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ABSTRACT 
 
Aim: Register new species gradually becomes more difficult as sampling of a community 
progresses, addressing increasingly rarer species. Thus, although biodiversity assessments would 
ideally require complete samplings, only partial samplings are ordinarily achieved when species 
abundances distributions are highly heterogeneous within communities, which is often the case. 
Then, in the frequent context of partial samplings, answering knowingly whether to continue or stop 
an ongoing inventory require to tentatively assess the “profitability” of the extra sampling effort. That 
is, trying to estimate the number of species expected to be newly recorded thanks to a given further 
increase of the sampling size.  
Methods: Such estimate may be conveniently derived on the basis of the recorded numbers f1, f2, 
f3, fx, of species already recorded once, twice, three, … x-times within the ongoing sampling. The 
derivation involves a Taylor expansion of the species accumulation curve, with the successive 
derivatives of the species accumulation curve being respectively expressed in terms of the 
successive recorded values of fx. 
Results: A simple nonparametric estimator of the expected number of newly recorded species is 
derived as a function of the foreseen additive sampling effort. Depending only upon the directly 
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recorded values of the fx within the ongoing sampling, this estimator is easy-to-implement and, in 
particular, does not require recording explicitly the species accumulation curve. 
Conclusion: The practical interest of this estimator is to offer a convenient way to  gauge the 
additional sampling effort required for a given increase in sample completeness, thus providing 
quantitative elements to determine whether further continuing an ongoing sampling looks 
appropriate or not, in the context of both limited available time expenditure and possible other 
competing priorities.  
 

 

Keywords: Partial sampling; non-parametric estimator; biodiversity assessment; centered unbiased 
estimate. 

 

1. INTRODUCTION 
 

The assessment of the composition of a 
community of species progressively requires 
more and more sampling effort to gain a same 
given increment in newly recorded species. This 
is because progressively rarer species are 
expected to be collected in the course of 
sampling [1,2]. In practice, when the time 
expenditure allowed for investigation is more or 
less limited, the consistently growing cost of 
detection of new species thus poses the question 
of whether to continue or stop sampling, i.e. 
when reasonably stop, considering also other 
competing priorities and limited available time 
expenditure. In other terms, the question of “cost-
effectiveness” may be included among the 
criteria involved in making the decision whether 
or not further continuing sampling [3,4]. In this 
respect, procedures are welcomed, that may 
provide estimates of the number of newly 
recorded species expected from a given increase 
of sampling effort (one common way of 
appreciation of the sampling effort being typically 
the sample size, i.e. the number of individuals 
recorded in the sample [5,6]). One classical type 
of such procedures involves the appropriate 
fitting of an empirical function to the recorded 
species accumulation curve (S.A.C.) and its 
further extrapolation beyond the current size of 
the sample [5,7-12]. Yet, this approach requires 
explicitly the prior recording of the species-
accumulation curve (completely or at least 
partially), which indeed is not usual practice in 
the field. Hereafter, I propose an alternative 
approach which, precisely, does not impose the 
prior recording of the S.A.C. but only requires to 
consider the directly available numbers fx of 
species recorded x-times in the sample under 
consideration (singletons f1, doubletons f2, etc…). 
I thus derive a simple formulation for the 
increment in number of recorded species, δsp, 
that might be expected from a given relative 
increase δN/N of the size N of an ongoing 
sampling, solely on the basis of the recorded 
values of the numbers fx.  

2. DERIVING A NON-PARAMETRIC 
POINT-ESTIMATOR OF THE NUMBER 
OF NEWLY RECORDED SPECIES 
VERSUS SUPPLEMENTARY 
SAMPLING EFFORT 

 

Consider the progressive sampling of a 
community of species, providing a steadily 
growing number R(N) of recorded species with 
increasing sampling effort, i.e. with increasing 
sample size N. Let f1(N), f2(N), f3(N),…, fx(N), be the 
numbers of species recorded respectively one, 
two, three, …, x-times, within this sample of 
given size N. A bi-univocal relationship may be 
derived algebraically between each of the 
successive derivatives ∂x

R(N)/∂Nx
 of the 

theoretical species-accumulation curve R(N) and 
the expected value of each fx(N) (the details of the 
derivation of this relationship are provided in the 
Appendix): 
 

fx(N) = (-1)(x-1) CN,x [∂
xR(N)/∂Nx]                      (1)  

 

with [∂xR(N)/∂Nx] as the xth derivative of  R(N) with 
respect to N, at point N and CN, x = N!/(N-x)!/x! 
 

Accordingly, the Taylor expansion of the 
equation governing the theoretical accumulation 
curve R(N) yields: 
 

R(N+δN) – R(N)  =  δsp =  Σx [∂
xR(N)/∂Nx] (δN)x /x! 

 

with δsp designing the increment in number of 
recorded species and Σx designing the operation 
summation upon x, from x = 1. According to 
equation (1): 
 

δsp = Σx (-1)(x-1) fx(N) (δN)x /x! /CN,x                (2) 
 

In practice, the expansion may generally be 
limited to the few first terms (see below for 
practical advice regarding the truncation of the 
Taylor expansion), so that x remains well below 
N in practice and thus, (x!CN,x) ≈ N

x
. An estimator 

of the expected gain in number of recorded 
species resulting from a given supplementary 
sampling effort (δN/N) may thus be written as: 
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δsp ≈ Σx (-1)(x-1) fx(N) (δN/N)x                         (3) 
 

The formally similar expression for incidence 
data is: 
 

δsp ≈ Σx (-1)
(x-1)

 Qx(N) (δN/N)
x
                 (3 bis) 

 
where Q1, Q2,…, Qx,… are the numbers of 
uniques, duplicates, x

th
, that is, respectively, the 

numbers of species recorded in 1, 2, …, x, 
quadrats or investigated sites within the whole 
set of sampled quadrats or sites under 
consideration.  
 
Thus defined, δsp is a non-parametric estimator 
from two points of view: (i) primarily, the 
derivation of equations (1, 2, 3) implies no 
restriction relative to the particular shape of the 
theoretical accumulation curve R(N) and (ii) as 
this derivation is essentially algebraic, the values 
taken by δsp are expected to be centered 
estimates and, in this respect, the estimator is 
structurally unbiased.  

 
The expression of δsp highlights the two causes 
which combine to make the gain of newly 
recorded species increasingly difficult as 
sampling progresses, namely: 
 
i. The dependence of δsp on the relative 

(rather than absolute) increase of sampling 
effort (δN/N); 

ii. The trend for f1, f2, … to finally steadily 
decrease when reaching high values of N.  

 
3.  PRACTICAL USE OF THE PROPOSED 

ESTIMATOR OF THE NUMBER OF 
NEWLY RECORDED SPECIES 

 
Figs. 1 to 4 provide examples of estimates of the 
number δsp of supplementary recorded species 
expected from varied relative increases of the 
sampling size δN/N (%) as a function of the 
number of terms retained in the development of 
δsp before truncation of the Taylor expansion. As 
expected, reliable estimates are obtained for a 
limited range of increasing sampling efforts: 
Usually δN/N not in excess of 50%, exceptionally 
75%. 
 
Four land snails communities from the 
calcareous Burgundy Cost are considered: 
 
"Combe Lavaux":   f1 = 11, f2 = 1, f3 = 1, f4 = 0,   
f5 = 0, f6 = 0, f7 = 0, f8 = 0. 
 

"Nolay”:  f1 = 8, f2 = 3, f3 = 2, f4 = 4, f5 = 1, f6 = 1, 
f7 = 1, f8 = 0. 
 
“Cersot”:  f1 = 10, f2 = 1, f3 = 2, f4 = 0, f5 = 3,        
f6 = 1, f7 = 0, f8 = 3. 
 
“Val des Choues":  f1 = 4, f2 = 0, f3 = 2, f4 = 5,     
f5 = 2, f6 = 5, f7 = 0, f8 = 1. 
 
Strictly speaking, equations (3) and (3bis) are 
based on theoretically infinite Taylor expansions. 
Yet, in practice, the Taylor expansion may be 
truncated, that is limited to the beginning of the 
expansion. Making such a truncation without 
compromising the reliability of the Taylor 
expansion is allowed due to the decrease of 
(δN/N)

x
  with growing values of x, when δN/N < 1 

; this decrease being all the more rapid that δN/N 
is lesser than 1. The appropriate position of the 
truncation thus depends, in particular, upon the 
foreseen level of supplementary sampling effort 
(δN/N): all other things being equal, the greater 
the projected increase of the sampling effort, the 
greater will be the number of terms to be retained 
before allowing truncation of the Taylor 
expansion. More specifically, the number of 
terms to be retained before truncation, so as to 
insure reliable expectations for δsp, is objectively 
determined when the stabilisation of δsp with 
growing numbers of terms in the expansion is 
actually obtained. This is clearly highlighted in 
the examples given in Figs.1 to 4: the four 
diagrams show how the estimation of the 
expected number of newly recorded species, δsp, 
is progressively stabilizing with an increasing 
number of terms considered in the Taylor 
expansion before truncation. Thus, for additive 
sampling efforts, δN/N, up to ≈ 50%, the 
convergence and stability of δsp is generally 
satisfactorily obtained when 3 or 4 terms are 
retained before truncation of the Taylor 
development. 
 

For substantially greater additive sampling efforts 
(δN/N > 50%), the diagrams show that a rapidly 
growing number of terms may be needed before 
allowing truncation. Thus, δN/N = 75% may 
require retaining at least 6 terms (example “Val 
des Choues”). For still greater additive effort, 
δN/N up to 100%, retaining 8 terms at least 
before truncation is just sufficient in the case of 
“Nolay” and larger numbers of terms would 
obviously be needed for “Cersot” and “Val des 
Choues”. Accordingly, in general practice, the 
procedure proposed above should appropriately 
address foreseen additional sampling efforts not 
in excess of 100%. 
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Fig. 1. Estimates of the number δsp of 
supplementary recorded species expected 

from varied relative increases of the sampling 
size δN/N (%), as a function of the number of 

terms retained in the development of δsp 
before truncation of the Taylor expansion. 

Land snails community from "Combe Lavaux" 
National Park (Burgundy) 

 

Fig. 2. Estimates of the number δsp of 
supplementary recorded species expected 

from varied relative increases of the sampling 
size δN/N (%), as a function of the number of 

terms retained in the development of δsp 
before truncation of the Taylor expansion. 

Land snails community from Nolay 
(Burgundy) 

 

  
 

Fig. 3. Estimates of the number δsp of 
supplementary recorded species expected 

from varied relative increases of the sampling 
size δN/N (%), as a function of the number of 

terms retained in the development of δsp 
before truncation of the Taylor expansion. 

Land snails community from Cersot 
(Burgundy) 

 

Fig. 4. Estimates of the number δsp of 
supplementary recorded species expected 

from varied relative increases of the sampling 
size δN/N (%), as a function of the number of 

terms retained in the development of δsp 
before truncation of the Taylor expansion. 

Land snails community from “Val des 
Choues” (Burgundy) 
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4. AN ADDITIONAL SUGGESTION: 
CONVERTING THE ESTIMATED GAIN 
IN NUMBER OF NEWLY RECORDED 
SPECIES IN TERM OF RELATIVE 
IMPROVEMENT OF THE DEGREE OF 
COMPLETENESS OF SAMPLING 

 
Beyond the absolute gain, in term of the number 
of newly recorded species δsp that may be 
expected from a given supplementary effort of 
sampling, it may be also interesting to evaluate 
the corresponding relative gain in term of the 
increment of sampling exhaustivity, δsp/S (S 
being the expected total richness). Using the 
improved Chao estimator ‘iChao’ [13] for the 
expected number of missing species, the ratio 
δsp/S can be expressed in term of the foreseen 
supplementary sampling effort (δN/N) by 
considering the recorded values of the four first 
fx(N): 
 

δsp/S = [f1.( δN/N) – f2.( δN/N)
2
 + f3.( δN/N)

3
  

– f4.( δN/N)4] / [ R + iChao(f1, f2, f3, f4) ]      (4) 
 
with R as the number of species already 
recorded during the ongoing sampling. 

 
5. CONCLUSION  
 
A nonparametric estimator of the gain in number 
of recorded species expected from a given 
supplementary sampling effort is newly derived. 
As such, this estimator may help making a 
decision on a rational basis, when the question is 
raised whether it is appropriate or not to continue 
an ongoing sampling, taking into account the 
expected additional cost of enlarged sampling. 
Basically, estimates of the extra sampling effort 
needed for a given gain of sampling 
completeness would require knowing exactly the 
shape of the species accumulation curve, 
especially its prolongation beyond the actual 
sample size. But, most often, the species 
accumulation curve is not actually recorded and, 
a fortiori, its prolongation is out of direct empirical 
reach. Yet, the possibility to extrapolate the 
species accumulation curve, on the basis of the 
recorded values of the fx and using Taylor 
expansion procedure, leads to a convenient 
alternative solution. As exemplified by a series of 
examples, the procedure proposed above 
provides a rapid, easy to run tool to forecast the 
expected supplementary sampling effort needed 
for a given increment in sample completeness. 
As such, this is a way to better manage field 

programs in the context of limited available time 
expenditure. 
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APPENDIX 
 

Derivation of the relationship between the successive derivatives of an accumulation curve 
and the number of species recorded x-times in a sample 

 

Consider a community of species containing an unknown total number 'S' of species. 

 

Let R be the number of recorded species in a partial sampling of this community, comprising N 
individuals and let pi be the probability of occurrence (assimilated to the relative abundance) of 
species 'i' within this community. The number Δ of missed species (unrecorded in the sample) is  

 

Δ = S – R. 

 

The estimated number Δ of species that escape recording during sampling of the community is a 
decreasing function Δ(N) of the sample size N, which depends on the particular distribution of species 
abundances which govern the series of probabilities pi : 

 

Δ(N)  = Σi (1-pi)
N                                                                                                                                                                                           (A1) 

 

with Σi  as the operation summation extended to the totality of the 'S' species 'i' (either recorded or not) 

The number fx of species recorded x times in the sample, is then, according to the binomial 
distribution: 

 

fx =  [N!/X!/(N-x)!] Σi [(1-pi)
N-x

 pi
x 
]   = CN, x  Σi (1-pi)

N-x
 pi

x 
                                                    (A2)

 

 

We shall now derive the relationship between the successive derivatives of R(N), the theoretical 
species accumulation curve and the expected values for the series of ‘fx’.  

According to equation (A2): 
 

►    f1 = N Σi [(1-pi)
N-1

 pi]  = N Σi [(1-pi)
N-1

 (1- (1-pi))]  = N Σi [(1-pi)
N-1

] - N Σi [(1-pi)
N-1

(1-pi))]   
= N Σi [(1-pi)

N-1] - N Σi [(1-pi)
N].      

 

Then, according to equation (A1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1))   

 

= - N (∂ Δ(N)/∂N) = - N Δ'(N)    

 

where Δ'(N) is the first derivative of  Δ(N) with respect to N.    Thus:   

  

f1 = - N Δ'(N)    ( = - CN,1  Δ'(N)  )                                                                                                (A3) 

 

Similarly : 

 

►   f2 = CN, 2  Σi [(1-pi)
N-2

 pi²]     according to equation (A2) 
= CN, 2 Σi [(1-pi)

N-2 (1- (1-pi²))]   = CN, 2  [ Σi [(1-pi)
N-2] - Σi [(1-pi)

N-2(1- pi²)]] 

= CN, 2  [ Σi [(1-pi)
N-2] - Σi [(1-pi)

N-2(1- pi)(1+ pi)]]  = CN, 2  [ Σi [(1-pi)
N-2] - Σi [(1-pi)

N-1(1+ pi)]] 

= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]     according to equations (A1) and  (A2) 

= CN, 2 [ - Δ'(N-1) - f1/N ]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A3)). 

= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 

 

where Δ''(N) is the second derivative of  Δ(N) with respect to N.    Thus : 

 

f2 = [N(N-1)/2]  Δ''(N)     =  CN, 2  Δ''(N)                                                                                           (A4) 
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► f3 = CN, 3 [Σi (1-pi)
N-3 pi

3]   which, by the same process, yields: 

= CN, 3 [ Σi (1-pi)
N-3 - Σi (1-pi)

N-2  - Σi [(1-pi)
N-2 pi] - Σi [(1-pi)

N-2 pi
2 )]]   

= CN, 3   [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))]     according to equations (A1) and  (A2) 

 

where f1* is the number of singletons that would be recorded in a sample of size (N - 1) instead of N.   

According to equations (A3) & (A4):   

 

f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1  Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2  Δ''(N)                   (A5) 

 

where Δ'
 
(N-1)  is the k

th 
derivate of  Δ(N) with respect to N, at point (N-1).   Then,   

 

f3 = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   

=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂
3
 Δ(N)/∂N3

] = CN, 3 Δ'''(N) 
 

where Δ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus : 

 

f3 = - CN, 3 Δ'''(N)                                                                                                                          (A6) 

 

Now, generalising for the number fx of species recorded x times in the sample: 

 

► fx = CN, x  Σi [(1-pi)
N-x

 pi
x
]    according to equation (A2), 

= CN, x Σi [(1-pi)
N-x

 (1 - (1 - pi
x
)) ]  = CN, x  [ Σi (1-pi)

N-x
 - Σi [(1-pi)

N-x
 (1 - pi

x
)]]   

= CN, x [ Σi (1-pi)
N-x

 - Σi [(1-pi)
N-x

 (1 - pi)( Σj pi
j 
)]]    

 

with Σj  as the summation from j = 0 to  j = x-1. It comes: 

 
fx = CN, x  [ Σi (1-pi)

N-x - Σi [(1-pi)
N-x+1 ( Σj pi

j)]]   

= CN, x [ Σi (1-pi)
N-x - Σi (1-pi)

 N-x+1 - Σk [( Σi (1-pi)
 N-x+1 pi

k )]] 

 

 with Σk  as the summation from k = 1 to k = x-1 ; that is: 

 

fx  = CN, x  [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/ C(N-x+1+k), k )]  according to equations (A1) and  (A2)) 

 

where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! and fk* is the number of species  recorded k times during a 
sampling of size (N-x+1+k)  (instead of size N).   

 

The same demonstration, which yields previously the expression of f1* above (equation (A5)), applies 
for the fk* (with k up to x-1) and gives:    

 

fk* = (-1)k (C(N-x+1+k), k ) Δ
(k)

(N-x+1+k)                                                                                               (A7) 

 

where Δ (k)
(N-x+1+k)  is the kth derivate of  Δ(N) with respect to N, at point (N-x+1+k).   Then,   

 

fx = [N!/x!/(N-x)!] [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)k Δ(k)
(N-x+1+k) )]     

        , 

which finally yields : 

 

fx = [N!/x!/(N-x)!] [(-1)
x
 ∂ Δ

(x-1)
(N)/∂N ] = [N!/x!/(N-x)!] [(-1)

x
 ∂

x
 Δ(N)/∂Nx

].    That is :  

 

fx = (-1)
x
 CN, x Δ

(x)
(N)  = (-1)

x
 CN, x [∂

x
Δ (N)/∂Nx

]                                                                             (A8)  

 

where [∂
x
 Δ (N)/∂Nx

] is the x
th

 derivative of  Δ(N) with respect to N, at point N.    
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Now, the number of recorded species R(N) is equal to the total species richness S minus the expected 
number of missed species Δ(N). Then it comes:  

 

fx = (-1)
(x-1)

 CN, x [∂
x
R(N)/∂Nx

]                                                                                                       (A9)  

 

with [∂
x
R(N)/∂Nx

] as the x
th
 derivative of  R(N) with respect to N, at point N and CN, x = N!/(N-x)!/x! 

 

A relationship is thus derived between the series of  expected values of fx (the numbers of species 
recorded x-times) and the series of successive derivatives [∂

x
R(N)/∂Nx

] of the species accumulation 
curve R(N):  f1 = CN, 1 [∂R(N)/∂N]  ;   f2 = – CN, 2 [∂

2R(N)/∂N2] ;    f3 =   CN, 3 [∂
3R(N)/∂N3] ; etc… 
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