
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Solving Newton’s equations of motion with large
timesteps using recurrent neural networks based
operators
To cite this article: J C S Kadupitiya et al 2022 Mach. Learn.: Sci. Technol. 3 025002

View the article online for updates and enhancements.

You may also like
Effects of large-scale changes in
environmental factors on the genesis of
Arctic extreme cyclones
Yujun Liu and Yijun He

-

Reliability verification of stress data from
extracted specimens using LCR wave
stress data from full-section rail specimens
Young-In Hwang, Hyosung Lee, Yong-Il
Kim et al.

-

The impact of new d(p,)3 rates on Big
Bang Nucleosynthesis
Tsung-Han Yeh, Keith A. Olive and Brian
D. Fields

-

This content was downloaded from IP address 106.213.28.225 on 06/07/2023 at 08:19

https://doi.org/10.1088/2632-2153/ac5f60
https://iopscience.iop.org/article/10.1088/1748-9326/acc2d5
https://iopscience.iop.org/article/10.1088/1748-9326/acc2d5
https://iopscience.iop.org/article/10.1088/1748-9326/acc2d5
https://iopscience.iop.org/article/10.1088/1361-6501/ac5b9e
https://iopscience.iop.org/article/10.1088/1361-6501/ac5b9e
https://iopscience.iop.org/article/10.1088/1361-6501/ac5b9e
https://iopscience.iop.org/article/10.1088/1361-6501/ac5b9e
https://iopscience.iop.org/article/10.1088/1361-6501/ac5b9e
https://iopscience.iop.org/article/10.1088/1475-7516/2021/03/046
https://iopscience.iop.org/article/10.1088/1475-7516/2021/03/046

Mach. Learn.: Sci. Technol. 3 (2022) 025002 https://doi.org/10.1088/2632-2153/ac5f60

OPEN ACCESS

RECEIVED

13 December 2021

REVISED

10 March 2022

ACCEPTED FOR PUBLICATION

21 March 2022

PUBLISHED

5 April 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Solving Newton’s equations of motion with large timesteps
using recurrent neural networks based operators
J C S Kadupitiya, Geoffrey C Fox and Vikram Jadhao∗

Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: vjadhao@iu.edu

Keywords:molecular dynamics, deep learning, recurrent neural networks, Newton’s equations, time evolution operators,
machine learning

Abstract
Classical molecular dynamics simulations are based on solving Newton’s equations of motion.
Using a small timestep, numerical integrators such as Verlet generate trajectories of particles as
solutions to Newton’s equations. We introduce operators derived using recurrent neural networks
that accurately solve Newton’s equations utilizing sequences of past trajectory data, and produce
energy-conserving dynamics of particles using timesteps up to 4000 times larger compared to the
Verlet timestep. We demonstrate significant speedup in many example problems including 3D
systems of up to 16 particles.

1. Introduction

Newton’s equations of motion [1] are the basis of powerful computational methods such as classical
molecular dynamics (MD) that are used to understand the microscopic origins of a wide range of material
and biological phenomena [2, 3]. In the MD method, Newton’s equations are integrated for a system of
many particles using numerical integrators such as Verlet [4] to produce particle trajectories. The time
evolution is performed one small timestep at a time for long times to accurately sample enough
representative configurations in order to extract useful information. Consider the 2nd order ordinary Verlet
integrator x⃗(t+∆) = 2⃗x(t)− x⃗(t−∆)+∆2 f⃗(t)/m that updates the current position x⃗(t) of a particle of
massm at time t to position x⃗(t+∆) after timestep∆ using the previous position x⃗(t−∆) and the force f⃗(t)
at time t. This integrator produces an error of O(∆4) in each local update and incurs a global error of O(∆2)
[3, 5]. These errors are reduced by choosing a small∆ which often makes the simulations computationally
expensive.

The ordinary Verlet integrator requires a sequence of two positions (⃗xt−∆, x⃗t) to update the particle
position using other quantities (e.g. f⃗ andm). These quantities can be inferred using the information
encoded in a long sequence of positions such that the time evolution can be done with only the history of
positions as input. We illustrate this with a 1-dimensional example of a particle experiencing simple
harmonic motion governed by the force f=−kx. One can show that the particle position can be evolved to
t+∆ using a sequence of three positions via the function V = x−1

t−∆

(
x2t − x2t−∆ + xtxt−2∆

)
, which also

incurs a global error of O(∆2). This idea generalizes for higher-order integrators [6] and many-particle
systems such that the time evolution can be performed via V (⃗xt, x⃗t−∆, . . . , x⃗t−s∆) that takes a sequence of s
positions. The longer history of input positions enables integrators to perform accurate time evolution with a
larger∆, however, generally at the expense of higher computing costs per timestep.

The use of deep learning in sequence processing and time series prediction problems has been well
studied by the industry for different applications including voice recognition and translation [7], pattern
recognition in stock market data [8], and ride-hailing [9]. Recurrent neural networks (RNNs) are established
deep learning tools in these applications. In this work, we develop RNN based operators to perform accurate
time evolution of one-particle and few-particle systems utilizing sequences of past trajectories of particles.
The RNN-based operators are trained using the ground truth results obtained with the Verlet integrator.

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac5f60
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac5f60&domain=pdf&date_stamp=2022-4-5
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8034-2654
mailto:vjadhao@iu.edu

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

They possess a complex mathematical structure described with up to 100 000 parameters. We demonstrate
that the network complexity enables the operators to perform time evolution of systems of up to 16 particles
for a wide range of force fields using timesteps that are up to 4000× larger than the baseline Verlet timestep.
The relatively small time for inferring the positions as predictions of the deep learning model keeps overhead
costs low and we demonstrate significant net speedups for larger timesteps.

Recent years have seen a surge in the use of machine learning to enhance the performance and usability
of MD simulations, for example, see reviews [10–12]. Machine learning has been used to accelerate the
sampling of rugged free-energy landscapes [13], generate new configuration updates in reduced-dimensional
space [14], learn MD force fields [15], auto-tune simulation timestep [16], classify particle assembly
landscapes [17], characterize material structures [18, 19], and derive ‘surrogates’ for MD simulations
[20–24]. Of particular relevance to our work are the deep learning approaches that learn differential
equations and replicate the outputs of numerical integrators used in MD simulations [25, 26, 26–35]. Most
of these approaches have focused on learning ordinary differential equations describing the dynamics of
simple 1D systems and replicating the outputs of associated numerical integrators using baseline timestep
values [25–30, 35]. Some studies have probed the use of deep learning methods to learn partial differential
equations [25, 26, 32, 33] and, more recently, solve them using discretization steps larger than the baseline
timestep [34, 35]. For example, Shen et al [34] used an artificial neural network based model as a corrector to
reduce the local truncation error associated with the Euler integrator, and demonstrated time evolution of
simple two-body problems with timesteps up to 200× the baseline Euler timestep. A 100-fold increase in the
timestep led to over three orders of magnitude increase in the error. In this work, we develop a deep learning
approach that utilizes RNNs to replicate the output of Verlet integrators for a variety of force fields and
perform accurate time evolution of systems of up to 16 particles in 3D using timesteps that are up to 4000×
larger than the baseline Verlet timestep. We obtain state-of-the-art results in terms of the timesteps, the
number of particles, and the complexity of the potential characterizing the interactions between particles.

We note that RNNs have been recently used to determine the evolution of configurations described by a
few collective variables characterizing the system dynamics [36]. Other related work has focused on the goal
of producing energy-conserving Hamiltonians by training neural networks in an unsupervised manner to
observe the positions and momenta of many-particle systems in 1D [30, 37–40]. On the other hand, we note
the active work in the development of approaches that do not rely on deep learning, such as the multiple
timestep methods, for simulating the dynamics of complex systems with large timesteps [41–44].

2. Recurrent neural network based operators for predicting dynamics of particles

Figure 1 shows the overview of our deep learning approach to learn the time evolution operator that evolves
the dynamics of an N-particle system. We begin by selecting the potential energy function governing the
dynamics of the particles. In addition to the potential energy, the N-particle system is specified by particle
masses and the initial positions and velocities of the particles. The attributes of the N-particle system
together with the Verlet timestep∆ form the input. The input system attributes are fed to the Verlet
integrator to simulate the dynamics with timestep∆ up to SV computational steps. Out of the full trajectory
data (e.g. positions and velocities) up to SV steps, SR number of configurations (frames) separated by∆R are
distilled. Note that this requirement to kickstart the time evolution using the Verlet integrator enforces
SV =∆R(SR − 1)/∆. Using this initial sequence of particle configurations of length SR, a trained RNN based
operator R predicts the time evolution of the system after timestep∆R. Then, the input sequence to R is
left-shifted to discard the oldest time frame, and the latest frame predicted by R is appended to the right-end
of the sequence. The adjusted input sequence is fed back to R to evolve the system∆R further in time and
the same process is repeated until the end of the simulation. The time evolution results in the output
comprising the trajectories of the particles.

As shown in figure 1, R is trained using the ground-truth particle trajectories generated via the velocity
Verlet integrator with small timestep∆= 0.001 for the system specified by the selected potential energy
function. The velocity Verlet integrator updates the configuration of particles via two steps, which we
describe for the case of a single particle; extension to many particles is straightforward. First, the position x⃗(t)
of a particle of massm at time t is evolved a timestep∆ forward in time:

x⃗(t+∆) = x⃗(t)+∆v⃗(t)+ 0.5∆2 f⃗(t)/m, (1)

where v⃗(t) and f⃗(t) are the current velocity and force at time t respectively. Next, the velocity v⃗(t) at time t is
updated to v⃗(t+∆):

v⃗(t+∆) = v⃗(t)+ 0.5(∆/m)
(⃗
f(t)+ f⃗(t+∆)

)
, (2)

2

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 1. Overview of the deep learning approach involving recurrent neural networks (RNN) based operators to solve Newton’s
equations of motion and predict dynamics of N particles.

where f⃗(t+∆) is the force computed at time t+∆ using the updated position of the particle evaluated in
equation (1). The time evolution moves forward following equations (1) and (2) with x⃗(t+∆) and v⃗(t+∆)
as current position and velocity respectively.

We emphasize that our approach trains separate RNNs for furnishing the time evolution of systems
described by different functional forms of potential energy. For example, if a 1D simple harmonic potential
(1/2)kx2 is selected as the potential energy function, R learns to predict the dynamics of one particle in a
harmonic potential for unseen values of k, however, it does not learn to predict the time evolution of a
particle in a qualitatively different potential energy such as a double well potential. The RNN based operators
are at the heart of our approach. In order to understand how these operators are designed and trained, we
first briefly describe the key characteristics of RNNs.

2.1. Recurrent neural networks
Recurrent neural networks (RNNs) process input sequence data and maintain a vector h⃗t known as the
‘hidden state’ for each recurrent cell to model the temporal behavior of sequences through directed cyclic
connections between cells. h⃗t is updated by applying a function F to the previous hidden state (⃗ht−1) and the
current input (⃗xt). The cells are arranged in a fashion where they fire when the right sequence is fed. A
common choice for F is the Long Short Term Memory (LSTM) units [45]. There are several architectures of
LSTM units. An often employed architecture consists of a cell (the memory part of the LSTM unit) and three
‘regulators’, usually called gates, that regulate the flow of information inside the LSTM unit. An input gate (it)
controls how much new information is added from the present input (xt) and past hidden state (ht−1) to the
present cell state (ct). A forget gate (f t) decides what is removed or retained and carried forward to ct from
the previous cell state (ct−1). An output gate (ot) decides what to output as the current hidden state (ht) from
the current cell state. The LSTM formulation can be expressed as:

ft = σg(Wf xt +Uf ht−1 + bf)

it = σg(Wixt +Uiht−1 + bi)

ot = σg(Woxt +Uoht−1 + bo)

c̃t = σh(Wcxt +Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦σh(ct). (3)

Here, xt ∈ Rd is the input vector to the LSTM unit, ft ∈ Rh is the forget gate’s activation vector, it ∈ Rh is the
input gate’s activation vector, ot ∈ Rh is the output gate’s activation vector, ht ∈ Rh is the hidden state vector
also known as the output vector of the LSTM unit, c̃t ∈ Rh is the cell input activation vector, ct ∈ Rh is the cell
state vector, and ◦ is the Hadamard product operator.W ∈ Rh×d and U ∈ Rh×h are the weight matrices and
b ∈ Rh are the bias vector parameters which need to be learned during training. σg and σh represent sigmoid
function and hyperbolic tangent functions respectively. d and h refer to the number of input features and the
number of hidden units respectively.

We now describe how RNNs with LSTMs can be used to design operators that process sequences of
particle configurations to evolve the associated system forward in time.

2.2. RNN-based time evolution operators
We design operators R using RNNs with LSTM units that process a sequence of past positions and velocities
as input and generate the future positions and velocities of the particles. Each component of the particle
position and velocity vectors is identified as a feature. The feature size associated with the inputs and outputs
for N particles inD physical dimensions is d= N×D× 2. For example, for N = 16 particles interacting in

3

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 2. RNN operator performing the time evolution of an N-particle system characterized by features of size d. The operator
evolves the system one∆R timestep forward in time using a sequence of length SR of past trajectory states. The update is shown
for an input system of N= 16 particles in 3D for which the feature size is d= 96. Parameters associated with long short term
memory (LSTM) units are also shown. These parameters are defined in the main text.

3D, d= 96. For a system specified by the selected potential energy function, operator R predicts the future
position and velocity vectors of the particles at time t+∆R by employing a sequence of length SR of positions
and velocities {x,v}= x⃗t, v⃗t, x⃗t−∆R , v⃗t−∆R , . . . , x⃗t−SR∆R , v⃗t−SR∆R up to time t. R is expressed as
R[{x,v}] = D [L2[L1[{x,v}]]], where D , L1 , L2 are the operators associated with the dense layer, the first
LSTM layer, and the second LSTM layer of the RNN respectively.

The layers are sequentially connected to each other (figure 2) such that the output of one (e.g. L1)
becomes the input for another (L2). Each LSTM layer consists of n number of LSTM units and contains a set
of parameters in the form of weights, biases, and activation functions. For example, L1 has n1 LSTM units
and is characterized with weightsW and U, and bias b. It takes input feature vector {x,v} and outputs
hidden state vectors {h} which are fed as input to the L2 layer characterized with its own set of weights and
biases. A similar connection is made between L2 and the dense layer D . Post training, these layers acquire
optimal values for all the parameters, and the operator R emerges as:

(⃗xt+∆R , v⃗t+∆R) = D [L2 [L1 [{x,v},{P1}] ,{P2}] ,{PD}] , (4)

where {P1}, {P2}, {PD} are optimized parameters associated with LSTM layer 1, LSTM layer 2, and the dense
layer respectively. R has a complex mathematical structure characterized with up to 100 000 parameters.

A similar process can be used to design operators that take a sequence of past positions as input and
generate the future positions of the particles.

4

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

2.3. Operator training and implementation details
We now discuss the details of the training and implementation of RNN-based operators. These operators are
created in TensorFlow with LSTM layer 1, LSTM layer 2, and final dense layer of sizes (number of hidden
units) n1, n2, and nD respectively. While training an operator R for a specific potential energy function, a
B× SR × d dimensional vector comprising a sequence of positions and velocities {x,v} is fed to an operator
R as input. Here, B is a training parameter denoting the batch size, d is the feature size, and SR is the
aforementioned sequence length. During the testing phase, B= 1. All the parameters {P} including the
weights and biases describing the layers are optimized with an error backpropagation algorithm,
implemented via stochastic gradient descent. Adam optimizer is used to optimize the error backpropagation.
Outputs of the LSTM layers are wrapped with the tanh activation function. No activation function is used in
the final dense layer. The mean square error (MSE) between target and predicted trajectories is used for error
calculation.

The parameters {P} of the operator R are saved and loaded using Keras library [46]. Values of n1, n2, and
nD are chosen depending on the problem complexity and data dimensions. For example, in the case of 16
particles interacting with Lennard–Jones (LJ) potential in 3D with periodic boundary conditions (feature size
d= 96), by performing a grid search of the parameters {P} using scikit-learn library [47], hyperparameters
such as the number of units for each of the two LSTM layers (n1, n2), number of units in the final dense layer
(nD), batch size (B), and the number of epochs are optimized to 32, 32, 96, 256, and 2500 respectively. The
learning rate of Adam optimizer is set to 0.0005 and the dropout rate is set to 0.15 to prevent overfitting.
Both learning and dropout rates are selected using a trial-and-error process. The weights in the hidden layers
and in the output layer are initialized for better convergence using a Xavier normal distribution [48].

Standard practices are followed to train the RNN-based operators to accurately predict trajectories while
avoiding overfitting. First, the operator R is trained using all the training data. As expected, this model is
generated in the overfitted region and it predicts results with small errors for the training samples but does
not provide the same accuracy for the validation data. Next, we progressively constrain the model by
reducing the number of parameters and introducing dropouts, until we obtain a similar level of low errors
for samples in both training and validation datasets. Any signature of overfitting the RNN model would
result in the trajectory predictions for systems in the training dataset with much lower errors compared to
the errors for predictions associated with systems in the validation dataset.

We experimentally find the minimum number of hyperparameters required to keep the RNN models
well-generalized and avoid overfitting by finding the optimum point in the bias-variance risk curve for the
training and testing error, and introducing dropout regularization between intermediate layers of the RNN
while training. Large errors obtained during the prediction of trajectories in the validation and testing
datasets also alert us to the case of insufficient training samples. In general, we find that the required number
of training samples depends on the complexity of the potential energy landscape. For example, in the case of
1D systems, the number of training samples required to train operator R to predict the trajectory of a
particle in the rugged potential is 1.3 times the training samples needed by the operator R designed to
predict the dynamics of the same particle in a double well potential. Similarly, training the RNN operator to
accurately predict the dynamics of the 3D many-particle systems required 10 times more training samples
compared to the operators trained to predict dynamics for 1D systems.

Prototype implementation of RNN-based operators written using Python and C++ is publicly available
on GitHub [49].

3. Results and discussion

One particle experiments in 1D are performed for four potential energy functions: simple harmonic, double
well, LJ, and rugged (see appendix, figure 9). Experiments on N−particle systems with N= 3,8,16 particles
in 3D are performed on particles interacting with LJ potentials in a cubic simulation box with periodic
boundary conditions. We adopt units such that the input parameters and predicted quantities are around 1.

In all experiments, RNN-based operators trained with a sequence length of SR = 5 are used to perform
the time evolution. Operators trained with smaller SR = 3 or 4 are only able to accurately propagate the
dynamics for timestep∆R ≲ 10∆, where∆ is the baseline Verlet timestep (see appendix, figure 10).
Trained with SR = 5, operators produce accurate dynamics for timesteps up to 4000∆.

3.1. One particle systems in 1D
Our first set of experiments focus on training and testing the RNN-based R operators to predict the
dynamics of one particle systems in 1D. Results are shown for dynamics predicted by four R operators for
four representative one particle systems, each characterized with a different 1D potential. For each of these

5

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 3. Errors incurred in the predictions of particle positions made by Verlet integrator and four RNN operators for four 1D
systems. Black circles, blue squares, magenta up triangles, and brown down triangles represent errors in position predictions for a
particle in a simple harmonic potential, double well potential, Lennard–Jones potential, and rugged potential respectively (see the
main text for a detailed description of these 1D systems). (A) Errors as a function of time for dynamics extracted using the Verlet
integrator with timestep dt= 10∆. (B)–(E) Errors as a function of time when the time evolution is performed by the RNN
operators using timestep∆R = 100∆, 400∆, 1000∆ and 4000∆ respectively. (F) Errors in position predictions by the RNN
operators at time t= 1000 as a function of timestep for the same four 1D systems (inset shows results on a log scale obtained
using the Verlet integrator).

one particle systems in 1D, the training and validation datasets are generated by recording the dynamics
associated with a few discrete initial configurations, particle masses, and, in some cases, parameters
characterizing the potential energy. We describe the process in detail for the case of a particle in a simple
harmonic potential U= (1/2)kx2. A similar process is followed for all other 1D systems (see appendix for
details).

For the 1D system of a particle in a simple harmonic potential, the dataset consists of ground-truth
trajectories associated with input systems generated by sweeping over five discrete values of initial position of
the particle (x0 =−10,−8,−6,−4,−2), 10 discrete values of particle mass (m= 1,2, . . . ,9,10), and 10
discrete values of spring constant (k= 1,2, . . . ,9,10). The trajectory data for each of these input systems is
obtained using simulations performed with the Verlet integrator with∆= 0.001 up to time t= 200. This
process generates a dataset of 500 simulations, each having 400 000 position and velocity values. The entire
dataset is randomly shuffled and separated into training and validation sets using a ratio of 0.8:0.2. In other
words, 80% of the simulations (400 systems) are selected randomly as part of the training dataset, and the
remaining 20% (100 systems) are separated into the validation dataset. The testing dataset to evaluate the
predictions of the RNN-based operator comprises 100 input systems characterized withm,x0,k values
distinct from those used in the input systems in the training and validation datasets, including many
combinations of these parameters that lie outside the boundary of the input domains described above. For
experimental evaluation of the operator R, systems characterized with input parameters outside the
boundary of the ranges associated with the training and validation datasets are randomly selected from the
testing dataset. These systems provide a more challenging task for the operator compared to the systems
within the training ranges. The same process is followed for the other 3 one particle systems.

Figure 3 shows the errors incurred in the predictions of particle positions made by four R operators for 4
one particle 1D systems: a particle of massm= 14.4 and initial position x0 =−11.3 in a simple harmonic
potential U(x) = 1/2 kx2 with k= 12.8, a particle of massm= 13 and initial position x0 =−12.5 in a double
well potential U(x) = x4/4− x2/2, a particle of massm= 13.2 and initial position x0 = 3.4 in a LJ potential
U(x) = 4

(
1/x12 − 1/x6

)
, and a particle of massm= 11.1 and initial position x0 =−8.5 in a rugged

potential U(x) = 1/50
(
x4 − x3 − 16x2 + 4x+ 48+ 10sin(30x+ 150)

)
. Figures 3(B)–(E) show the errors

incurred in the predictions of particle positions as a function of time t for timestep∆R = 100∆, 400∆,
1000∆ and 4000∆ respectively. These trajectory errors are computed as δr(t) = |⃗r(t;∆R)− r⃗V(t,∆)|, where
r⃗(t;∆R) is the position vector of the particle at time t predicted by the RNN operator R with timestep∆R

and r⃗V(t;∆) is the corresponding ground truth result produced by the Verlet integrator with timestep
∆= 0.001. For∆R = 100∆ (figure 3(B)), the errors δr(t) are bounded between 0.001 and 0.0012 for a
particle in a simple harmonic potential, a double well potential, and a LJ potential, while
δr(t) ∈ (0.0021,0.0023) for a particle in a rugged potential. For all 4 one particle 1D systems, the errors
increase as∆R increases from 100∆ to 4000∆, but remain within the same order of magnitude. For example,
for∆R = 4000∆ (figure 3(E)), δr(t) ∈ (0.0015,0.0035) for a particle in a simple harmonic potential, a
double well potential, and a LJ potential, and δr(t) ∈ (0.003,0.0045) for a particle in a rugged potential. For
the same 4 1D systems, figure 3(A) shows the trajectory errors, δrV(t) = |⃗rV(t;10∆)− r⃗V(t;∆)|, associated

6

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 4. Time evolution performed by the RNN operators for a single particle in three 1D potentials from time t= 950 to 1000.
Results are presented as position vs time (left column), velocity vs position (middle column), and energy deviation vs time (right
column). Open symbols are dynamics predicted by the RNN operators with timestep∆R = 100∆ (blue circles), 400∆ (orange
squares), 1000∆ (green up triangles) and 4000∆ (red down triangles). Solid black squares are dynamics produced by the Verlet
integrator with timestep 50∆. (A) Dynamics of a particle of massm= 14.4 and initial position x0 =−11.3 in a simple harmonic
potential with spring constant k= 12.8. (B) Dynamics of a particle of massm= 0.9 and initial position x0 = 3.4 in a
Lennard–Jones potential. (C) Dynamics of a particle of massm= 8.0 and initial position x0 =−8.5 in a rugged potential.

with the time evolution performed using the Verlet integrator with a timestep of 10∆. These trajectory errors
are orders of magnitude larger compared to those incurred during the time evolution performed using the
RNN operators, e.g. δrV ∈ (0.1,0.5) for a particle in a rugged potential.

Errors in position predictions made by the R operators rise with increasing the complexity of the 1D
potential. For example, for all∆R, trajectory errors are higher for the 1D system of a particle in a rugged
potential compared to the 1D system of a particle in a simple harmonic potential. Figure 3(F) shows the
errors in position predictions at time t= 1000 as a function of timestep for the same four 1D systems. In each
case, the errors increase as the timestep∆R is increased from 100∆ to 4000∆. However, the errors are
bounded between 0.001 and 0.0045. On the other hand, the errors incurred in positions evolved using the
Verlet integrator (figure 3(F) inset) rise exponentially with increasing timestep. For example, for a 10-fold
increase in the timestep, the errors increase by four orders of magnitude for a particle in a LJ potential.

Figure 4 shows the predictions made by the RNN operators for positions, velocities, and energy
deviations associated with the dynamics of a particle in three 1D potentials: particle of massm= 14.4 and
initial position x0 =−11.3 in a simple harmonic potential with k= 12.8 (A), particle of massm= 0.9 and
initial position x0 = 3.4 in a LJ potential (B), and particle of massm= 8.0 and initial position x0 =−8.5 in a
rugged potential (C). Results for each system are presented in three graphs: position vs time, velocity vs
position, and energy deviation vs time. Energy deviation δEt is defined as δEt = |Et − E0|/|E0|, where Et and
E0 are the total energy of the system at time t and the initial time t= 0, respectively. By averaging across all
times from t= 0 to t= 1000 and across all four 1D systems, the statistical errors in the positions predicted by
R operators using timestep∆R = 100∆, 400∆, 1000∆ and 4000∆ are 0.00135, 0.00176, 0.00214 and
0.00297 respectively. Following the same process, the statistical errors in velocities predicted by R operators
using timestep∆R = 100∆, 400∆, 1000∆ and 4000∆ are 0.00141, 0.00174, 0.00197 and 0.00293
respectively. The errors increase with increasing∆R, but remain within the same order of magnitude. The
associated energy deviation δEt tracks the ground truth energy deviation for all values of∆R. On the other
hand, positions and velocities produced by the Verlet integrator with a timestep of 40∆ (<∆R) show large
deviations from the ground truth for all three 1D systems; the corresponding energy deviations are also
orders of magnitude larger compared to the results obtained with RNN operators and the ground truth
results.

In addition to the forward time evolution, we find that the RNN operators can accurately perform
backward time evolution of 1D systems for an arbitrary length of time by utilizing the trajectory data in
reverse order without undergoing any re-training using the time-reversed trajectories. Analogous to the
process followed for the forward time evolution, we feed a sequence of length SR = 5 of the future states of
the trajectory starting at an arbitrary time t+ SR∆R, and predict the state at time t−∆R. The backward

7

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 5. Trajectory errors and particle positions predicted during the backward time evolution performed by the RNN operators
for two 1D systems: a particle of massm= 14.4 and initial position x0 =−11.3 in a simple harmonic potential with k= 12.8 ((A)
and (C)), and a particle of massm= 11.1 and initial position x0 =−8.5 in a rugged potential ((B) and (D)). (A), (B) Errors
incurred in positions predicted vs time t from t= 10000 to t= 0 for backward time evolution by the RNN operators with
timestep∆R = 100∆ (circles), 400∆ (squares), 1000∆ (up triangles), and 4000∆ (down triangles). (C), (D) Corresponding
positions as a function of t for the two 1D systems from t= 50 to t= 0.

evolution terminates with the prediction at t= 0. Representative results for the backward time evolution are
shown in figure 5 for a particle of massm= 14.4 and initial position x0 =−11.3 in a simple harmonic
potential with k= 12.8 ((A) and (C)) and a particle of massm= 11.1 and initial position x0 =−8.5 in a
rugged potential ((B) and (D)). Figures 5(A) and (B) show that the R operators generate accurate backward
time evolution of these two systems starting from t= 10000 to t= 0 for∆R = 100∆,400∆,1000∆,4000∆.
Errors in position predictions are bounded between 0.001 and 0.0045 for all∆R, similar to the errors in the
forward trajectory evolution predicted by the same operators (figure 3). Figures 5(C) and (D) show the
predicted positions vs time in reverse for the two systems from t= 50 to t= 0 for
∆R = 100∆,400∆,1000∆,4000∆. In addition to exhibiting the time-reversal symmetry, we find that the
RNN operators, with no explicit training to satisfy the symplectic condition, approximately preserve the
symplectic property for timesteps up to 1000∆ (see appendix for details).

3.2. Few-particle systems in 3D
Our next set of experiments focus on training and testing the RNN-based R operators to predict the
dynamics of few particles in 3D. Three separate R operators are designed to predict the dynamics of three
few-particle systems with N = 3, N = 8, and N = 16 particles interacting via shifted and truncated LJ
potentials in a cubic box with periodic boundary conditions. All particles have the same massm= 1 and
interact with the following LJ pair interaction potential:

U(r) = 4ϵ

((
1

r

)12

−
(
1

r

)6
)
+ 0.0163 ϵ for r⩽ 2.5,

= 0 for r> 2.5.

For each of the three N−particle cases, the training and validation datasets consist of ground-truth
trajectories produced by simulations of 5000 systems. These systems are generated by selecting different
initial positions r⃗0 for the N particles. The process begins by randomly selecting each of the three Cartesian
coordinates x0,y0,z0 of one particle between−3.0 and 3.0, and then placing all other particles next to the
initial seed particle with a step size of 0.3508, ensuring that there are no particle overlaps and all particles
have Cartesian coordinates between−3.0 and 3.0. In all simulations used to create the training and
validation datasets, the initial velocities of all particles are set to 0, and the characteristic LJ energy ϵ is set to
1. Simulations are performed using the Verlet integrator with∆= 0.001 up to time t= 2000.

In each case, the entire dataset is randomly shuffled and separated into training and validation sets using
a ratio of 0.8:0.2. For example, in the case of N = 16 particles system, 80% of the simulations (4000 systems)
are randomly selected to form the training dataset, and the remaining 20% (1000 systems) are separated into

8

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 6. Average errors as a function of time t (log scale) associated with the predictions of the RNN operator for the positions
(A) and velocities (B) of a 3D system of 16 particles interacting via Lennard–Jones forces under periodic boundary conditions.
Results are shown for the time evolution performed using timestep∆R = 100∆ (circles), 400∆ (squares), 1000∆ (up triangles)
and 4000∆ (down triangles). For all∆R, the errors are O(10−3) during the entire evolution up to t= 106.

the validation dataset. For experimental evaluation of the RNN operators, separate testing datasets for
systems with N = 3, N = 8, and N = 16 particles are generated using simulations of particles of massm= 1
performed up to time t= 1000000. In these simulations, the three Cartesian coordinates associated with the
initial positions of all particles are randomly selected between−3.0 and 3.0, ensuring no overlapping
particles. The initial velocities of particles are sampled from a Boltzmann distribution with a reduced
temperature of 1, and the characteristic LJ energy ϵ is set to 2. Thus, the RNN operators are tasked to make
predictions for test samples that are very different from the typical sample in the training and validation
datasets (representative energy profiles associated with typical samples in test and training datasets are
shown in figure 12 in appendix).

For all the three N-particle systems, we find that the associated R operators accurately evolve the
positions and velocities of the particles with timestep∆R as large as 4000∆, yielding energy-conserving
dynamics up to time t= 106. In the interest of brevity, we discuss the results for the 3D system with N = 16
particles. Figures 6(A) and (B) show the average error associated with the RNN predictions for the positions
and velocities of N = 16 particles as a function of time respectively. The average error in the prediction of
positions is computed as δr(t) =

∑N
i=1 |⃗ri(t)− r⃗i,V(t)|/N, where r⃗i(t) is the 3D position vector of the ith

particle at time t predicted by the RNN operator R with timestep∆R and r⃗i,V(t) is the corresponding ground
truth result at the same time t produced by the Verlet integrator with timestep∆= 0.001. The average error
in the prediction of velocities is computed as δv(t) =

∑N
i=1 |⃗vi(t)− v⃗i,V(t)|/N, where v⃗i(t) is the 3D velocity

vector of the ith particle at time t predicted by R with timestep∆R and v⃗i,V(t) is the corresponding ground
truth result at the same time t produced by the Verlet integrator with timestep∆= 0.001. Results are shown
for time evolution performed by R for∆R = 100∆,400∆,1000∆, and 4000∆. The errors δr(t) and δv(t)
rise as∆R increases but remain bounded between 0.001 and 0.006 for time evolution up to t= 106.

Figure 7(A) shows the energy deviation δEt = |Et − E0|/|E0| associated with the time evolution of the 3D
system of 16 particles predicted by the RNN operator R using∆R = 100∆,400∆,1000∆, and 4000∆. Et
and E0 are the total energy of the system at time t and initial time (t= 0), respectively. For all values of∆R,
the dynamics generated by the RNN operator are associated with δEt ≲ 10−3 for up to t= 106 and track the
ground truth result produced using the Verlet integrator with timestep∆. In stark contrast, the dynamics
produced using the Verlet integrator with a timestep of 40∆ (inset in figure 7(A)) exhibits a rapid energy
divergence with δEt ∼ 1012 for t> 102. Figure 7(B) shows the kinetic, potential, and total energies associated
with the dynamics predicted by the RNN operator using timestep∆R = 100∆,400∆,1000∆, and 4000∆.
The corresponding ground truth results obtained with the Verlet integrator using timestep∆= 0.001 are
also shown. For all∆R, the total energy predicted by R as a function of time is conserved. All the predicted
energy profiles track the ground truth results up to t= 106.

3.3. Performance enhancement
We now discuss the performance enhancement resulting from using the deep learning approach presented
here to perform simulations of one-particle and few-particle systems. For a given system, our approach uses
the Verlet integrator to kickstart the simulation and the RNN operator R to evolve the dynamics forward in
time. Incorporating this detail, we propose the following speedup metric S to quantify the performance
enhancement:

S=
STtV

SVtV +(ST − SV) tR∆/∆R
, (5)

where ST is the total number of steps needed if the time evolution is performed using only the Verlet
integrator and SV =∆R(SR − 1)/∆ is the total number of steps that generate the initial trajectories using

9

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 7. (A) Energy deviation δEt (defined in the main text) as a function of time t (log scale) associated with the dynamics
predicted by the RNN operator for the same 3D system of 16 particles as described in figure 6. Results are shown for the time
evolution performed using timestep∆R = 100∆ (circles), 400∆ (squares), 1000∆ (up triangles) and 4000∆ (down triangles).
Inset shows the corresponding results using the Verlet integrator with timesteps 10∆ and 40∆. For all values of∆R, the dynamics
generated by the RNN operator track the ground truth result (black crosses) produced using the Verlet integrator with timestep
∆= 0.001. (B) The total, potential, and kinetic energies associated with the dynamics predicted by the RNN operator using the
same four∆R values; symbols have the same meaning as in (A). Lines represent the ground truth results obtained using the Verlet
integrator for total (solid), potential (dashed), and kinetic (dotted) energies. For all∆R, the predicted energy profiles track the
ground truth results.

Table 1. Speedup S for time evolution by the RNN operators using timestep∆R shown in the column heading.

Experiment 100∆ 200∆ 400∆ 1000∆ 2000∆ 4000∆

1D, Simple harmonic 0.5 1.3 3.2 8.6 20.0 45.0
1D, Double well 0.6 1.2 2.8 8.7 17.3 38.0
1D, Lennard–Jones 0.9 1.5 3.9 12.8 22.5 42.3
1D, Rugged 0.4 0.8 2.1 4.7 9.7 20.6
3D, 8 particles 600 1000 1500 5500 8300 12 000
3D, 16 particles 3000 4900 7100 20 000 28 000 32 000

Verlet to kickstart the simulation. tV and tR are the times for one forward step propagation using Verlet and
R respectively. In the speedup S, we have not accounted for the time spent on creating training and
validation datasets, which is a one-time investment of<24 h for the experiments shown. S is 1 if ST = SV,
that is, when no time evolution is performed using the RNN operator R. In the limit ST ≫ SV, we obtain
S≈ tV∆R/(tR∆). Clearly, the greater the ratio∆R/∆, the higher the speedup.

Table 1 shows the speedup S for the time evolution by the RNN operators using different timestep∆R.
Results are shown for 1D experiments (first four rows) and 3D experiments (last two rows), and for
∆R = 100, 200, 400, 1000, 2000, and 4000. In all cases, S is computed for time evolution up to t= 106 with
ST = 109 steps. We find that the time tV for one forward step propagation using Verlet varies by four orders of
magnitude across the different experiments, ranging from≈9× 10−6 s (for the 1D system with simple
harmonic potential) to 4× 10−2 s (for the 3D system with 16 particles). In contrast, the time tR for one
forward step propagation using the different RNN operators varies by only one order of magnitude across
experiments, ranging from≈3× 10−4 s (for the 1D system with simple harmonic potential) to≈2× 10−3 s
(for the 3D system with 16 particles).

We find that the speedup S> 1 for most experiments, signaling an enhancement in performance when
the time evolution is performed using our deep learning approach. Low S< 1 values, observed mostly for the
time evolution of the 1D systems with∆R = 100∆, can be attributed to the relatively large time for one
forward step propagation using RNN (tR ≫ tV). As expected, S rises with increasing∆R. The largest values of
S are recorded for 3D systems with more number of particles. In these cases, large increases in S result from
both the use of large timestep∆R and the small time associated with the forward step propagation using
RNN operators (tR < tV). For example, in the case of the time evolution of the 3D system of 16 particles with
∆R = 4000∆, we find that tR ≈ 0.0026 s is an order of magnitude smaller than tV ≈ 0.04392 s, resulting in
the speedup S≈ 32000.

3.4. Limitations and outlook
We now explore the limits of the applicability of our deep learning approach. All RNN operators are trained
using ground-truth trajectories associated with systems generated by sweeping input parameters over a finite

10

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 8. Failure cases illustrating the limits of the applicability of the deep learning approach. (A) and (B) show the time
evolution predicted by the RNN operator with a timestep∆R = 100∆ (open circles) for a particle of massm= 14.4 and initial
position x0 =−11.3 in a 1D simple harmonic potential characterized with spring constant k= 80.0. Dynamics are shown as
position vs time (A) and velocity vs position (B) plots from time t= 0 to t= 25. The RNN predictions quickly deviate from the
ground truth results (lines) obtained using the Verlet integrator with timestep∆= 0.001. (C) shows the energies associated with
the time evolution predicted by the RNN operator with a timestep∆R = 100∆ (symbols) for the 3D system of 16 particles
interacting via LJ potentials characterized with energy parameter ϵ= 8. The total, potential, and kinetic energies are shown from
time t= 0 to t= 105. All predicted energies start deviating quickly from the ground truth results (lines) obtained using the Verlet
integrator with timestep∆= 0.001. The deviations get progressively larger with increasing time t.

range of values. Our results demonstrate that these operators can successfully perform time evolution of
unseen input systems characterized with parameters that lie within and outside the ranges associated with
the training datasets. However, as the input systems become very different from the systems in the training
datasets, e.g. by selecting parameters that are well beyond the parameter ranges associated with the training
datasets, we expect the RNN operators to produce inaccurate time evolution and to generate trajectories that
deviate from the ground truth results.

Consider the 1D case of one particle in a simple harmonic potential for which we trained the RNN
operator with ground-truth trajectories associated with input systems generated by sweeping over five
discrete values of the initial position x0 of the particle in the range x0 ∈ [−10,−2], 10 discrete values of
particle massm in the rangem ∈ [1,10], and 10 discrete values of spring constant k in the range k ∈ [1,10].
We extrapolated to an input system characterized with parameters x0 =−11.3,m= 14.4,k= 12.8 in order
to test the predictions of the RNN operator. For this test system, the operator produced accurate
energy-conserving time evolution (section 3.1). However, for a particle with the same initial position
x0 =−11.3 and massm= 14.4, the trajectories predicted by the RNN operator become progressively
inaccurate as the spring constant k is increased to values greater than 2 times the maximum k value used in
the training process (i.e. for k≳ 20).

Figures 8(A) and (B) illustrate a failure case by showing the time evolution for a particle of massm= 14.4
and initial position x0 =−11.3 in a simple harmonic potential characterized with spring constant k= 80.0
(which is 8 times the maximum k value used in the training dataset). The time evolution by the RNN
operator uses a timestep∆R = 100∆, and results are shown from t= 0 to t= 25. After a small duration of
time t > 1, the RNN predictions for positions and velocities deviate from the ground truth results obtained
using the Verlet integrator. Recall that the same RNN operator predicted accurate time evolution up to
t= 1000 for this 1D system with k= 12.8 (section 3.1). Similar limits in extrapolation and generalizability
are observed for other 1D systems.

We next consider the 3D case of 16 particles interacting with LJ potentials in periodic boundary
conditions. For this case, the RNN operator was trained with ground-truth trajectories associated with input
systems generated by sweeping over many discrete values of the initial positions of the particles. Simulations
of all systems in the training dataset were initialized with zero particle velocities and the LJ interactions
between particles were characterized with energy parameter ϵ= 1. To test the predictions of the RNN
operator, we extrapolated to an input system for which the velocities of the 16 particles were sampled from a
Boltzmann distribution with a reduced temperature of 1, and the LJ interactions were characterized with the
energy parameter ϵ= 2. For this test system, the operator produced accurate energy-conserving time
evolution (section 3.2). However, we find that the time evolution predicted by the RNN operator becomes
progressively inaccurate as ϵ is increased to values over 5.

11

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 8(C) illustrates a failure case by showing the energy profiles associated with the time evolution
performed by the RNN operator for 16 particles interacting via LJ potentials characterized with ϵ= 8.
Simulation is initialized with randomly selected positions and with velocities sampled from the Boltzmann
distribution at a reduced temperature of 1. The time evolution by the RNN operator uses a timestep
∆R = 100∆, and results are shown from t= 0 to t= 105. All energies (kinetic, potential, and total) start
deviating from the ground truth results right from the beginning, the deviations getting progressively
stronger with increasing time t. As t increases to values beyond 104, the total energy starts to diverge. Recall
that the same RNN operator predicted accurate time evolution from t= 0 to t= 106 for this 3D system with
ϵ= 2 (section 3.2). For both one particle systems in 1D and few particle systems in 3D, addressing the failure
cases will involve expanding the range of input parameters characterizing the systems and including the
associated trajectory data in the training of the RNN operators.

In our current formulation, the RNN operators are designed and trained to furnish the time evolution of
systems characterized by the selected potential energy describing the particles. Thus, the RNN operator
trained to learn the dynamics of one potential energy landscape (e.g. one particle in a simple harmonic
potential) is, by design, not capable to predict the dynamics of another closely related but qualitatively
different potential energy landscape (e.g. one particle in a double well potential). For a complex potential
energy landscape with multiple basins and barriers, the associated RNN operator will need to ‘see’ a diverse
group of trajectories corresponding to different regions of the energy landscape in order to accurately furnish
the time evolution. The complexity of the energy landscape may require changes in the architectural
configuration of the RNN operators and may also lead to longer training times. Similarly, the RNN operators
will need to be trained with ground truth trajectories associated with different representative assembly
behaviors (e.g. phase changes in 3D systems of many particles interacting with LJ potentials) in order for
them to successfully evolve the dynamics for corresponding thermodynamic statepoints.

Our future work will explore ways to enhance the generalizability of the RNN operators and to extend the
applicability of our deep learning approach to systems described with complex energy landscapes. In this
initial study, we have limited our focus on few-particle systems and on a single type of thermodynamic
ensemble. Future work will explore the scaling of the approach to a larger number of particles and will
examine the accuracy of the RNN operators in different thermodynamic ensembles.

4. Conclusion

We have introduced a deep learning approach that utilizes RNNs to design operators that solve Newton’s
equations of motion and evolve the dynamics of particles by utilizing timesteps orders of magnitude larger
than the typical timestep used in numerical integrators such as Verlet. We have obtained state-of-the-art
results in terms of the timesteps, the number of particles, and the complexity of the potential characterizing
the interactions between particles. The RNN operators learn both the interaction potentials and the
dynamics of the particles based on their experience with the ground-truth solutions of Newton’s equations of
motion. These operators produce accurate predictions for the time evolution of particles accompanied with
excellent energy conservation over a variety of force fields using up to 4000× larger timestep than the Verlet
integrator. The use of deep learning methods in tasks central to MD simulations is a critical first step towards
the long-term goal of machine-learning-assisted MD simulations of many-particle systems. Further, the idea
of formulating the dynamics of particles into a sequence processing problem solved via the use of RNNs
illustrates an important approach to learn the time evolution operators, which is applicable across different
fields including fluid dynamics and robotics [31, 33, 50].

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This work is partially supported by the NSF through Awards 1720625 and DMR-1753182, and by the DOE
through Award DE-SC0021418. G C F was partially supported by NSF CIF21 DIBBS 1443054 and CINES
1835598 Awards. V J thanks M O Robbins for useful discussions.

12

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 9. Potential energies associated with the 1D experiments. Dash-dotted, dotted, dashed, and solid lines represent simple
harmonic (SHO), double well (DW), Lennard–Jones (LJ), and rugged potentials respectively.

Appendix

Training and validation dataset preparation for 1D systems

Here, we describe the datasets used for training the RNN operators to predict the dynamics of 1D
one-particle systems. The potential energy functions characterizing the four 1D systems are shown in
figure 9. In each case, the Verlet integrator with a timestep∆= 0.001 is used to generate the ground truth
trajectories for up to time t= 200. For all four 1D systems described below, the testing dataset to evaluate the
predictions of the associated RNN-based operator comprises 100 input systems characterized with
parameters distinct from those used in the input systems in the training and validation datasets. These 100
test systems also include systems characterized with all parameters lying outside the boundary of the
parameter ranges associated with systems in the training and validation datasets.

Particle in a simple harmonic potential
For this system, the potential energy is given by:

U=
1

2
kx2, (6)

where k is the spring constant. The training and validation datasets consist of ground-truth trajectories
associated with simulations of 500 input systems generated by sweeping over 5 discrete values of initial
position of the particle x0 =−10,−8,−6,−4,−2; 10 discrete values of particle massm= 1,2, . . . ,9,10; and
10 discrete values of spring constant k= 1,2, . . . ,9,10. Each simulation produces a trajectory with 400 000
position and velocity values.

Particle in a double well potential
For this system, the potential energy is given by:

U=
1

4
x4 − 1

2
x2. (7)

The training and validation datasets consist of ground-truth trajectories associated with simulations of 500
input systems generated by sweeping over 10 discrete values of particle massm= 1,2, . . . ,9,10; and 50
uniformly-distributed discrete values of initial position of the particle x0 ∈ [−3.1,3.1]. Each simulation
produces a trajectory with 400 000 position and velocity values.

Particle in a Lennard–Jones potential
For this system, the potential energy is given by:

U(x) = 4

((
1

x

)12

−
(
1

x

)6
)
. (8)

13

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 10. Error δr as a function of timestep dt incurred in updating the position of the particle at time t= 1000 for a 1D system
of a particle of massm= 1 in a Lennard–Jones potential with initial position x0 = 2.0. δr is evaluated by comparing the
predictions to the ground truth results obtained using the Verlet integrator with a small timestep∆= 0.001. Closed squares,
triangles, and diamonds are errors incurred when using RNN operators trained with sequence length SR = 3,4 and 5 respectively.
Open squares correspond to the errors produced by the Verlet integrator.

The training and validation datasets consist of ground-truth trajectories associated with simulations of 500
input systems generated by sweeping over 10 discrete values of particle massm= 1,2, . . . ,9,10; and 50
uniformly-distributed discrete values of initial position of the particle x0 ∈ [1.0,3.0]. Each simulation
produces a trajectory with 400 000 position and velocity values.

Particle in a rugged potential
For this system, the potential energy [15] is given by:

U(x) =
x4 − x3 − 16x2 + 4x+ 48

50
+

sin(30(x+ 5))

5
. (9)

The training and validation datasets consist of ground-truth trajectories associated with simulations of 640
input systems generated by sweeping over 10 discrete values of particle massm= 1,2, . . . ,9,10; and 64
uniformly-distributed discrete values of initial position of the particle x0 ∈ [−6.1,6.1]. Each simulation
produces a trajectory with 400 000 position and velocity values.

Training RNN operators with different sequence lengths
The sequence length SR is defined as the number of past configurations used by the RNN operator to predict
the future configuration. Using the training, validation and testing datasets associated with the 1D system of
one particle in a LJ potential, we did experiments to compare the accuracy of RNN operators designed using
SR = 3,4 and 5. Figure 10 shows the error δr in the prediction of the position of the particle at time t= 1000
for a system in the test dataset as a function of the timestep dt. δr is evaluated by comparing the RNN
predictions to the ground truth results obtained using the Verlet integrator with a small timestep∆= 0.001.
We find that the RNN operator trained with SR = 3 produces errors that rise steeply from 0.0089 to 3640.75,
spanning over 5 orders of magnitude, as timestep dt is increased from 10∆ to 100∆. The rise in these errors
is similar to the increase observed for position errors incurred using the Verlet integrator with increasing dt.
The accuracy improves and the errors are comparatively reduced for the RNN operator trained with SR = 4.
The errors are now bounded between 0.004 and 0.058 for dt≲ 100∆ but quickly rise to 97.89 for
dt= 1000∆. In stark contrast, the RNN operator trained with sequence length SR = 5 produces errors that
exhibit a much weaker rise from 0.0005 to 0.003 as the timestep dt is increased from 100∆ to 4000∆.

Symplectic property
In the main text, we showed that the RNN operators exhibited time-reversal symmetry. In this subsection, we
explore numerically whether the trajectories predicted by the RNN operators preserve the symplectic

14

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Figure 11. Evaluating the preservation of the symplectic property by the RNN operators for 1D systems by computing Sf (defined
in equation (10) of the main text) from time t= 0 to t= 1000. Results are shown for a particle in a simple harmonic potential
with parametersm= 10, k= 1, x0 =−10 (left column), and for a particle in a rugged potential with parametersm= 8, x0 =−8
(right column). The trajectories are predicted using RNN operators with timestep∆R = 100∆ (circles), 400∆ (squares), 1000∆
(triangles), and 4000∆ (pentagons). Black lines represent Verlet results with timestep∆= 0.001. While the Verlet integrator
maintains Sf = 1 (up to numerical precision), the RNN operators approximately satisfy the symplectic condition (Sf ≈ 1) up to
1000∆. Deviations from 1 become much larger for the highest timestep of 4000∆. For a given timestep, fluctuations of Sf near 1
are also larger for the more complex 1D potential (rugged).

property. We note that these operators are not trained explicitly to preserve the symplectic structure. For the
sake of simplicity, we focus the investigation on 1D systems. In these cases, the symplectic property is obeyed
if the trajectories generated using the RNN operators satisfy the equality:

JMJT =M, (10)

where

J=

∂x⃗(t)
∂x⃗(0)

∂x⃗(t)
∂p⃗(0)

∂p⃗(t)
∂x⃗(0)

∂p⃗(t)
∂p⃗(0)

,

 ,
is the Jacobian matrix. Here x⃗(t), p⃗(t) are the positions and momenta associated with the trajectory of the
particles at time t, and x⃗(0), p⃗(0) are the initial positions and momenta at t= 0. The matrixM is given by:

M=

[
0⃗ I⃗
−⃗I 0⃗

]
,

where 0 and I are dN × dN dimensional zero and identity matrices, respectively (d is the spatial dimension
and N is the number of particles). For the case of one particle in 1D, d= 1 and N = 1, and the matrixM
becomes:

M=

[
0 1
−1 0

]
.

The left hand side of equation (10) can be simplified as:

JMJT =

[
0 Sf

−Sf 0

]

15

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

where Sf is given by:

Sf =
∂x⃗(t)

∂x⃗(0)

∂p⃗(t)

∂p⃗(0)
− ∂x⃗(t)

∂p⃗(0)

∂p⃗(t)

∂x⃗(0)
. (11)

Using the symplectic condition (equation (10)), we find:[
0 Sf

−Sf 0

]
=

[
0 1
−1 0

]
.

Thus, the RNN operators satisfy the symplectic property when:

Sf = 1. (12)

We computed Sf for the four 1D systems using equation (11) and the trajectory data predicted by the
associated RNN operators with different timestep∆R. The ground truth Sf values were obtained using the
Verlet integrator with timestep∆= 0.001. We find that for all systems, while the Verlet integrator yields
Sf = 1 up to the numerical precision, the RNN operators approximately satisfy the symplectic condition. Sf
fluctuates around 1, with the extent of fluctuations becoming stronger with increasing∆R and potential
complexity. Figure 11 shows representative results for a particle in a simple harmonic potential with
parametersm= 10, k= 1, x0 =−10, and for a particle in a rugged potential with parametersm= 8, x0 =−8.
In the case of the particle in a simple harmonic potential, Sf exhibits small fluctuations with a mean of 1.0
and standard deviation (fractional error) of≈0.001 for timesteps∆R = 100∆,400∆,1000∆. However, when
∆R is increased to 4000∆, Sf exhibits greater fluctuations with a mean of 1.0 and standard deviation of≈0.5.
Similar trends are observed for the particle in a rugged potential, albeit with greater fluctuations in Sf around
1 for each∆R, which can be attributed to the greater complexity of the rugged potential.

16

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

Energy profiles for representative samples of few-particle systems in training and testing datasets

Figure 12. The total, potential, and kinetic energies vs time (log scale) associated with a representative system in the training
dataset (black lines) compared with the energy profiles for the test system (magenta lines) of 16 particles in 3D interacting with
Lennard–Jones forces, as described in figure 6 of the main text. For the system in the training dataset, the initial positions are
randomly selected, the initial velocities are set to 0, and the Lennard–Jones energy parameter ϵ= 1. For the test system, the initial
positions are randomly selected, the initial velocities are sampled from a Boltzmann distribution with a reduced temperature of 1,
and ϵ= 2. Both sets of energy profiles represent ground truth results obtained using the Verlet integrator with timestep
∆= 0.001.

ORCID iD

Vikram Jadhao https://orcid.org/0000-0002-8034-2654

References

[1] Newton I 1687 Philosophiae Naturalis Principia Mathematica (London: Royal Society)
[2] Alder B J and Wainwright T E 1959 Studies in molecular dynamics. I. General method J. Chem. Phys. 31 459–66
[3] Frenkel D and Smit B 2001 Understanding Molecular Simulation 2nd edn (New York: Academic)
[4] Verlet L 1967 Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules Phys. Rev.

159 98
[5] Andersen H C 1983 Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations J. Comput. Phys. 52 24–34
[6] Butcher J C 2016 Numerical Methods for Ordinary Differential Equations (New York: Wiley)
[7] Wu Y et al 2016 Google’s neural machine translation system: bridging the gap between human and machine translation

(arXiv:1609.08144)
[8] Chong E, Han C and Park F C 2017 Deep learning networks for stock market analysis and prediction: methodology, data

representations and case studies Expert Syst. Appl. 83 187–205
[9] Huang X, Fox G C, Serebryakov S, Mohan A, Morkisz P and Dutta D 2019 Benchmarking deep learning for time series: challenges

and directions 2019 IEEE Int. Conf. Big Data (Big Data) (IEEE) pp 5679–82
[10] Ferguson A L 2017 Machine learning and data science in soft materials engineering J. Phys.: Condens. Matter 30 043002
[11] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Machine learning for molecular and materials science Nature

559 547
[12] Fox G et al 2019 Learning everywhere: pervasive machine learning for effective high-performance computation HPDCWorkshop at

IPDPS 2019
[13] Guo A Z, Sevgen E, Sidky H, Whitmer J K, Hubbell J A and de Pablo J J 2018 Adaptive enhanced sampling by force-biasing using

neural networks J. Chem. Phys. 148 134108
[14] Botu V and Ramprasad R 2015 Adaptive machine learning framework to accelerate ab initiomolecular dynamics Int. J. Quantum

Chem. 115 1074–83
[15] Wang J, Olsson S, Wehmeyer C, Pérez A, Charron N E, De Fabritiis G, Noé F and Clementi C 2019 Machine learning of

coarse-grained molecular dynamics force fields ACS Cent. Sci. 5 755–67
[16] Kadupitiya J C S, Fox G C and Jadhao V 2020 Machine learning for parameter auto-tuning in molecular dynamics simulations:

efficient dynamics of ions near polarizable nanoparticles Int. J. High Perform. Comput. Appl. 34 357–74
[17] Long A W, Zhang J, Granick S and Ferguson A L 2015 Machine learning assembly landscapes from particle tracking data Soft

Matter 11 8141–53
[18] Spellings M and Glotzer S C 2018 Machine learning for crystal identification and discovery AIChE J. 64 2198–206

17

https://orcid.org/0000-0002-8034-2654
https://orcid.org/0000-0002-8034-2654
https://doi.org/10.1063/1.1730376
https://doi.org/10.1063/1.1730376
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1016/0021-9991(83)90014-1
https://arxiv.org/abs/1609.08144
https://doi.org/10.1016/j.eswa.2017.04.030
https://doi.org/10.1016/j.eswa.2017.04.030
https://doi.org/10.1088/1361-648X/aa98bd
https://doi.org/10.1088/1361-648X/aa98bd
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1063/1.5020733
https://doi.org/10.1063/1.5020733
https://doi.org/10.1002/qua.24836
https://doi.org/10.1002/qua.24836
https://doi.org/10.1021/acscentsci.8b00913
https://doi.org/10.1021/acscentsci.8b00913
https://doi.org/10.1177/1094342019899457
https://doi.org/10.1177/1094342019899457
https://doi.org/10.1039/C5SM01981H
https://doi.org/10.1039/C5SM01981H
https://doi.org/10.1002/aic.16157
https://doi.org/10.1002/aic.16157

Mach. Learn.: Sci. Technol. 3 (2022) 025002 J C S Kadupitiya et al

[19] Sharp T A, Thomas S L, Cubuk E D, Schoenholz S S, Srolovitz D J and Liu A J 2018 Machine learning determination of atomic
dynamics at grain boundaries Proc. Natl Acad. Sci. 115 10943–7

[20] Moradzadeh A and Aluru N R 2019 Molecular dynamics properties without the full trajectory: a denoising autoencoder network
for properties of simple liquids J. Phys. Chem. Lett. 10 7568–76

[21] Sun Y, DeJaco R F and Siepmann J I 2019 Deep neural network learning of complex binary sorption equilibria from molecular
simulation data Chem. Sci. 10 4377–88

[22] Häse F, Galván I F, Aspuru-Guzik A, Lindh R and Vacher M 2019 How machine learning can assist the interpretation of ab initio
molecular dynamics simulations and conceptual understanding of chemistry Chem. Sci. 10 2298–307

[23] Kadupitiya J C S, Fox G C and Jadhao V 2019 Machine learning for performance enhancement of molecular dynamics simulations
Int. Conf. Computational Science pp 116–30

[24] Kadupitiya J C S, Sun F, Fox G and Jadhao V 2020 Machine learning surrogates for molecular dynamics simulations of soft
materials J. Comput. Sci. 42 101107

[25] Raissi M and Karniadakis G E 2018 Hidden physics models: machine learning of nonlinear partial differential equations J. Comput.
Phys. 357 125–41

[26] Long Z, Lu Y, Ma X and Dong B 2018 PDE-Net: learning PDEs from data Int. Conf. Machine Learning (PMLR) pp 3208–16
[27] Chen T Q, Rubanova Y, Bettencourt J and Duvenaud D K 2018 Neural ordinary differential equations Advances in Neural

Information Processing Systems pp 6571–83
[28] Endo K, Tomobe K and Yasuoka K 2018 Multi-step time series generator for molecular dynamics 32nd AAAI Conf. Artificial

Intelligence
[29] Breen P G, Foley C N, Boekholt T and Zwart S P 2020 Newton versus the machine: solving the chaotic three-body problem using

deep neural networksMon. Not. R. Astron. Soc. 494 2465–70
[30] Chen Z, Zhang J, Arjovsky M and Bottou L 2019 Symplectic recurrent neural networks (arXiv:1909.13334)
[31] Shen P, Zhang X and Fang Y 2017 Essential properties of numerical integration for time-optimal path-constrained trajectory

planning IEEE Robot. Autom. Lett. 2 888–95
[32] Raissi M, Perdikaris P and Karniadakis G E 2019 Physics-informed neural networks: a deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686–707
[33] Bar-Sinai Y, Hoyer S, Hickey J and Brenner M P 2019 Learning data-driven discretizations for partial differential equations Proc.

Natl Acad. Sci. 116 15344–9
[34] Shen X, Cheng X and Liang K 2020 Deep Euler method: solving ODEs by approximating the local truncation error of the Euler

method (arXiv:2003.09573)
[35] Raissi M, Perdikaris P and Karniadakis G E 2018 Multistep neural networks for data-driven discovery of nonlinear dynamical

systems (arXiv:1801.01236)
[36] Tsai S-T, Kuo E-J and Tiwary P 2020 Learning molecular dynamics with simple language model built upon long short-term

memory neural network Nat. Commun. 11 1–11
[37] Greydanus S, Dzamba M and Yosinski J 2019 Hamiltonian neural networks Advances in Neural Information Processing Systems

vol 32
[38] Cranmer M, Greydanus S, Hoyer S, Battaglia P, Spergel D and Ho S 2020 Lagrangian neural networks (arXiv:2003.04630)
[39] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T and Müller K-R 2017 Machine learning of accurate

energy-conserving molecular force fields Sci. Adv. 3 e1603015
[40] Sanchez-Gonzalez A, Bapst V, Cranmer K and Battaglia P 2019 Hamiltonian graph networks with ODE integrators

(arXiv:1909.12790)
[41] Minary P, Tuckerman M E and Martyna G J 2004 Long time molecular dynamics for enhanced conformational sampling in

biomolecular systems Phys. Rev. Lett. 93 150201
[42] Morrone J A, Markland T E, Ceriotti M and Berne B J 2011 Efficient multiple time scale molecular dynamics: using colored noise

thermostats to stabilize resonances J. Chem. Phys. 134 014103
[43] Leimkuhler B, Margul D T and Tuckerman M E 2013 Stochastic, resonance-free multiple time-step algorithm for molecular

dynamics with very large time stepsMol. Phys. 111 3579–94
[44] Chen P-Y and Tuckerman M E 2018 Molecular dynamics based enhanced sampling of collective variables with very large time steps

J. Chem. Phys. 148 024106
[45] Hochreiter S and Schmidhuber J 1997 Long short-term memory Neural Comput. 9 1735–80
[46] Chollet F et al 2018 Keras: The Python Deep Learning library [ascl:1806.022] (https://github.com/keras-team/keras)
[47] Buitinck L et al 2013 API design for machine learning software: experiences from the scikit-learn project (arXiv:1309.0238)
[48] Glorot X and Bengio Y 2010 Understanding the difficulty of training deep feedforward neural networks Proc. 13th Int. Conf. on

Artificial Intelligence and Statistics pp 249–56
[49] GitHub 2021 Repository RNN-MD in softmaterialslab (available at: https://github.com/softmaterialslab/RNN-MD/)
[50] Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Predicting disruptive instabilities in controlled fusion plasmas through deep

learning Nature 568 526–31

18

https://doi.org/10.1073/pnas.1807176115
https://doi.org/10.1073/pnas.1807176115
https://doi.org/10.1021/acs.jpclett.9b02820
https://doi.org/10.1021/acs.jpclett.9b02820
https://doi.org/10.1039/C8SC05340E
https://doi.org/10.1039/C8SC05340E
https://doi.org/10.1039/C8SC04516J
https://doi.org/10.1039/C8SC04516J
https://doi.org/10.1016/j.jocs.2020.101107
https://doi.org/10.1016/j.jocs.2020.101107
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1093/mnras/staa713
https://doi.org/10.1093/mnras/staa713
https://arxiv.org/abs/1909.13334
https://doi.org/10.1109/LRA.2017.2655580
https://doi.org/10.1109/LRA.2017.2655580
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://arxiv.org/abs/2003.09573
https://arxiv.org/abs/1801.01236
https://doi.org/10.1038/s41467-020-18959-8
https://doi.org/10.1038/s41467-020-18959-8
https://arxiv.org/abs/2003.04630
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015
https://arxiv.org/abs/1909.12790
https://doi.org/10.1103/PhysRevLett.93.150201
https://doi.org/10.1103/PhysRevLett.93.150201
https://doi.org/10.1063/1.3518369
https://doi.org/10.1063/1.3518369
https://doi.org/10.1080/00268976.2013.844369
https://doi.org/10.1080/00268976.2013.844369
https://doi.org/10.1063/1.4999447
https://doi.org/10.1063/1.4999447
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/keras-team/keras
https://arxiv.org/abs/1309.0238
https://github.com/softmaterialslab/RNN-MD/
https://doi.org/10.1038/s41586-019-1116-4
https://doi.org/10.1038/s41586-019-1116-4

	Solving Newton's equations of motion with large timesteps using recurrent neural networks based operators
	1. Introduction
	2. Recurrent neural network based operators for predicting dynamics of particles
	2.1. Recurrent neural networks
	2.2. RNN-based time evolution operators
	2.3. Operator training and implementation details

	3. Results and discussion
	3.1. One particle systems in 1D
	3.2. Few-particle systems in 3D
	3.3. Performance enhancement
	3.4. Limitations and outlook

	4. Conclusion
	Acknowledgments
	Appendix
	Training and validation dataset preparation for 1D systems
	Particle in a simple harmonic potential
	Particle in a double well potential
	Particle in a Lennard–Jones potential
	Particle in a rugged potential

	 Training RNN operators with different sequence lengths
	 Symplectic property
	 Energy profiles for representative samples of few-particle systems in training and testing datasets

	References

