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ABSTRACT 
 

Aims: This study explores the potential of magnetic nanomaterials in addressing water and 
wastewater management challenges through the circular economy approach. 
Methodology: The study reviews the literature on the use of magnetic nanomaterials in water and 
wastewater treatment and discusses their unique properties that allow for selective pollutant 
removal, easy recovery, and reuse, as well as resource recovery. 
Results: Magnetic nanomaterials have shown promise in enhancing the efficiency of existing 
treatment processes, facilitating energy recovery, enabling water reuse, precious metals recovery, 
and aiding in the effective recovery of nutrients. However, challenges such as long-term toxicity, 
optimization, and regulation need to be addressed to facilitate widespread adoption. 
Conclusion: Integrating magnetic nanomaterials into water and wastewater treatment processes 
holds significant potential for advancing the circular economy of water and wastewater. Applying 
magnetic nanomaterials in water and wastewater treatment can minimize waste generation, 
promote resource efficiency, and offer practical solutions to remove pollutants that are challenging 
to remove using conventional methods.   
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1. INTRODUCTION 
 
Water is a vital resource for humans, and its 
availability is critical for sustaining life and 
economic growth [1–3]. With ever-increasing 
population and industrialization, the demand for 
clean water has significantly increased, resulting 
in water scarcity and deteriorating water quality 
[1,3,4]. Furthermore, wastewater from industries 
and households severely threatens the 
environment and human health [1,4]. To address 
these challenges, sustainable water 
management practices, such as the circular 
economy, have gained global attention. 
 
A circular economy focuses on minimizing waste 
and maximizing resource utilization [5–9]. It 
involves recovering, reusing, and recycling 
resources to create a closed-loop system that 
promotes environmental sustainability, economic 
growth, and social well-being [5,6]. In the water 
sector, the circular economy aims to reduce 
water consumption, increase water reuse, and 
recover resources from wastewater to promote 
sustainable development [2,3,5,7–10]. The 
advancement of this circular economy requires 
the development of new technologies and 
approaches to enhance the efficiency and 
sustainability of water management systems 
[3,6].  
 
Magnetic nanomaterials have emerged as 
promising tools for advancing the circular 
economy in the water sector [11]. These 
materials possess unique physicochemical 
properties that make them ideal for water and 
wastewater treatment applications [11,12]. 
Magnetic nanomaterials can be synthesized in 
different sizes and shapes with tunable surface 
chemistry and magnetic properties [11,12]. They 
can also be functionalized with various 
molecules, including organic and inorganic 
compounds, such as carboxyl, amine, SiO2, and 
hydroxyl, to enhance their selectivity and 
efficiency in removing contaminants from water 
[11].  
 
Researchers have recently explored magnetic 
nanomaterials for various water and wastewater 
treatment processes, including adsorption, 
coagulation, magnetic separation, catalysis, and 
photodegradation [11-13]. The use of magnetic 
nanomaterials in these processes has shown 
promising results [11-12], such as high removal 

efficiency, rapid kinetics, and easy recovery and 
reuse of the materials (magnetic materials 
themselves). Several studies have shown that 
magnetic nanomaterials can remove 
contaminants from water and wastewater, 
including heavy metals [14], dyes [15], and 
organic pollutants [15]. Moreover, traditional 
water and wastewater treatments have not been 
designed to treat emerging pollutants. Several 
recent studies have indicated the effectiveness of 
magnetic nanomaterials in removing emerging 
pollutants such as pharmaceuticals [16], 
endocrine-disrupting chemicals [17], pesticides 
[18], PFASs [19], and microplastics [20,21] from 
water and wastewater. 
 
Furthermore, magnetic nanomaterials have also 
been used in resource recovery processes, such 
as nutrient (nitrogen and phosphorus) and 
precious metal (Pd, Pt, Ag, and Au) recovery, to 
promote circular economy in the water sector 
[11-12]. Other essential products generated from 
water and wastewater treatment using magnetic 
nanomaterials include biogas for energy and 
compost as fertilizer for agricultural applications 
[11,12]. Fig. 1 summarizes the synthesis, 
characterization, and application of magnetic 
nanomaterials for advancing the circular 
economy of water and wastewater. The first 
cycle (1) indicates the path for the recovery and 
reuse of magnetic materials while the second 
cycle (2) shows material recovery, for example, 
Pd, Au, and Ag. The production of fertilizer as 
composts and nutrients (Nitrogen and 
phosphorus) from the treatment plant is indicated 
in the third cycle (3). Furthermore, the fourth 
cycle (4) shows electricity and heat production 
via biogas production and microbial fuel cells. 
The fifth cycle (5) describes the reuse of treated 
water in industries/households and then 
generated wastewater move into the treatment 
plant. It also indicates the discharge of the 
treated water into surface water. 
 
The concept of a circular economy in the water 
sector is an emerging area that has attracted 
significant attention from various countries, non-
governmental organizations, and individuals, 
resulting in numerous write-ups on the topic. 
Tintaya et a. [22] analyzed and emphasized the 
incorporation of the circular economy model in 
water treatment plants owing to its potential 
benefits. The general transition of the circular 
economy in the water sector, such as
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Fig. 1. Schematic application of magnetic nanomaterials in advancing circular economy of water and wastewater 
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policymaking, and recommendations were 
discussed for Europe [7,23,24], Central and 
Eastern Europe [25], Saudi Arabia [26], Mexico 
[27], Sweden [28], Finland and Sweden [29] 
Poland [30,31], Thailand [26], Belgium and the 
Netherlands [32], China, and Europe [5] 
However, some studies have specifically 
emphasized biological treatment to obtain the 
best results in the circular water economy sector 
[6,33,34]. The transition from a linear to a circular 
economy in the water sector requires a rethinking 
of new or combined technology that will aid the 
transition, as discussed in [6,33,34] on biological 
treatment.  
 
Therefore, this research aims to provide a 
comprehensive review of recent advances in the 
use of magnetic nanomaterials for the circular 
economy in the water sector. This study covers 
the synthesis and characterization of magnetic 
nanomaterials and their applications in various 
water and wastewater treatment processes. The 
study also discusses the challenges and 
opportunities for advancing the circular economy 
of water and wastewater using magnetic 
nanomaterials and provides recommendations 
for future research directions. 
 
2. METHODS  
 
A literature search was conducted using scientific 
databases, including Web of Science, Scopus, 
and Google Scholar, to explore the use of 
magnetic nanomaterials in water and wastewater 
treatment, circular economy, and resource 
recovery. Search terms such as "magnetic 
nanomaterials," "water treatment," "wastewater 
treatment," "circular economy," and "resource 
recovery" were used. Only articles published in 
English were considered, resulting in 
approximately 300 articles. Among these, 122 
articles were included in the study on circular 
economy and water/wastewater and the use of 
magnetic nanomaterials for pollutants removal, 
nutrients recovery, metals recovery, and 
heat/electricity generation from 
water/wastewater. 
 
Articles that were either unrelated to 
water/wastewater or did not focus on using 
magnetic nanomaterials for pollutants removal, 
nutrients recovery, metals recovery, or 
heat/electricity generation from water/wastewater 
were excluded, resulting in 178 articles being 

excluded. The selected articles were reviewed 
based on their relevance to the topic and quality 
of information. There were no restrictions on the 
journals/reports or years in which the research 
was conducted. However, it was found that 123 
articles were published between 2005 and 2023, 
as shown in Fig. 1. 
 

3. SYNTHESIS OF MAGNETIC 
NANOMATERIALS  

 
The synthesis and modification of magnetic 
nanomaterials offers several advantages for 
water and wastewater treatment applications, 
including increased efficiency, easy separation 
and recovery, selectivity, and environmental 
sustainability [35]. Magnetic nanomaterials can 
be easily synthesized and functionalized with 
specific chemical groups or molecules to target 
specific contaminants. This allows for greater 
selectivity in water treatment, as only the 
targeted contaminants are removed, leaving the 
other components of the water untouched. The 
synthesis and surface modification of magnetic 
nanomaterials can be achieved using various 
methods, such as co-precipitation, sol-gel, 
hydrothermal, microwave-assisted methods, 
combustion, impregnation-pyrolysis, and ball 
milling. Co-precipitation is the most commonly 
used method owing to its simplicity, low cost, and 
scalability. In this method, ferrous and ferric ions 
are co-precipitated in an alkaline solution in the 
presence of precipitating agents, such as sodium 
hydroxide or ammonium solution [14,16,18,36-
56]. The sol-gel method involves the hydrolysis 
and condensation of metal alkoxides in the 
presence of a surfactant to form a sol, which is 
then converted to a gel by aging and drying 
[15,57–62]. Hydrothermal synthesis involves the 
use of high-pressure and high-temperature 
conditions to form magnetic nanomaterials [63]. 
Microwave-assisted synthesis involves the use of 
microwave radiation to induce the formation of 
magnetic nanomaterials [64]. Combustion 
Synthesis: In this method, a mixture of metal 
salts and fuel (such as glycine, urea, or citric 
acid) is ignited to produce a flame [17]. The heat 
generated by the combustion reaction causes 
metal salts to react and form magnetic 
nanoparticles [17]. The advantage of this method 
is that it is relatively simple and can produce 
nanoparticles in large quantities [17]. However, 
the size and shape of these particles may be 
difficult to control. 
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Fig. 2. Distributions of articles 
 
In Impregnation pyrolysis method, a metal ion 
precursor is impregnated into a carbonaceous 
material (such as activated carbon or carbon 
nanotubes) and then heated in an inert 
atmosphere to produce magnetic nanoparticles 
[65]. The advantage of this method is that the 
carbonaceous material acts as a template, which 
can help control the size and shape of 
nanoparticles. However, this process is time-
consuming and the yield may be low [65]. Ball 
Milling; in this method, magnetic precursors are 
mixed with a grinding medium (such as steel 
balls) and milled in a ball mill [19]. Collisions 
between the precursors and the grinding medium 
cause mechanical deformation, leading to the 
formation of magnetic nanoparticles. The 
advantage of this method is that it can produce 
nanoparticles with a narrow size distribution, 
which can be controlled by adjusting the milling 
time and the size of the grinding medium [19]. 
However, this process is time-consuming, and 
the grinding medium may contaminate the 
particles. 
 

4. CHARACTERIZATION OF MAGNETIC 
NANOMATERIALS  

 
Characterization of magnetic nanomaterials is 
essential to understand their physical and 
chemical properties, which influence their 
performance in water and wastewater treatment. 
Common techniques for characterizing magnetic 
nanomaterials include X-ray diffraction, 
transmission electron microscopy, scanning 
electron microscopy, Fourier-transform infrared 
spectroscopy, and vibrating sample 
magnetometry [11,52,66]. These techniques 
provide information on the particle size, 

morphology, crystallinity, surface chemistry, and 
magnetic properties of the nanomaterials 
[11,52,66]. 
 

5. ADVANTAGES OF ADVANCING THE 
CIRCULAR ECONOMY OF                  
WATER AND WASTEWATER USING 
MAGNETIC NANOMATERIALS 

 
Advancing the circular economy of water and 
wastewater through the use of magnetic 
nanomaterials provides numerous benefits. 
Firstly, it allows for the recovery of valuable 
resources from wastewater, such as phosphorus, 
which can be used in agriculture. This reduces 
the need for virgin resources and contributes to 
the circular economy by closing the loop on 
resource use. Secondly, magnetic nanomaterials 
can help remove contaminants from wastewater 
to produce high-quality water for reuse in 
industrial processes and agricultural irrigation. 
This reduces the demand for freshwater 
resources and can help alleviate water scarcity 
issues. Thirdly, magnetic nanomaterials can 
improve the energy efficiency of wastewater 
treatment by reducing the energy required for 
filtration and separation, resulting in lower 
operating costs and lower greenhouse gas 
emissions. Fourthly, it can reduce waste 
generation by recovering valuable resources 
from wastewater, promoting a more sustainable 
use of resources. Additionally, the application of 
magnetic nanomaterials can reduce the chemical 
requirements for water and wastewater 
treatment, such as coagulation, which reduces 
the amount of sludge generated during the 
treatment process. Fifthly, magnetic 
nanomaterials can reduce the costs associated 
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with wastewater treatment and resource recovery 
by generating revenue streams that offset the 
costs of wastewater treatment [14,21,60]. Sixthly, 
magnetic nanomaterials can be integrated with 
other treatment technologies to enhance 
contaminant removal efficiency, resulting in a 
more effective and efficient treatment process. 
Lastly, magnetic nanomaterials can be easily 
recovered and reused multiple times, reducing 
the need for frequent replacement and disposal 
of materials, which reduces costs and 
environmental impact associated with waste 
disposal [11,12]. 
  

6. APPLICATION OF MAGNETIC 
NANOMATERIALS IN CIRCULAR 
WATER ECONOMY  

 
The circular water economy aims to minimize 
waste and promote the recovery of valuable 
materials from wastewater, such as nutrients, 
energy, and metals. Magnetic nanomaterials 
have the potential to play a significant role in 
advancing the circular economy by enabling 
more a) removal of pollutants, b) water reuse, c) 
nutrient and metal recovery, and d) energy 
recovery. Magnetic nanomaterials have shown 
great potential for advancing the circular 
economy of water and wastewater because of 
their unique properties, such as high surface 
area, easy magnetic separation, and reusability. 
Hence, a) pollutant removal, b) water reuse, c) 
nutrient and metal recovery, and d) energy 
recovery will be described in detail in the 
following sections. 

 
6.1 Magnetic Nanomaterials for Removal 

of Pollutants from Water and Waste 
Water 

 
Magnetic nanomaterials can be functionalized 
with specific functional groups to target and 
remove contaminants from water and 
wastewaters. This approach has several 
advantages over traditional water treatment 
methods, including enhanced removal efficiency, 
reduced treatment time, and improved selectivity 
for specific pollutants (Table 1).  
 
One example of the use of magnetic 
nanomaterials in water treatment is the removal 
of heavy metals, such as Cu [42,43], Cr [14,41], 
and As (V) [47] from water and wastewater. 
Another example is the removal of organic 
pollutants such as dyes [15] from water. 
Disinfection of water and wastewater containing 

different types of microorganisms using magnetic 
nanomaterials has been found to be significant 
[15,38,47,51,56,58–60,62].  More importantly, 
traditional water and wastewater have not been 
designed to treat emerging pollutants, but 
magnetic nanoparticles are promising for the 
removal of different types of emerging pollutants, 
such as PFASs [19], pesticides [18,57,65], 
endocrine disrupting chemicals [17], 
pharmaceuticals [16,36,40,67], and microplastics 
[20,21]. In addition, the physicochemical 
properties of water and wastewater, such as 
turbidity [38,45,46,55,61], apparent color [38,61], 
chemical oxygen demand [59], biological oxygen 
demand [39], total organic content [39], total 
suspended solids [39], sulfate [49,50], nitrate 
[38,44], and phosphate [48,66], have been 
effectively removed by various magnetic 
nanomaterials. 
 

Furthermore, the incorporation of magnetic 
nanomaterials into existing water and wastewater 
treatment has made it suitable for the 
advancement of the circular economy of water 
and wastewater. Notably, as shown in Table 1, 
magnetic nanomaterials have been successfully 
incorporated into existing water and wastewater 
treatment methods such as adsorption 
[14,19,20,36–38, 41,43,44,49, 54,57,59,63,66]  
advanced oxidation processes [16], disinfection 
[15, 38, 47, 51, 56, 58–60, 62], flocculation 
[38,45,46,53], coagulation [52,55,61], forward 
osmosis (membrane for desalination) [68], and 
filtration [21]. The application of magnetic 
nanomaterials to different AOPs, such as 
photocatalysis [15,43,53], photo-Fenton [16], and 
activation of peroxymonosulfate [17,40,65], has 
been successful and effective. 
 

6.2 Magnetic Nanomaterials for Water 
Reuse 

 

Overall, magnetic nanomaterials can be used to 
remove contaminants (as described in Section 
5.1) such as pathogens, organic matter, and 
nutrients from wastewater, thus allowing the 
reuse of treated water. The magnetic separation 
technique allows for the easy recovery and 
regeneration of nanomaterials, making them a 
sustainable and cost-effective solution for water 
reuse. Water scarcity is a growing global 
concern, and the use of treated wastewater for 
non-potable purposes is an effective way to 
address this issue [11,12]. Non-portable usage 
includes irrigation, industrial processes, and toilet 
flushing etc. Thus, by using recycled water, 
freshwater resources can be conserved and the 
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Table 1. Removal of pollutants by magnetic nanomaterials 
 

S/N Nanomaterials Synthesis Pollutants Treatment methods % Removal References 

1 Fe3O4@AgNPs Co-precipitation Nitrate Adsorption 100 [51] 
2 Fe3O4 Co-precipitation Turbidity, 

Total nitrogen, 
Color,  
microbial content, 
nitrate 

Adsorption, 
Antimicrobial 
assessment, and 
Flocculation 

Colour 64%; total 
organic carbon 40%; 
nitrate 72%; 
and microbial 
content (E coli and 
Enterococci, 73%) 

[52] 

3 Fe3O4@AgNPs  Co-precipitation Ibuprofen Adsorption 93 [50] 
4 ɤ-Fe2O3/Al–ZnO Sol gel Chlorpyrifos Adsorption 92.33 [57] 
5 Magnetic Fluorinated Vermiculite Ball milling Perfluorooctane 

sulfonate (PFOS) 
Adsorption 98 [19] 

6 Magnetic chitosan (Fe3O4/CS) Hydrothermal Microcystin Adsorption 100 [63] 
 

7 Magnetically recoverable nitrogen 
doped biochar 

Impregnation-
Pyrolysis 

Metolachlor AOP 88 [65] 

8 Fe3O4 MNP Co-precipitation Ciprofloxacin AOP 85 [16] 
9 BiOCl/g-C3N4/Cu2O/Fe3O4 Co-precipitation Sulfamethoxazole, 

Ibuprofen, 
Acetaminophen and 
Antipyrine 

AOP 99.5 [53] 

10 CuFe2O4/GO  Co-precipitation Metronidazole AOP 100 [54] 
11 Fe3O4 MNP Co-precipitation  Cr Adsorption 90 [55] 
12 Modified magnetic nanoparticle 

with benzotriazole 
Co-precipitation  Cu Adsorption 99.7 [56] 

13 Fe3O4 MNP Co-precipitation Cu Adsorption 75 [36] 
14 MNPs@SiO2@GOPTS- Lys 

 
Co-precipitation Cr Adsorption 22 [14] 

15 Fe3O4 MNP Co-precipitation  Nitrate Adsorption 86 [37] 
16 Fe3O4 MNP Co-precipitation  Sludge water content, 

Turbidity 
Flocculation Sludge water 

content; 90.8, 
Turbidity; 24.4 

 
[38] 

17 Fe3O4 MNP Co-precipitation  Total organic content Flocculation  75 [39] 
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S/N Nanomaterials Synthesis Pollutants Treatment methods % Removal References 

(TOC), turbidity, total 
suspended solids 
(TSS), and biological 
oxygen demand (BOD) 

18 CFeO@CVD, FeO/AC composite, 
CoFeO, MnFeO, CuFeO, and FeO  

Co-precipitation  E. coli and S. aureus  Antimicrobial 
assessment 

99 [40] 

19 Al-Fe3O4 Co-precipitation  Phosphate Adsorption 90 [41] 
20 Fe3O4 MNP Microemulsion Phosphate Adsorption 100 [66] 
21  Fe3O4@CNT Co-precipitation 

 
Malathion Adsorption 82 [18] 

22 Magnetic multi-walled carbon 
nanotubes 

Co-precipitation 
 

Sulfate Adsorption 93.28 [42] 
 

23 Fe3O4 MNP Co-precipitation 
 

Sulfate AOP 77.92 [43] 

24 Magnetic-HNTs-ZnO Co-precipitation 
 

Non-drug resistant 
pathogenic E. coli and 
S. aureus, drug-
resistant methicillin-
resistant S. aureus 
(MRSA) 

Antimicrobial 
assessment 

Significant  [44] 

25 Magnetic CoFe2O4/diatomite Combustion BPA AOP 95.54 [17] 
26  Ni0.6Zn0.4Fe2O4 and 

Ni0.6Zn0.2Ce0.2Fe2O4 
Sol gel Pathogenic microbes Antimicrobial 

assessment  
Significant [58] 

27 Mn0.5Zn0.5-xMgxFe2O4 NPs Sol gel Chloramine T,  
Rhodamine B 
Pathogenic bacteria 
and yeast 

AOP 
Antimicrobial 
assessment  
 

Chloramine T (90 %) 
Rhodamine B (95 %) 
 
 

[15] 

28 Fe3O4/CNTs Co-precipitation Microcystis aeruginosa Coagulation 94.4 [45] 
29 Fe3O4/PS Co-precipitation  Nannochloropsis 

oculata microalgae 
Flocculation 96 [46] 

30 Silver-loadedmagnetic 
nanoparticles (Ag-MNPs) 

Sol gel  Total coliforms (TC), 
fecal coliforms (FC), 
heterotrophic bacteria 
(HB), 

Antimicrobial 
assessment  
 
Adsorption 

Significant 
(antimicrobial) 
COD; 55 

[59] 
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S/N Nanomaterials Synthesis Pollutants Treatment methods % Removal References 

and chemical oxygen 
demand (COD) 

31 Fe3O4–dextrin–CoS Sol Gel Escherichia coli Antimicrobial 
assessment  
 

99 [60] 

32 γ-Fe2O3  Co-precipitation As (V) Adsorption 90 [47] 
33 Magnetic- Moringa seeds extract Co-precipitation Turbidity Coagulation 90 [48] 
34  CuFeO/CNT and   

C–FeO@CVD750 
Co-precipitation  Staphylococcus aureus 

and 
 E. coli 

Antimicrobial 
assessment  
 

99 [49] 

35 Magnetic coagulant based on 
Moringa oleifera 
seed extract 

Sol gel Turbidity, Apparent 
color 

Coagulation Turbidity; 90 
Apparent colourr; 85 

[61] 

36 Silver-coated Ni0.5Zn0.5Fe2O4 Sol gel Escherichia coli Antimicrobial 
assessment  
  

99 [62] 

37 Nano-Fe3O4 NR Polyethylene (PE), 
polypropylene (PP), 
polystyrene (PS) and 
polyethylene 
terephthalate (PET) 

Adsorption 80 
 

[20] 

38 Magnetic POM supported ionic 
liquid phase (magPOM-SILP) 

NR Polystyrene Filtration 100 [21] 

NR= Not reported, AOP = Advanced oxidation process 
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amount of wastewater released into the 
environment can be reduced [11,12]. Moreover, 
magnetic nanomaterials can be used to treat 
wastewater for drinking purposes. In addition to 
wastewater treatment, magnetic nanoparticles 
can be employed in the treatment of surface 
water, such as lake and river water, for drinking 
purposes [11,12]. 
 

6.3 Recovery of Nutrients and Metals 
 
The circular water economy aims to minimize the 
waste of water resources and promote the 
recovery of valuable materials from wastewater, 
such as nutrients, energy, and metals. Magnetic 
nanomaterials play a significant role in the 
recovery of nutrients, and meals from 
wastewater, providing a sustainable and cost-
effective solution for resource recovery. For 
example, magnetic nanoparticles have been 
used to recover phosphorus [69–76] and nitrogen 
[77–85] from wastewater, which can then be 
used as fertilizers in agriculture. Magnetic 
nanoparticles can also be used to recover metals 
(such as copper, nickel, and zinc) [86–89] and 
precious metals (such as Ag, Au, Pd, Pt, and Rh) 
[87,90,91] from industrial wastewater, reducing 
the environmental impact of metal mining, and 
reduce the need for expensive disposal methods. 
The recovered nutrients and metals can then be 
reused in industrial processes, thereby creating a 
closed-loop system that reduces waste and 
conserves resources.  
 

6.4 Recovery of Energy 
 
Energy recovery is a critical aspect of the circular 
water economy as it can help offset the energy 
required for water treatment processes. Magnetic 
nanomaterials can also be used to recover 
energy from wastewater by generating electricity 
[91]. Microbial fuel cells (MFCs) use bacteria to 
break down organic matter in wastewater and 
generate electricity [92]. Magnetic nanoparticles 
can be used to immobilize bacteria on an 
electrode, thereby enhancing the efficiency of the 
MFC and increasing the power output [93–107]. 
Additionally, magnetic nanoparticles can be used 
to improve the production and recovery of 
methane from the anaerobic digestion of organic 
matter in wastewater treatment plants, which can 
then be used as a renewable energy source [35]. 
Anaerobic digestion produces biogas that needs 
to be purified before it can be used as fuel [35]. 
Biogas upgrading is an expensive and energy-
intensive process, but research has shown that 
magnetic nanoparticles can reduce costs and 

increase efficiency [96,108–122]. Iron oxide 
nanoparticles coated with various functional 
groups can be added to anaerobic digesters to 
benefit methane production through 
hydrogenotrophic methanogenesis by fixing 
endogenous CO2 or homoacetogenesis, 
increasing methane content, and reducing the 
need for costly upgrading processes [35]. This 
technology can improve the efficiency of 
anaerobic digestion and reduce greenhouse gas 
emissions, making biogas a viable and cost-
effective renewable energy source [35]. 
 

7. CHALLENGES, OPPORTUNITIES AND 
RECOMMENDATIONS FOR FUTURE 
RESEARCH DIRECTIONS 

 
The circular economy of water and wastewater 
management is critical for meeting the growing 
global water demand and mitigating the water 
scarcity crisis. However, conventional 
wastewater treatment methods are energy 
intensive and generate significant amounts of 
waste. The emerging field of magnetic 
nanomaterials holds great promise for advancing 
the circular economy of water and wastewater by 
offering opportunities for resource recovery and 
reducing the environmental impacts of 
wastewater treatment. In this context, the 
challenges and opportunities for advancing the 
circular economy of water and wastewater using 
magnetic nanomaterials are discussed below, 
along with recommendations for future research. 
 

7.1 Challenges 
 
❖ Technical challenges: One of the major 

technical challenges in advancing the 
circular economy of water and wastewater 
using magnetic nanomaterials is the 
optimization of their properties to 
effectively remove contaminants and 
recover resources. This includes 
optimizing their size, surface chemistry, 
and magnetic properties. 

❖ Regulatory challenges: The use of 
nanomaterials in wastewater treatment is a 
relatively new area of research, and 
regulatory bodies may require more data 
on their safety and environmental impact 
before approving their use at an industrial 
scale. 

❖ Economic challenges: While the use of 
magnetic nanomaterials has the potential 
to reduce the overall cost of wastewater 
treatment, the cost of producing and 
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scaling up the technology may be a barrier 
to its widespread adoption. 

 

7.2 Opportunities 
 
❖ Development of new technologies: 

Advancements in the use of magnetic 
nanomaterials in wastewater treatment can 
lead to the development of new 
technologies that are more efficient, cost-
effective, and environmentally sustainable. 

❖ Optimization of existing processes: Further 
research can focus on optimizing the 
performance of magnetic nanomaterials in 
existing treatment processes to improve 
their efficiency and reduce their 
environmental impact. 

❖ Identification of new applications: There 
may be new applications for magnetic 
nanomaterials in water management, such 
as water quality monitoring and 
remediation.  

 

7.3 Recommendations for Future 
Research Directions 

 
❖ Safety and environmental impact 

assessment: Future research should focus 
on evaluating magnetic nanomaterials' 
safety and environmental impact, including 
their toxicity and potential for 
bioaccumulation in the environment. 

❖ Optimization of magnetic nanomaterials: 
Research can focus on optimizing the 
properties of magnetic nanomaterials to 
improve their performance in wastewater 
treatment, including their size, surface 
chemistry, and magnetic properties. 

❖ Development of cost-effective production 
methods: Future research can focus on 
developing cost-effective methods of 
producing magnetic nanomaterials, 
including the use of sustainable and 
environmentally friendly materials. 

❖ Scaling up and implementation: Research 
should focus on scaling up the production 
and application of magnetic nanomaterials 
in wastewater treatment to make the 
technology more accessible to the water 
industry. This includes identifying potential 
barriers to scalability and developing 
strategies to overcome them. 

❖ Integration with other technologies: 
Magnetic nanomaterials can be integrated 
with other technologies, such as membrane 
filtration and advanced oxidation processes, 
to improve the overall efficiency of 

wastewater treatment. Future research can 
focus on identifying potential integration 
opportunities and optimizing their 
performance. 

 

8. CONCLUSIONS 
 
The advancement of circular economy principles 
in the water sector presents a promising pathway 
towards sustainable water use and resource 
recovery. The use of magnetic nanomaterials in 
water and wastewater treatment represents an 
innovative approach that can facilitate the 
recovery of valuable resources from wastewater, 
reduce water consumption, and minimize waste. 
However, the implementation of this technology 
has challenges, including scalability, cost, and 
potential environmental impacts. To fully realize 
the potential of magnetic nanomaterials in 
advancing circular economy principles, future 
research should focus on developing cost-
effective magnetic nanomaterials, optimizing the 
magnetic separation process, conducting life 
cycle assessments, and developing magnetic 
nanomaterial-based technologies that can be 
easily integrated into existing wastewater 
treatment plants. We can create a more 
sustainable and resilient water future for all by 
addressing these challenges and capitalizing on 
the opportunities. 
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