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Abstract
We formally demonstrate that the relative seriality (RS) model of normal tissue complication
probability (NTCP) can be recast as a simple neural network with one convolutional and one
pooling layer. This approach enables us to systematically construct deep relative seriality networks
(DRSNs), a new class of mechanistic generalizations of the RS model with radiobiologically
interpretable parameters amenable to deep learning. To demonstrate the utility of this formulation,
we analyze a simplified example of xerostomia due to irradiation of the parotid gland during alpha
radiopharmaceutical therapy. Using a combination of analytical calculations and numerical
simulations, we show for both the RS and DRSN cases that the ability of the neural network to
generalize without overfitting is tied to ‘stiff ’ and ‘sloppy’ directions in the parameter space of the
mechanistic model. These results serve as proof-of-concept for radiobiologically interpretable deep
learning of NTCP, while simultaneously yielding insight into how such techniques can robustly
generalize beyond the training set despite uncertainty in individual parameters.

1. Introduction

In radiotherapy, the risk of toxic side effects, as quantified by the normal tissue complication probability
(NTCP), is a common dose-limiting factor during treatment planning [1]. The ability to predict the risk of
such side-effects is critical in enabling clinicians to rationally and systematically sculpt dose distributions to
avoid critical organs at risk (OARs). Traditional approaches to such treatment planning typically utilize
simplified, easily interpretable radiobiological models, if only indirectly (e.g. through dose-volume
histogram metrics that are based on an underlying radiobiological model). Examples of such approaches that
are used in clinical practice include the Lyman–Kutcher–Burman model [2, 3] and the relative seriality (RS)
model of Kallman et al [4].

While having the advantage of parsimony and interpretability, such stylized models inevitably involve
simplifying approximations that neglect the underlying complexity of the radiobiological response. In recent
years, the rise of big data approaches has therefore motivated significant interest in machine learning (ML)
more complex dose-toxicity models with enhanced predictive power [5], using the entire 3D voxel-by-voxel
dose distribution. Of these approaches, artificial neural networks (ANNs) have shown especially promising
success [6–8].

However, a common criticism of ML methods, especially ANNs, is that they are often black boxes, with
model structures and parameters that have unclear clinical meaning [9, 10]. This opacity is a major cause for
concern among clinicians, and frequently results in hesitation applying ML models to clinical decision
making and treatment planning. A framework for interpreting ML dose-toxicity models, and particularly for
relating them to more conventional and intuitive radiobiological models, would therefore be useful in
persuading clinicians to adopt ML more routinely during patient treatment. In this paper, such a framework
is presented.

We start in section 2 with a theoretical overview of the basics of ANNs, and show that the RS model can
be recast as a particularly simple ANN. We then demonstrate that this provides a natural way of
understanding the radiobiology of various additional architectural complexities. This enables us to define
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Figure 1. Diagrammatic illustrations of a single neuron (top left), along with some common activation functions (bottom left),
and an example (right) of how more general multilayer ANN architectures are formed through function composition, including
input, hidden and output layers. The parameters w and b denote weights and biases, respectively, which form a linear input
combination that goes into a ridge activation.

deep relative seriality networks (DRSNs), a set of mechanistically interpretable ANNs capable of modeling
more complex patterns of radiation response.

In section 3, we apply our framework to an example problem of xerostomia in alpha radiopharmaceutical
therapy (αRPT) due to irradiation of the parotid gland, which we model with both the RS and DRSN
networks. The results are analyzed in section 4, where we show that the training of an interpretable neural
network is a nonconvex optimization problem with a broad range of local minima, all of which are nearly
equivalent to the global minimum in their ability to generalize without overfitting. To reconcile mechanistic
interpretability of the parameters with this robustness to precise parameter values, we draw on the concept of
‘sloppiness’ introduced by theoretical physicists studying the information geometry of multiparameter
models. We characterize ‘stiff ’ and ‘sloppy’ directions in parameter space, corresponding to parameter
changes that a model is sensitive and insensitive to, respectively. We demonstrate, for both the RS and DRSN
networks, that the nonconvexity of the loss landscape is confined to the sloppy directions, such that the
variability in parameters learned across different training replicates is inconsequential for performance.

Finally, in section 5 we summarize and conclude the manuscript, after briefly discussing some open
questions and extensions.

2. Background and formal analysis

2.1. Brief overview of neural networks
The fundamental building block of all ANNs is the artificial neuron [11], which is a mathematical function
mapping a multivariate input x⃗ onto a univariate output ϕ (⃗x). ϕ is labeled the activation function of the
neuron. Although this function can in principle be any nonlinear mapping, in practice the most frequently
used activation functions usually fall into two categories: (a) Ridge functions, which act on a linear
combination of the input variables, (b) Fold functions, which perform some sort of aggregate operation over
the inputs. An example of the former is a sigmoidal activation function (e.g. tanh) and an example of the
latter is a pooling operation, such as taking the maximum or average value from a given set of inputs.

ANN are constructed by ‘connecting’ individual neurons together through the operation of function
composition. The number of neurons, along with their layout and connectivity to other neurons, define the
architecture of an ANN. An example of how single neurons can be used to construct an architecture, along
with the corresponding symbolic form of the composite activation function, is illustrated in figure 1. From
the ANN architecture, neurons can be broadly classified as either input neurons (which are the initial
network input), output neurons (which compute final network output) or hidden neurons (which serve as
intermediates between inputs and outputs).

2.2. Mapping the RSmodel to an ANN
In the RS model [4], an OAR is composed of N functional subunits (FSUs), which in practice are often
defined by the voxels of the images and dose maps. In the RS model, if the ith subunit, with relative volume
vi, is irradiated at dose Di, then the NTCP is calculated as
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Figure 2. Schematic illustration of how the RS model maps onto an ANN with radiobiologically interpretable parameters.

NTCP=

{
1−

N∏
i=1

[
1− PRS(Di)

s]vi} 1
s

(1)

where PRS (Di) is the probability of damage to the ith subunit, typically approximated as a sigmoid-like
function

PRS (Di) =
1

1+ exp
(
−eγ

(
Di
D50

− 1
)) . (2)

Comparing equations (1) and (2) with the examples and notation of figure 1, we see that the RS model maps
onto the ANN architecture illustrated in figure 2. This architecture consists of a hidden convolutional layer
acting on the input layer of doses to estimate survival probability, followed by an output pooling layer that
compresses the entire dataset into a single NTCP value. We note that, in line with the strict definition of a
convolutional layer, the FSUs must be identical, such that the weights and biases are translationally invariant
across the layer.

Notably, the parameters in this ANN now all have clear radiobiological interpretations. The intrinsic
radiosensitivity of the FSU is determined by the two model parameters D50 and γ, which determine the
threshold and sharpness of PRS (Di). These are directly related to the weights and biases in the hidden layer.
Meanwhile, tissue architecture and dose-volume effects are encoded in the pooling layer parameter s, which
quantifies the ratio of serial FSUs to total FSUs in the OAR. Large values (≈1) of s indicate a serial structure,
such as the spinal cord, in which damage to a single FSU is sufficient to damage the entire OAR. On the other
hand, small values (≪1) indicate a parallel structure, such as the kidneys, where the individual FSUs act
independently, and a critical number of FSUs must be destroyed to disrupt function.

2.3. DRSNs: radiobiologically interpretable RS extensions
A conscientious and skeptical reader might reasonably point out that, while the mathematical reformulation
in the previous section might be interesting, its practical utility remains uncertain. In particular, the deep
networks used in state-of-the-art machine learning of NTCP often have significantly more complex
architectures than the simplified setup of the RS model. Thus, one might justifiably wonder whether thinking
in terms of the RS model will yield any meaningful insight into practical deep learning models.

As a first step towards addressing such objections, in this section we will describe how starting from the
RS-based ANN provides an intuitive and useful way of interpreting more sophisticated extensions of this
architecture. Concretely, we will demonstrate this using a specific class of architectures, which we name
DRSNs.

The DRSN architecture is illustrated in figure 3. It is characterized by two critical differences from the RS
model: (a) the inclusion of denser feedforward connections in the convolutional layer, and (b) the addition
of a second hidden pooling layer in between the first pooling layer and the final NTCP output.
Radiobiologically, the first difference can be interpreted as describing off-target damage, whether from
bystander signaling or larger-scale processes such as inflammation [12], and the second difference can be
interpreted as describing the hierarchical, modular organization of FSUs in the OAR, a concept that has been
previously described [13] as ‘meta-FSUs’. In the following subsections, we make these connections
quantitative.

2.3.1. Off-targeted effects lead to denser connectivity in convolutional layer
To demonstrate the interpretation of extra feedforward connections in the convolutional layer, it will be
convenient to start with a particularly simple example, consisting of two neurons each in the input layer and
the convolutional layer. This setup is illustrated in figure 4, where we note that, in addition to the original
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Figure 3.Writing the RS model as an ANN (left) makes it easier to construct a more sophisticated yet interpretable class of
architectures (right), named deep relative seriality networks (DRSNs). The definitions of the various new notation terms in the
DRSN will be described in the main text.

Figure 4. A simple convolutional layer with two neurons and two cross-weights. In addition to the local weight w and bias b from
the RS model, we now have cross-weight terms, which are conveniently parametrized in terms of their ratios to the local weight.

local RS interpretable weight w and bias b that we already had in figure 2, we now also have two new
‘cross-weights’ connecting input neuron 1 to convolutional neuron 2, and vice versa. For reasons that will
soon become apparent, it will be convenient to parameterize these cross-weights in terms of their ratio to w,
let us call it f.

Let us take the RS activation function from equation (2), and generalize it to a ‘CNN’ function that
operates on a linear combination of the input doses

PCNN
1 =

1

1+ exp(w11D1 +w12D2 + b1)
=

1

1+ exp
(
−eγ

(
(D1+f12D2)

D50
− 1

)) (3)

PCNN
2 =

1

1+ exp(w21D1 +w22D2 + b2)
=

1

1+ exp
(
−eγ

(
( f21D1+D2)

D50
− 1

)) . (4)

Comparing these with equation (2), we see that the effects of the new cross-weights can be conveniently
described by imagining that there is an ‘effective local’ dose that is input into the RS activation function,

PCNN
1 = PRS

(
D eff
1 = D1 + f12D2

)
(5)

PCNN
2 = PRS

(
D eff
2 = f21D1 +D2

)
. (6)

This can be radiobiologically understood as off-target doses resulting in indirect DNA damage to
neighboring FSUs, via bystander signaling, inflammation or other biological processes [12]. The strength of
the interconnection weight relative to the local RS weight tells us the relative contribution of such off-target
damage relative to local damage. Generalizing beyond the simple example presented here to an arbitrary
number of neurons, increasing the density of feedforward connections, such that each input neuron connects
to more neurons in the hidden convolutional layer, can be interpreted as increasing the spatial range of
off-targeted damage.

2.3.2. Hierarchical tissue organization leads to multiple hidden pooling layers
Our analysis up to this point has implicitly assumed that there is only one ‘level’ of organization between the
base FSUs and the aggregate OAR. However, in general, tissues and organs are characterized by hierarchical
structure, with multiple intermediate levels of organization. In other words, it is usually more accurate to
think of the FSUs themselves as being composed of an even more fine-grained set of ‘meta-FSUs’ [13]. This
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Figure 5. Generalization of a single pooling layer (top) when only allowing for FSUs leads to hidden pooling layers (bottom)
describing meta-FSUs.

argument can be straightforwardly extended to allow for more than one organization level, but for the sake
of simplicity, we restrict ourselves to just one intermediate layer here.

To take a concrete example, consider an OAR built out of six FSUs, as shown in figure 5. If we assume no
meta-FSUs, then the pooling layer for this is a straightforward analog of the architecture shown in figure 2.

However, suppose that now, we allowed for an intermediate level of organization, such that the six FSUs
now become six meta-FSUs. The first meta-FSU would then by itself form an FSU, the second and third
meta-FSUs would aggregate into a second FSU, and the fourth, fifth and sixth meta-FSUs would aggregate
into a third FSU. Then, to calculate the NTCP in a way analogous to equation (1), the relevant set of
probabilities that need to be pooled over is the set of functional subunit complication probabilities (FSCPs):

NTCP=

{
1−

3∏
i=1

[1− FSCPsi ]
vi

} 1
s

. (7)

To calculate these FSCPs, in turn, we pool over the relevant base meta-FSUs:

FSCP1 = PCNN
1 (8)

FSCP2 =
(
1−

(
1−PCNN

2
sF2
)v22(

1−PCNN
3

sF2
)v23)1/sF2

(9)

FSCP3 =
(
1−

(
1−PCNN

4
sF3
)v34(

1−PCNN
5

sF3
)v35(

1−PCNN
5

sF3
)v36)1/sF3

. (10)

While equation (8) is trivial since there is only one FSU in the meta-FSU, more generally we see that for each
FSCPi, we must specify a distinct exponent sFi and a distinct set of relative volume fractions vij, for each of
the jmeta-FSUs that make up this ith FSU.

While the symbolic formalism in equations (7)–(10) can very rapidly become cumbersome, we see that
the corresponding graphical representation in figure 5 is much easier to manipulate and work with. In this
way, when deep learning different architectures with different numbers and organizations of intermediate
layers, we can more flexibly adapt our models to represent more general kinds of functional organization
than are usually described with the RS model.

It is worth noting that this approach can be straightforward generalized to ‘multi-channel’ inputs and
outputs. For instance, rather than assuming that each input neuron comes with a known FSU label, we can
instead take the raw image data, perform autosegmentation on it to generate N channels each corresponding
to a separate segmentation mask, and combine those channels with a 3D dose map to generate our DRSN
input dose layer from scratch. Additionally, instead of just learning a single toxicity outcome, we can equip
our intermediate and output neurons with multiple channels, each corresponding to a different clinical
endpoint that we wish to predict. Although we will not address these generalizations here, they are important
avenues for future work.

3. Case study: xerostomia inαRPT

In this section, we will apply our developed formalisms to analyze deep learning, for both the RS and DRSN
models, in the context of xerostomia during αRPT. We start with a brief clinical overview motivating both RS
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Figure 6. RPT-specific approximations, including neglect of off-target weights due to short range (left) and replacement of
generalized mean pooling with global average pooling due to the nature of the Poisson distribution (right).

and DRSN models of salivary gland toxicity. We follow this with a mathematical model of radionuclide
dosimetry, and show how it leads to useful approximations, specific to the context of αRPT, in both the RS
and DRSN network architectures. We then show that information geometric reasoning, based on the concept
of sloppiness when fitting multiparameter models, yields quantitative intuition into why neural networks
generalize without overfitting despite significant redundancy in network parameters.

3.1. Clinical background and significance of salivary gland radiobiology
Xerostomia arises from irradiation of the salivary glands, most notably the parotid gland, and is a common
dose-limiting toxicity for several αRPT agents currently under development [14, 15]. Foremost among these
is 225Ac-PSMA-617, which has demonstrated promise in treating metastatic castration-resistant prostate
cancer. However, the mechanisms of xerostomia in αRPT remain incompletely understood.

Conventional radiobiology, based on experience from external beam radiation therapy (EBRT), suggests
that parotid glands can be modeled as RS-like parallel organs [16], with each voxel of a parotid gland contour
constituting an individual FSU. The NTCP is then predominantly determined by the average dose. However,
recent evidence from αRPT is inconsistent with this [17], with patients reporting xerostomia despite average
biologically effective doses well below expected EBRT toxicity thresholds.

A proposed resolution to this paradox has been to consider a more refined, DRSN-like model of parotid
gland radiobiology [18]. Specifically, rather than assume that all voxels in the parotid gland are identical and
organized in parallel, a more reliable approach may be to segment the parotid gland contour into two
sub-contours: (a) an acinar region composed of parallel organized voxels responsible for the production and
secretion of saliva, and (b) a ductal region composed of serially organized voxels responsible for excreting the
saliva into the mouth. The acinar and ductal regions are then serially linked to form the aggregate parotid
gland architecture. Initial estimates based on this model suggest it as a plausible mechanism for the
unexpectedly high toxicities observed in early αRPT treatments.

3.2. Radionuclide dosimetry results in further simplified neural network architectures
As a reasonable first approximation to αRPT dosimetry, we can take the dose to the N parotid gland voxels to
be Poisson-distributed [19] with an average dose ⟨D⟩,

p(Di) =
⟨D⟩Die−⟨D⟩

Di!
, i= 1, . . . ,N. (11)

For the case of αRPT, we may make two further simplifying approximations, as illustrated in figure 6. First,
note that the characteristic length scale of a voxel Lvoxel is typically on the order of a few millimeters, while
Rα, the characteristic range of emitted alpha particles Rα is typically around tens of microns [20], orders of
magnitude smaller. As a result, for now we can ignore off-target effects. Additionally, we note that for the case
of a Poisson distribution of dose and survival probabilities (based on QUANTEC parameters), and for large
numbers of voxels N ≫ 1, the generalized pooling function Φ shows negligible variation with the seriality
parameter s. Thus, we can safely replace it with a fixed global average pooling, with no learnable parameters.

It is worth emphasizing that approximating Φ with the global average is only justified if N ≫ 1. In
particular, for the DRSN model, the final pooling of the serially-linked acinar and ductal neurons still
requires an explicit evaluation of Φ. However, we note that, since s is defined as the fraction of serial subunits
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Figure 7. RS (top) and DRSN (bottom) network architectures for xerostomia during αRPT.

in a structure, for the case of two neurons the only two physically sensible values it can take are s= 0 or 1,
corresponding to two parallel or serial linked subunits respectively. For this specific problem, we can thus
assign s a fixed value of 1, as is appropriate for serially linked acinar and duct subunits.

With these approximations in place, we arrive at the simplified set of RS and DRSN networks illustrated
in figure 7. The RS model assigns each voxel in the parotid gland two learnable activation parameters, a
weight and a bias, and the NTCP results from average pooling across all activations. Meanwhile the DRSN
model allows for two distinct sets of learnable activation parameters, one for the M acinar voxels and the
other for the N-M duct voxels, resulting in four learnable parameters in total. After separately averaging both
the acinar and duct activations, the two aggregate failure rates can then be combined using the NTCP
pooling function for the case of two serially linked subunits.

3.3. Simulation details and parameters
For the RS model, we take from [21] the parotid gland parameter values (D50,γ50)PG = (2.22 Gy, 0.83),
which translates to corresponding neural network parameters (wparotid, bparotid)= (0.102 Gy−1,−2.26). For
the DRSN model, although we do not have acinar-specific or duct-specific parameters, for the purpose of
demonstration we may make the ansatz that ductal cells have a somewhat higher dose threshold and a
somewhat steeper dose-response. Thus, we can take (D50,γ50)acinar = (2 Gy, 0.5) and (D50,γ50)duct =
(3 Gy, 0.9), which translates to (wacinar, bacinar)= (0.068 Gy−1,−1.36) and (wduct, bduct)= (0.122 Gy−1,
−2.45). We also take ⟨D⟩= 12 Gy, which is a good qualitative estimate of a typical dose in αRPT.
Additionally, for convenience, we take the parotid gland to have N = 400 voxels, equally split between
M = 200 acinar voxels and 200 remaining duct voxels. As we will show later, the qualitative principles
gleaned from our analysis are rather general and independent of specific parameter values, although we do
comment on the influence of parameter variations where appropriate.

For both the RS and DRSN models, we generate synthetic datasets using the above-mentioned
parameters. For each model, we generate 50 training samples and 50 test samples. The RS-generated datasets
are then used as inputs for training an RS neural network, and likewise for the DRSN-generated datasets and
a DRSN network. In all cases, we run 50 different replicates, with random initialization of parameters. The
networks are trained using stochastic gradient descent with momentum 0.1, and with mean-squared-error
(MSE) loss function without regularization. We used a fixed learning rate of 10−4 and 200 epochs of batch
size 1 for the RS network, and corresponding values of 10−3 and 100 epochs of batch size 1 for the DRSN
network. To evaluate performance and generalization, we calculate the MSE of the training and test sets for
each replicate.
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Figure 8. (Left) Distribution of learned parameters over the 50 training replicates for the RS model. The black data point indicates
the true parameter value used to generate the data. (Right) Train and test MSE plots for the corresponding parameters, including
the global minimum at the origin.

Figure 9. (Left and middle) Distribution of learned parameters, for both the acinar (left) and duct (middle) over the 50 training
replicates for the DRSN model. The black data point indicates the true parameter value used to generate the data. The data points
are annotated by replicate number. (Right) Train and test MSE plots for the corresponding parameters, including the global
minimum at the origin.

4. Results and discussion

4.1. Results: robust generalization despite variability of trained parameters
The results of our simulations for the RS and DRSN simulations are shown in figures 8 and 9 respectively.
For both cases, there is a variable distribution of learned parameters across replicates. It is worth highlighting
two salient features of this variability. Firstly, the distribution of learned parameters is not random, but falls
along a structured manifold in parameter space. This is evident by inspection for the case of the RS networks,
where the distribution of the learned RS weight and bias, falls on a straight line. Furthermore, although it is
not obvious from the initial plots, the distributions of the acinar and duct parameters when training DRSN
networks also has a characteristic structure, which we will describe momentarily.

Secondly, the ability of the neural network to generalize without overfitting, such that the test MSE is not
significantly greater than the train MSE, is robust to the specific replicate parameter values. It is true that the
absolute values of the MSEs for both the train and test would be globally minimized to 0 by training
networks that converged onto the correct parameter values. However, the ability to generalize beyond the
training set without overfitting holds even when converging onto an ‘incorrect’ set of parameters. In
addition, it is worth pointing that even though the different replicates, strictly speaking, have higher MSEs
than the true global minimum value of 0, these MSEs are still extremely low (<10−4), and any difference in
performance among replicates is likely to be negligible from a practical standpoint.

4.2. ‘Sloppiness’ in mechanistic multiparameter models: a way of reconciling radiobiological
interpretability with neural network parameter robustness
The results of these calculations are not particularly surprising to experienced practitioners of deep
learning—indeed, it is well-known that many different parameter values can perform comparably on a given
dataset [22]. On the other hand, the results do raise philosophical concerns about the validity of the
radiobiological interpretation. When fitting a mechanistic model to data, one might think the ability of the
fit to extrapolate and make predictions would depend strongly on fitting to the ‘correct’ parameters.
However, our results here indicate that many different choices of parameters are practically equallypredictive,
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and the fitted model can accurately extrapolate even in the presence of substantial uncertainty of individual
parameters.

Remarkably, this is precisely what has been found in recent decades by theoretical physicists studying the
information geometry of fitting large multiparameter models, in areas as diverse as biology, physics,
economics and engineering [23, 24]. Explicitly, the relative importance of a fitting parameter for predictions
can be characterized, to a first approximation, by the Hessian of the loss function, evaluated at the true
parameter values associated with the global minimum. By diagonalizing the Hessian and finding the
corresponding eigenvectors and eigenvalues, we can classify parameter combinations as ‘stiff ’ or ‘sloppy’,
depending on whether the eigenvalues are large or small, respectively. A surprisingly universal finding for
models across a range of disciplines has been that most parameter combinations are sloppy, with only a few
stiff combinations being important for predictions for practical purposes.

In the following subsection, we will apply these concepts to characterize the stiff and sloppy directions in
both the RS and DRSN models, but in a somewhat idiosyncratic way. Instead of explicitly calculating the
complete Hessian, we start by estimating it to first order with a ‘mean-field’ approximation. We then show
that in this approximation, by defining suitable reparameterizations of the original weights and biases, the
cost function can be recast in a form that makes the calculation of the Hessian, and its eigenvalues and
eigenvectors, almost trivial.

4.2.1. Identifying stiff and sloppy directions in parameter space
The mean-field approximation works by decomposing the Poisson distribution from equation (1) into two
parts: a ‘delta-function’ perfectly localized at the mean value, and higher order corrections accounting for
sample-to-sample fluctuations around the mean. The mean-field approximation is equivalent to ignoring
these corrections

p(Di) =
⟨D⟩Die−⟨D⟩

Di!
= δ (Di −⟨D⟩) + h.o.c.≈ δ (Di −⟨D⟩) , i= 1, . . . ,N voxels. (12)

Then, the average probability of FSU failure P̄, as a function of w and b, simplifies to

P̄(w,b) =
1

N

N∑
i=1

1

1+ exp(w∗Di + b)
≈ 1

1+ exp(w∗⟨D⟩+ b)
. (13)

With the mean-field approximation in place, we now write down the loss function, which is the MSE loss
for G= 50 data points. For the RS model, we have

LRS (wPG,bPG) =

∑G
i=1

(
P̄(wPG,bPG)− P̄

(
wparotid,bParotid

))2
G

=
(
P̄(wPG,bPG)− P̄

(
wparotid,bparotid

))2
(14)

where in the second equality we are using the fact that the quantity in the summation is independent of the
replicate data point. Meanwhile, for the DRSN model, using analogous arguments we find that

LDRSN (wA,bA,wD,bD) =

( √
(1− P̄(wA,bA))(1− P̄(wD,bD))−√

(1− P̄(wAcinar,bAcinar))(1− P̄(wDuct,bDuct))

)2

. (15)

Inspecting equations (1) and (15), what we in fact observe is that in both cases, the weights and biases only
influence the loss function through their influence on the NTCP evaluated for a uniform dose ⟨D⟩, let us
define it as NTCP

NTCP= NTCP(⟨D⟩) =
{

P̄(wP,bP)
(1− P̄(wA,bA))(1− P̄(wD,bD))

RS
DRSN

}
. (16)

Therefore, it will be convenient to do a reparameterization in term of NTCP and any parameter variation
that leaves it unchanged. In the case of the RS model, there is only one remaining degree of freedom if we fix
NTCP, let us call it θRS, while for the DRSN model, there are three remaining degrees of freedom
θ⃗DRSN = (θDRSN1,θDRSN2,θDRSN3). We will explain the geometric forms of the θ degrees of freedom in a
moment. For now, it suffices to point out that with this reparameterization the loss functions take very
simple forms

LRS (wP,bP)→ LRS(NTCP,θRS) = (NTCP−NTCP0)2 (17)

9
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Figure 10. (Left) 2D and (right) 3D contour plots of the log of the MSE for the RS model, with the global minimum at the true
parameter value, along with local minima spanning the sloppy direction of parameter variation but localized in the stiff direction.

LDRSN (wA,bA,wD,bD)→ LDRSN(NTCP, θ⃗DRSN) = (NTCP−NTCP0)2 (18)

where NTCP0 is NTCP evaluated at the true parameter values (wParotid and bParotid for the RS model ;
wAcinar,bAcinar,wDuct and bDuct for the DRSN model).

With this setup, we can now calculate the Hessian. Consider a model with a vector of J fitting parameters

X⃗= (X1, . . . ,XJ), with the fit based on minimizing a loss function L
(
X⃗
)
. The Hessian, defined at a given

point in parameter space H
(
X⃗= X⃗0

)
, is

Hjk

(
X⃗= X⃗0

)
=

(
∂L

∂Xj
· ∂L

∂Xk

)
X⃗=X⃗0

j,k= 1, . . . , J (19)

where the partial derivatives are evaluated at X⃗= X⃗0. If we define X⃗RS =
(
NTCP,θRS

)
and

X⃗DRSN =
(
NTCP, θ⃗DRSN

)
, then it is straightforward to see from equations (17)–(19) thatHjk is 2 if j and k are

both 1, and is 0 otherwise. Thus, by construction, H is already diagonalized, and has a single stiff eigenvector,
corresponding to NTCP, with eigenvalue 2. The remaining eigenvector directions θ⃗ are sloppy, with
eigenvalues 0. Summarizing, in the mean-field approximation only the aggregate NTCP is meaningful for
predictions.

4.2.2. The geometry of sloppy parameter variations corresponds to the geometry of local minima in the neural
network loss function
We now turn to the geometric interpretations of the sloppy directions θ⃗. The case of the RS model is easier
since it is clear from equations (1), (16) and (17) that (wPG,bPG) only enter NTCP via the linear combination
wPG⟨D⟩+ bPG. Thus, sloppy parameter variation corresponds to any variation that leaves this linear
combination invariant, or the line

wPG⟨D⟩+ bPG = wParotid⟨D⟩+ bParotid. (20)

If we inspect the form of the MSE loss function for the RS model, as shown in figure 10, and compare it
with the results in figure 8, we observe that the local minima in parameter space all lie along this sloppy
manifold. In other words, sloppiness explains why the ability of the neural network to generalize without
overfitting is robust to variability in the learned parameters across replicates. Namely, the different local
minima that each of the replicates converge to during training are not randomly distributed but restricted to
vary only in the directions that do not result in overfitting.

We now turn to the interpretation of θ⃗ for the DRSN case, where there is even more freedom. To start,
note that just like for the parotid gland parameters in the RS model, the individual acinar and duct
parameters are free to vary without changing the aggregate probabilities P̄(wA,bA) and P̄(wD,bD)

wA⟨D⟩+ bA = ln

(
1− P̄(wA,bA)

P̄(wA,bA)

)
(21)

10
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Figure 11. (Left and middle) Replots of the distributions of learned parameters, for both the acinar (left) and duct (middle), but
with select annotated lines of constant failure probability that intersect with six selected points. (Right) Plot showing the
anticorrelation of the acinar and duct probabilities of failure that encapsulates the hidden geometric structure of the sloppiness in
the DRSN model.

wD⟨D⟩+ bD = ln

(
1− P̄(wD,bD)

P̄(wD,bD)

)
. (22)

Note that, in contrast to equation (2), P̄(wA,bA)and P̄(wD,bD)are not fixed, but still have some freedom
to vary while keeping NTCP= (1− P̄(wA,bA))(1− P̄(wD,bD))fixed. A geometric interpretation of this is
that the sloppy variation of the acinar and duct parameters still amounts to straight lines in individual w-b
space, with the same slope as in the RS model, but with variable intercepts constrained to be anti-correlated
with one another. A pictorial demonstration of this geometry is shown in figure 11, where just as for the RS
model, we see that the distribution of l̀ocal minima’ among different training replicates lies along the
expected parameter subspace.

5. Outlook and conclusions

The architectures and simulations described here are just the tip of the iceberg, and there is much more to
explore relating to the connection between mechanistic radiobiology and deep learning. Here, we will briefly
comment on one particularly relevant and promising direction.

5.1. Robustness of sloppy and stiff parameter spaces as a guide to regularization
In our simulations, we considered somewhat idealized scenarios, with clean data and more training data than
network parameters. Surprisingly, we found that, even in this regime, the trained neural networks can
robustly generalize without having to converge to the global minimum, so long as the train and test cases
were generated with the same distribution.

Very often, however, the number of network parameters is greater than the number of data points,
outcome measurements are noisy and probabilistic, and there is some amount of ‘mismatch’ between the
training and test set distributions. It is well established that if such effects become too great, at some point
the ability of neural networks to generalize without overfitting breaks down, despite the robustness to
parameter variation that we have discussed. As a result, regularization of model complexity, through
techniques such as adding explicit penalties to the loss function or including dropout layers, is usually still
necessary to prevent overfitting.

Although we have not directly addressed regularization in this work, the lessons we have learned from
analyzing sloppy and stiff directions of parameter space are directly relevant to it. A subtle point that we
glossed over is that the structure of the stiff and sloppy directions in parameter space is implicitly dependent
on the distribution of the training data. This concept provides intuition as to when and why regularization
may be needed.

For instance, if the training data is too noisy, or if the model is sufficiently complex that the data is sparse,
the sample distribution is biased away from the true distribution of training data. As a result of this sampling
bias, the corresponding sloppy regions in parameter space are also biased, increasing the susceptibility of the
training to ‘spuriously sloppy’ local minima that will overfit.

As another example, if the test distribution differs from the training distribution, then the sloppy region
of parameter space for the training data will be different from that of the test data. Although the global
minimum, associated with the true parameter values, will always lie in the sloppy space regardless of data
distribution, the local minima in general will be deformed away from their locations in the training
distribution. Thus they will not typically generalize robustly to the mismatched test data set.

11
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With this insight in mind, our work here suggests a new design principle for regularization, which in
practice is often treated as an art form. Specifically, when increasing model complexity, the distribution of
local minima in the loss landscape of the neural network might provide clues into when the model is starting
to overfit, based on deviations from expected stiff and sloppy directions. Furthermore, when modeling a test
set that is mismatched from the training set, analysis of how the stiff and sloppy directions are deformed
could be a guide as to how close to the global minimum the training needs to converge to in order to stay in
the test set’s sloppy region.

5.2. Conclusion
In conclusion, we have shown that the RS model is equivalent to a simple ANN, and that generalizing this to
allow for both hierarchical tissue organization and off-target effects leads to an interpretable class of ANN
architectures for dose-toxicity mapping, which we name DSRNs. Using simulations on a test case of
xerostomia in αRPT, we have highlighted how thinking about the information geometric concept of
sloppiness, as it relates to curve-fitting a mechanistic multiparameter model, provides intuition into the
ability of the ANN to generalize without overfitting. We anticipate that our work will more generally open up
many new avenues for interdisciplinary collaboration between practitioners in the fields of radiobiology and
machine learning.
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