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ABSTRACT

Aims/ Objectives: Nonlinear, completely integrable Hamiltonian systems representing charged particle motion
in external electromagnetic fields hold promise for models of novel intensity frontier particle accelerators. The
main reason is the combination of large regions of stable orbits with damping of collective instabilities by
conservative relaxation. Intensity frontier particle accelerators are essential for discovery science in particle
and nuclear physics, and a host of industrial and security applications.
Study Design: Mathematical proof.
Methodology: Tools of Hamiltonian dynamics and differential geometry.
Results: Realistic system lattices include additional sections or inserts that themselves may be integrable (such
as linear optics, phase trombones, thin lenses, kicks, etc.). However, in general the full system fails to remain
integrable.
Conclusion: The non-integrability proof is presented and some consequences of integrability failure are
explored.
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1 INTRODUCTION

One of the more exciting advances in accelerator
science for high energy physics over the last decade
or so was the revitalization of concepts related to
completely integrable, nonlinear Hamiltonian systems
in the sense of Liouville for novel particle accelerators,
with special emphasis on the intensity frontier. Danilov
and Nagaitsev’s seminal paper [1] proved that in four-
dimensional phase space, under some approximations,
it is possible to find static magnetic fields that
make the single-particle Hamiltonian of a charged
particle in magnetic fields deliberately nonlinear and
completely integrable simultaneously, namely having
two functionally independent invariants in involution.
The most theoretically-promising element of this
set became the basis of what is called now the
Integrable Optics Test Accelerator (IOTA) [2], recently
commissioned at Fermilab.

In this paper we disregard the specific form of the
IOTA model Hamiltonian or its specific lattice. We
will assume generically the existence of a nonlinear
completely integrable Hamiltonian, H, on standard
phase space. However, it is hardly ever the case that
the practical implementation of such a system would be
restricted to this Hamiltonian alone. The reasons could
be manifold: need for extra space for instrumentation,
for correction elements, for acceleration, or systems
for various experiments such as electron or stochastic
cooling, among others. The specifics are not important
for our discussion. What is important is that collectively
these extra features that need to be implemented in
any practical realization of a realistic system will involve
another Hamiltonian, K, on the same phase space.
Typically, K is assumed to be modeling a linear system,
or some limit of a linear system, such as a thin lens or a
kick.

The full system is always assumed to be periodic,
and one period of the system is split into a
fraction associated with H and the remaining fraction
associated with K. Therefore, the full system is
associated with the s-dependent Hamiltonian H + K,
where s is the independent variable with assumed (re-
parametrized) period 1. Similar considerations would
apply if the full ring would be split into a sum of more
than two Hamiltonians.

By assumption, H is integrable. Clearly, if K is
not integrable, then it follows immediately that the full
system, represented by H + K, will not be integrable.
The more interesting case is if K is also integrable,
but K 6= H. For example, this is the case if
K models a linear Hamiltonian system, since every
linear Hamiltonian systems is completely integrable,
with quadratic invariants in the phase space coordinates
[3].

2 DEFINITIONS

We start with the definitions of the fundamental
quantities, following [4]. Let us consider the symplectic
space

(
R2n, ω

)
with the standard symplectic structure

ω = ω0, and denote by H the vector space of all
smooth and compactly supported Hamiltonian functions
H = H(s, x) : [0, 1]× R2n → R.

2.1 Hamiltonian Flows
Associated to every H ∈ H is a time-dependent
Hamiltonian vector field XH on R2n. Since the
vector field XH has compact support, the Hamiltonian
equations

dx

ds
= XH(s, x), x(0) = x0 ∈ R2n,

can be solved over the whole interval [0, 1] for every
given initial value x0 ∈ R2n.

2.2 Symplectic Maps
We thus obtain a 1-parameter family of symplectic
mappings ϕs

H for s ∈ [0, 1]. It is defined by

ϕs
H (x0) = x(s),

where x(s) solves the equation for the initial value x0.
Clearly ϕs

H(x) = x if |x| is sufficiently large. By

ϕH = ϕ1
H

we shall denote the time-1 map of the flow ϕs
H .

This is true in the opposite direction too. Namely, in the
case of R4, every compactly supported symplectic map
ϕ is the time-1 map of some Hamiltonian H.
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We define the group D of compactly supported
Hamiltonian diffeomorphisms by

D = {ϕH | H ∈ H} .

2.3 Hamiltonians of Related Flows
Finally, given H,K ∈ H and ϑ ∈ D, we define the
functions H̄,H#K and Hϑ in H as follows:

H̄(s, x) = −H (s, ϕs
H(x)) ,

(H#K)(s, x) = H(s, x) +K
(
s, (ϕs

H)−1 (x)
)
,

Hϑ(s, x) = H
(
s, ϑ−1(x)

)
.

3 PROOF OF NON-INTEGRABILITY

The crucial relationship that leads to the proof is to show
that

ϕs
H#K̃ = ϕs

H ◦ ϕs
K̃ . (3.1)

Indeed, if

d

ds
ϕs = XH ◦ ϕs and ϕ0 = id,

d

ds
ψs = XK̃ ◦ ψ

s and ψ0 = id,

then it follows from

d

ds
(ϕs ◦ ψs) =

(
d

ds
ϕs

)
◦ ψs + (dϕs ◦ ψs) · d

ds
ψs

= XH (ϕs ◦ ψs)

+
[
dϕs ◦ (ϕs)−1 ◦ ϕs ◦ ψs

]
·XK̃ ◦

[
(ϕs)−1 ◦ ϕs ◦ ψs

]
that by the transformation law of Hamiltonian vector
fields the second term is equal to

XK̃◦(ϕs)−1 ◦ (ϕs ◦ ψs) ,

and the statement (3.1) is proved.

3.1 Immediate Consequences
If we define K such that H#K̃ = H +K, we obtain

K̃ = K ◦ ϕs
H ,

and since

ϕs
K̃ = ϕs

K◦ϕs
H

= (ϕs
H)−1 ◦ ϕs

K ◦ ϕs
H ,

the flow of the full system is given by

ϕs
H+K = ϕs

K ◦ ϕs
H .

Whether the ring lattice Hamiltonian is K or K̃ is
irrelevant for our discussion. This follows from the
fact that the two functions are related by the flow of
a Hamiltonian system, which are symplectic maps for
each s. Symplectic maps are integrability preserving
transformations [5], hence if K is integrable then K̃ is
also integrable, and vice-versa.

Without loss of generality, let us assume that our
phase space is R4 and the Hamiltonians themselves
are integrals of the motion. Therefore, by assumption
of complete integrability, both Hamiltonians H and K
have an (and only one) additional independent invariant
in involution with the Hamiltonian. Denoting them by
CH 6= CK , we have

CH ◦ ϕs
H = CH , CK ◦ ϕs

K = CK .

If the full system were integrable, then an integral of
motion CH+K would exist such that

CH+K ◦ ϕs
K ◦ ϕs

H = CH+K ,

or
CH+K ◦ ϕs

K = CH+K ◦ (ϕs
H)−1 (3.2)

As a special case of (3.1), with K̃ = H̄, we obtain that
(ϕs

H)−1 = ϕs
H̄ . From the definition of H̄, it is easy to see

that H̄ is also integrable, with the same invariant CH .
Therefore, neither CH nor CK fits the bill for CH+K ; if
CH+K = CH , we get CH ◦ϕs

K = CH that does not hold
by assumption. If CH+K = CK , we get CK = CK ◦ ϕs

H̄

that also does not hold. The last possibility is to have
a CH+K 6= CH 6= CK . That is, there exist a function
of phase space variables such that is not an invariant
of the two independent Hamiltonian flows, the only
requirement being that individually they are completely
integrable, and furthermore the flows map this function
to a different, but the same exact function. Clearly,
this is impossible for two independent Hamiltonians H
and K. Therefore, in general the concatenation of two
completely integrable Hamiltonian systems will cease to
be completely integrable.

4 DISCUSSION

It is an interesting question to entertain if this
general statement fails for some particular integrable
Hamiltonian systems. For example, let us assume
that H is given. Can we find an integrable K
such that the combined system remains integrable?
Again, in general, without knowing more about H, is

30
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highly unlikely. Integrable Hamiltonians are scarce,
integrability is not generic. It is difficult enough to find
integrable Hamiltonians at all even without additional
serious constrains.

4.1 Common Case
How about the most common practical case, where H
is highly nonlinear and K is quadratic? Typically, the
separate invariants will be linear or quadratic in the
momenta, so that is not an issue a priori. However,
CH will be highly nonlinear in the coordinates, while
CK quadratic. The flow of K will map any function
linearly while the flow of H nonlinearly, therefore there
is no initial function that the two flows will map to the
same level sets. As a consequence, concatenation
of a nonlinear with a linear integrable system is not
integrable.

4.2 Trivial Case
The trivial case, where both H and K are quadratic,
is not very interesting practically, but it should be
mentioned that since both Hamiltonians generate linear
flows, the combined system will also be linear, and
hence integrable because every linear Hamiltonian
system is integrable.

4.3 Fully Nonlinear Case
The remaining interesting case, and the most
complicated to study is when both H and K are
highly nonlinear. This leaves more opportunities, but
we reiterate that although nonlinear, both systems are
assumed to be integrable taken separately. As such,
their flows are rather simple. Integrable systems admit
so-called action angle coordinates, which means that
viewed through this particular lens their flows are simple
rotations on tori with amplitude dependent angular
speeds [6]. Based on the assumption that the two
systems are different, it follows that their respective
action-angle coordinates will also be different. That is,
(3.2) can we rewritten as

CH+K(JK , µ(JK)s+ θK) = CH+K(JH̄ , ν(JH̄)s+ θH̄),
(4.1)

where J are the actions and µ, ν are the angular
speeds, while θ are the initial angles. Thus, it is
difficult to imagine how two such flows, with very similar
behavior, yet different, would behave as expected
according to (4.1). So, although we do not have a

completely general proof, we conjecture that this is
never possible in practically relevant cases. Hence,
concatenation of two different completely integrable
Hamiltonian system, out of which as least one is not
linear, is not integrable.

4.4 Beam Matching
Another question worth pondering is whether the
relaxation of complete integrability akin to beam
matching would offer some new features. That is,
instead of (3.2), we would require

CH+K ◦ ϕK = CH+K ◦ ϕH̄ .

This problem does seem easier, since instead of every
value of s we require the equation to hold only for s = 1.
However, this is deceiving, since as discussed above
the flows are just rotations, and fixing the value of s is
just fixing a particular rotation angle; not of much help
in general. However, there is one particular case of
real interest; if it happens that ϕK = id. In this case
the full system will behave for all practical purposes as
integrable with invariant CH .

It might be very difficult to achieve ϕK = id in practice,
but it could be feasible to have a linear ϕK that matches
the linearization of ϕH . Indeed, this would make the
full system nearly-integrable. Due to general features
of Hamiltonian dynamics, owing to KAM tori [7], it is
expected that in this case the system will behave close
to an integrable one, in an appropriate sense. We
believe this option is the best practically and is worth
further study.

Finally, it is obvious that all these results do not depend
on the dimensionality of phase space or whether the
systems are autonomous or not. First, if any system is
non-autonomous, it can be rewritten as an autonomous
system on extended phase space [8]. Second, if
the phase space is more than four-dimensional, there
will be extra invariants involved for integrability, but if
the theory does not work for one additional invariant
besides the Hamiltonian, it will certainly not work with
two or more invariants.

5 CONCLUSION

Nonlinear, completely integrable Hamiltonian systems,
in principle, are promising models for novel particle
accelerators for future endeavors at the intensity

31
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frontier of beam physics and particle physics. These
systems are far from being generic in the class of
nonlinear Hamiltonian systems. In fact, the only system
shown so far to fulfill these requirements are in four-
dimensional phase space, in the paraxial approximation
and neglecting fringe fields. IOTA is based on a
model taken from this class. Recently, we showed that
without these approximations the set of such completely
integrable systems is empty [9].

Moreover, even if we restrict ourselves to the class
with approximations where IOTA is an element, it
is clear that the practical implementation of the
systems will break integrability due to unavoidable
construction errors, since arbitrarily small perturbations
generically destroy integrability. Also, even the
numerical simulations of integrable systems will, in
general, destroy integrability [10]. However, even
if all these errors are neglected, it is also obvious
that the full accelerator lattices might not be fully
integrable due to the presence of ancillary sections and
elements deemed necessary for operations. Examples
of such extra features include drifts for monitoring,
correction, and other experimental accessories, thin
lenses, kicks, or phase trombones, just to list a few.
Under these circumstances, it is possible to alter the
model of the accelerator lattices into an equivalent
Hamiltonian system, where the Hamiltonian is the
sum of two or more Hamiltonian functions, where
the individual Hamiltonians are completely integrable
by themselves. The main Hamiltonian would be the
nonlinear completely integrable one with the main
purpose of achieving the stated goals of high intensity
and power while maintaining collective and orbital
stability. The other summand will almost always
represent a linear system (but not necessarily) that
is integrable too. The topic explored in this paper
is whether the combined, concatenated system will
remain integrable.

a We showed that in general this is not the case:
the concatenation of two integrable systems in
general ceases to be integrable. The trivial
case of concatenation of two linear system
is excluded. When one of the systems is
linear while the other is nonlinear, integrability is
destroyed in the sense that not even in specific
cases could such a system be concocted to
maintain integrability. When both systems are
nonlinear, no useful concatenation exists that
would preserve integrability at least in some
particular cases, but we conjecture that to be true

in general, except maybe some corner cases of
no practical interest.

b Therefore, for all practical purposes we need to give
up on the concept of complete integrability of
a practical construction of a novel accelerator
along these lines. All is lost? We don’t
think so. We believe that near-integrability
should be almost as useful a concept as full
integrability for novel particle accelerators, and
we identified the most promising candidates
to be concatenation of a nonlinear, completely
integrable Hamiltonian system with a linear
system that is the linearization of the preceding
system. This way we obtain practical, nonlinear,
nearly integrable Hamiltonian systems with
invariant tori close to the invariants of the original
systems. The quantitative assessment of such
systems are worth further study. It is also
worth noting that alternative concepts of stable
nonlinear dynamics exist and their relationship to
(near-) integrability is an interesting topic in itself.
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