +
4Hm+n+1 − 6Hm+n.

Taking Vn = Un in Theorem 4.9, we get the following corollary.

Corollary 4.11. For Narayana-Lucas numbers, we have the following identities:

(a) UmUn+1+Um−2Un+Um−1Un−1 = Um+1Un+Um−1Un−1+UmUn−2 = 9Nm+n+2−12Nm+n+1+
4Nm+n.

(b) UmUn+1 + Um−2Un + Um−1Un−1 = Um+1Un + Um−1Un−1 + UmUn−2 = 3Um+n+1 − 2Um+n.

(c) NmUn+1 +Nm−2Un +Nm−1Un−1 = Nm+1Un +Nm−1Un−1 +NmUn−2 = 3Nm+n+1 − 2Nm+n.

(d) NmUn+1 +Nm−2Un +Nm−1Un−1 = Nm+1Un +Nm−1Un−1 +NmUn−2 = Um+n.

(e) 53(NmUn+1 +Nm−2Un +Nm−1Un−1) = 53(Nm+1Un +Nm−1Un−1 +NmUn−2) = 21Hm+n+2 −
26Hm+n+1 + 39Hm+n.

Taking Vn = Hn in Theorem 4.9, we obtain the following corollary.

Corollary 4.12. For Narayana-Perrin numbers, we have the following identities:

(a) HmHn+1 + Hm−2Hn + Hm−1Hn−1 = Hm+1Hn + Hm−1Hn−1 + HmHn−2 = 4Nm+n+4 +
4Nm+n+3 − 11Nm+n+2 − 6Nm+n+1 + 9Nm+n.

(b) HmHn+1+Hm−2Hn+Hm−1Hn−1 = Hm+1Hn+Hm−1Hn−1+HmHn−2 = 2Hm+n+2+Hm+n+1−
3Hm+n.

(c) NmHn+1+Nm−2Hn+Nm−1Hn−1 = Nm+1Hn+Nm−1Hn−1+NmHn−2 = 2Nm+n+2+Nm+n+1−
3Nm+n.

(d) 31(NmHn+1+Nm−2Hn+Nm−1Hn−1) = 31(Nm+1Hn+Nm−1Hn−1+NmHn−2) = −13Um+n+2+
25Um+n+1 + 27Um+n.

(e) NmHn+1 +Nm−2Hn +Nm−1Hn−1 = Nm+1Hn +Nm−1Hn−1 +NmHn−2 = Hm+n.

The next two theorems provide us the convenience to obtain the powers of generalized Narayana,
Narayana, Narayana-Lucas and Naraya-perrin matrix sequences.

Theorem 4.13. For all integers m,n and r, the following identities hold:

(a) Nm
n = Nmn,

(b) Nm
n+1 = Nm

1 Nmn,

(c) Nn−rNn+r = N 2
n = Nn

2 .

Proof. We prove for m,n, r ≥ 0. The other cases can be proved similarly.

(a) We can write Nm
n as

Nm
n = NnNn...Nn (m times).

Using Theorem 4.5 (c) iteratively, we obtain the required result:

Nm
n = NnNn...Nn︸ ︷︷ ︸

m times

= N2nNnNn...Nn︸ ︷︷ ︸
m−1 times

= N3nNnNn...Nn︸ ︷︷ ︸
m−2 times

...

= N(m−1)nNn

= Nmn.
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(b) As a similar approach in (a) we have

Nm
n+1 = Nn+1.Nn+1...Nn+1 = Nm(n+1) = NmNmn = N1Nm−1Nmn.

Using Theorem 4.5 (c), we can write iteratively Nm = N1Nm−1, Nm−1 = N1Nm−2, ..., N2 =
N1N1. Now it follows that

Nm
n+1 = N1N1...N1︸ ︷︷ ︸

m times

Nmn = Nm
1 Nmn.

(c) Theorem 4.5 (c) gives
Nn−rNn+r = N2n = NnNn = N 2

n

and also
Nn−rNn+r = N2n = N2N2...N2︸ ︷︷ ︸

n times

= Nn
2 .

We have analogues results for the matrix sequence Vn.

Theorem 4.14. For all integers m,n and r, the following identities hold:

(a) Vn−rVn+r = V2
n,

(b) Vm
n = Vm

0 Nmn.

Proof.

(a) We use Binet’s formula of generalized Narayana sequence which is given in Theorem 2.3. So

Vn−rVn+r − V2
n

= (Aαn−r +Bβn−r + Cγn−r)(Aαn+r +Bβn+r + Cγn+r)− (Aαn +Bβn + Cγn)2

= ABαn−rβn−r(αr − βr)2 +ACαn−rγn−r(αr − γr)2 +BCβn−rγn−r(βr − γr)2

= 0

since AB = AC = BC = 0 (see Lemma 4.4). Now we get the result as required.

(b) By Theorem 4.13, we have
Vm
0 Nmn = V0V0...V0︸ ︷︷ ︸

m times

NnNn...Nn︸ ︷︷ ︸
m times

.

When we apply Lemma 4.5 (b) iteratively, it follows that

Vm
0 Nmn = (V0Nn)(V0Nn)...(V0Nn)

= VnVn...Vn = Vm
n .

This completes the proof. �

5 CONCLUSION

There have been so many studies of the
sequences of numbers in the literature and
the sequences of numbers were widely used
in many research areas. Many authors use
matrix methods in their work. On the other
hand, the matrix sequences have taken so much
interest for different type of numbers. See, for

example, [29,18,19,27]. In this paper, we define
the matrix sequence of generalized Narayana
numbers. The method used in this paper can be
used for the other linear recurrence sequences,
too. It is our intention to continue the study and
explore some properties of some type of matrix
sequences of special numbers, such as matrix
sequences of Hexanacci and Hexanacci-Lucas
numbers.
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In this paper, we obtain some fundamental
properties on matrix sequence of generalized
Narayana numbers. We can summarize the
sections as follows:

• In section 1, we present some background
about generalized Narayana numbers.

• In section 2, we define generalized
Narayana matrix sequence and then the
generating functions, the Binet formulas,
and summation formulas over these new
matrix sequence have been presented.
We have written sum identities in terms
of the generalized Narayana matrix
sequence, and then we have presented
the formulas as special cases the
corresponding identity for the generalized
Narayana sequence. All the listed
identities in the theorem and corollary may
be proved by induction, but that method of
proof gives no clue about their discovery.
We give the proofs to indicate how these
identities, in general, were discovered. We
can mention some applications of sum
formulas. Computations of the Frobenius
norm, spectral norm, maximum column
length norm and maximum row length
norm of circulant (r-circulant, geometric
circulant, semicirculant) matrices with the
generalized m-step Fibonacci sequences
require the sum of the numbers of the
sequences.

• In section 3, we obtain some identities
of generalized Narayana and Narayana,
Narayana-Lucas and Narayana-Perrin
numbers.

• In section 4, we show that there always
exist interrelation between generalized
Narayana, Narayana, Narayana-Lucas
and Narayana-Perrin matrix sequences.
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Soykan and Koç; JSRR, 27(6): 31-64, 2021; Article no.JSRR.70350

[14] Civciv H, Turkmen R. Notes on the (s; t)-
Lucas and Lucas matrix sequences. Ars
Combin. 2008;89:271-285.

[15] Gulec HH, Taskara N. On the (s; t)-Pell
and (s; t)-Pell-Lucas sequences and their
matrix representations. Appl. Math. Lett.
2012;25:1554-1559.
doi.org/10.1016/j.aml.2012.01.014.
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