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Abstract
Many applications in chemistry, biology and medicine use microfluidic devices to separate,
detect and analyze samples on a miniaturized size-level. Fluid flows evolving in channels of only
several tens to hundreds of micrometers in size are often of a 3D nature, affecting the tailored
transport of cells and particles. To analyze flow phenomena and local distributions of particles
within those channels, astigmatic particle tracking velocimetry (APTV) has become a valuable
tool, on condition that basic requirements like low optical aberrations and particles with a very
narrow size distribution are fulfilled. Making use of the progress made in the field of machine
vision, deep neural networks may help to overcome these limiting requirements, opening new
fields of applications for APTV and allowing them to be used by nonexpert users. To qualify the
use of a cascaded deep convolutional neural network (CNN) for particle detection and position
regression, a detailed investigation was carried out starting from artificial particle images with
known ground truth to real flow measurements inside a microchannel, using particles with uni-
and bimodal size distributions. In the case of monodisperse particles, the mean absolute error
and standard deviation of particle depth-position of less than and about 1 µm were determined,
employing the deep neural network and the classical evaluation method based on the minimum
Euclidean distance approach. While these values apply to all particle size distributions using the
neural network, they continuously increase towards the margins of the measurement volume of
about one order of magnitude for the classical method, if nonmonodisperse particles are used.
Nevertheless, limiting the depth of measurement volume in between the two focal points of
APTV, reliable flow measurements with low uncertainty are also possible with the classical
evaluation method and polydisperse tracer particles. The results of the flow measurements
presented herein confirm this finding. The source code of the deep neural network used here is
available on https://github.com/SECSY-Group/DNN-APTV.

Keywords: deep neural network, astigmatic particle tracking velocimetry, flow measurements,
microfluidics
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1. Introduction

Microfluidic devices have great potential in several fields
including chemical processing, medical science, biology and
energy conversion, among others. Very often the fluid flow
has a 3D characteristic due to the small dimensions of the
fluidic channels or nonlinear effects exploited in those small
devices. To characterize the fluid flows, optical velocity meas-
urement techniques such as particle image velocimetry (PIV)
or particle tracking velocimetry (PTV) are often applied. For
this, particles of well-known size and concentration are sus-
pended in the fluid as tracers that have to faithfully follow
the fluid flow. However, due to the very small dimensions of
several tens to hundreds of micrometers, and optical access
given from only one side, the whole fluid volume is illu-
minated. In conjunction with velocity gradients in the out-
of-plane direction, this causes major bias errors. To circum-
vent these biases, several techniques capable of measuring
the three-component, three-dimensional velocity distributions
with high spatial resolution have been developed [1]. One of
these techniques fulfilling the requirement of velocity meas-
urements from only one side is the astigmatic particle tracking
velocimetry (APTV), which has widely been used for different
applications [2–6]. This technique uses astigmatic aberrations
caused by the introduction of a cylindrical lens in the detection
path of a microscope, yielding elliptical particle images. The
dimensions of their principal axes depend on the depth posi-
tion of the spherical particles [7–10]. For the calibration, usu-
ally particle images from particles placed on several well-
known depth-positions inside the measurement volume are
evaluated and parametric fit functions for the principal axes of
the elliptical particle images with depth-position are determ-
ined [11]. For this, 2D Gaussian-shaped elliptical particle
images are assumed. During flow measurements the shape of
detected particle images is evaluated in terms of their ellipt-
icity, whereby the actual depth position of the correspond-
ing particles is derived by minimizing the Euclidean distance
between the measured data and the calibration curve [11]. This
evaluation method is referred to as the Euclidean approach and
promises a robust estimation of the particle position with low
uncertainty even for noisy data, on the condition that minor
optical aberrations exist and high-quality monodisperse spher-
ical particles are used as tracers [12]. However, both require-
ments cannot be fulfilled for each experimental setup and
application. For example, it might be beneficial to measure the
velocity of biological samples or randomly shaped particles, or
optical access of only low quality is given due to thick cover
glasses to withstand high pressure or due to internal refractive
index gradients caused by tensions in microfluidic channels
made of elastomers. Therefore, efforts were made to predict
uncertainties depending on the optical setup [13], and to gen-
eralize the evaluation methods based on correlations [10].

For the latter, recent progress made in the field of machine
vision promises a new advanced evaluation method for APTV
with less computational time. Machine learning algorithms
are powerful in classifying images. In previous works, a
technique was developed that automatically identifies 2770
German plant species and builds upon the latest deep learning

approaches. Achieving accuracies well beyond 80% on a
single plant image in this extremely fine-grained classification
problem impressively demonstrates the potential of machine
learning [14–16]. Deep learning techniques have also been
used to classify the species and the age of phytoplankton using
a microfluidic image cytometer [17]. However, a large amount
of already annotated data is required to train the network.
Neural networks have also been used in fluid dynamics in the
mid-90s of the last century, for the determination of the fluid
velocity using PIV and PTV [18]. In the first approach, already
multilayer neural networks (three and four layers) were used
to determine the particle image displacement in successive
frames. The images in this early work were not analyzed by
the network but used classical image processing methods. The
particle image center positions were fed by a binary image into
the network. The number of correctly matched particle images
in these studies were always larger than for classical meth-
ods in low seeding concentration images (50 to 500 particle
images in double exposure per image) at that time. Using
cellular neural networks for PTV a higher matching prob-
ability using less computational time was found [19]. Fur-
ther improvements have been made using neural networks by
identifying partly overlapping particle images to exclude out-
liers or by reconciling the stereo view for 3D PIV [20]. How-
ever, neural networks were used to perform only parts of the
PIV processing scheme. The first end-to-end PIV approach
using neural networks was reported by Rabault et al in 2017,
applying convolutional neural networks (CNN) and fully con-
nected neural networks (FCNN) to synthetic data and exper-
imental test sets [21]. The proof-of-concept results presen-
ted therein hold a lot of promise, particularly for flow meas-
urements close to boundaries where strong velocity gradients
are present. Very dense vector fields with one vector for each
pixel can be obtained by modifying the CNN LiteFlowNet for
optical flow estimations [22]. This approach will significantly
increase the spatial resolution further, dependent on the actual
particle image diameter given by the optical magnification of
the setup used, particle and pixel size, as known from PIV
using single-pixel ensemble correlation [23]. Recently, deep
convolutional networks were used to determine the velocity
vectors in densely seeded flows [24, 25]. Since different flows
(wall bounded, bluff body, uniform) were used for training,
the algorithm was capable of being applied to a variety of flow
situations. Although the results are quite promising, the com-
putational costs were much larger than using classical correla-
tion methods and the performance at new flow situations is not
fully proven yet. However, machine learning algorithms are a
powerful tool in classifying particle images and have already
been used for the calibration of a macroscopic APTV by
extracting more generalized Gaussian features of the particle
images [26]. This shows that recent advances made in the field
of machine vision offer new possibilities, to obtain a more
robust and user-friendly evaluation method, probably also for
the case of overlapping particle images.

The aim of this paper is to show the capability of a cas-
caded deep neural network, not only to detect particle images
but also to determine the depth-position of the corresponding
particles, by comparing this novel method with the classical
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Figure 1. Experimental setup (left) and image capture taken from the calibration measurements with monodisperse particles of 5 µm in
diameter (right).

evaluation method based on the Euclidean distance approach.
For this, artificially generated elliptical particle images with
known ground truth were used to get first insights of the
achievable uncertainty for the particle depth-position. How-
ever, as aberration-free, 2D Gaussian-shaped particle images
do not exist in real experiments, calibration measurements
were made with a real APTV setup using monodisperse
particles and a particle solution with bimodal size distribu-
tion. Flowmeasurements in a straight microchannel using both
particle solutions demonstrate the applicability of the novel
method and confirm the results derived from the calibration
measurements.

2. Experimental setup and calibration

In order to experimentally qualify the use of the deep neural
network for 3D flow measurements applying APTV, a micro
channel made of polydimethylsiloxan (PDMS) with a long
straight section was used. The PDMS was produced by mix-
ing base and curing agent in a ratio of 10:1. This mixture
was then evacuated to remove air bubbles and poured into
a homemade, milled casting mold made of aluminum. The
estimated width W and height H of the microchannel was
W×H = (565× 507) µm2. To harden the PDMS, the mold
was placed on a hotplate at 80 ◦C for 2 h. To ensure optical
access from the bottom side, the PDMS channel was closed
with a 1 mm thick glass cover slide. To bond the PDMS to
the microscope slide, both were placed in a plasma cleaner to
activate their surfaces with the aid of an O2-plasma.

The experimental setup used in the present study is
sketched in figure 1. For the measurements, the assembled
micro channel was placed on top of an inverse microscope
(Axio Observer 7, Zeiss GmbH) equipped with a long work-
ing distance Plan-Neofluar objective (M20x, NA = 0.4, Zeiss
GmbH). A high-power LED at a central wavelength of about
520 nm (Solis525C, Thorlabs Inc.) was used to illuminate
fluorescent polysterol particles (530/607 nm, PS-FluoRed,
MicroParticles GmbH) of either 5 µm or 2.5 µm in diameter,
which were dispersed in an aqueous glycerol solution. The
glycerol content of the solution was set to about 20 wt. % ,
in order to match the particle’s density of about 1.05 g cm−3

and keep sedimentation low [27]. A syringe pump (neMESYS,
Cetoni GmbH) with a 1 ml glass syringe (ILS Inovative
Laborsysteme GmbH) was used to pump the aqueous gly-
cerol solution through the microchannel with a constant flow
rate of 0.05 ml h−1. To discriminate between illumination and
fluorescent light of the tracer particles, the microscope was
equipped with a longpass dichroic mirror (DMLP567T, Thor-
labs Inc.) and a longpass filter (FELH0550, Thorlabs Inc.)
with a cut-on wavelength of 567 nm and 550 nm, respect-
ively. To induce astigmatism in the detection path, a cyl-
indrical lens with a focal length of fcy = 200 mm was placed
approximately 40 mm in front of the sensor of the sCMOS
camera (imager sCMOS, LaVision GmbH). The axis of the
cylindrical lens was carefully aligned to the y-axis of the
camera sensor to shorten the resulting focal length in the x-
direction, while keeping the focal length in the y-direction
almost unaffected. This yields different magnifications of the
particle images in the x- and y-direction of the sensor, depend-
ing on the z-position of the particles. As the depth of the
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Figure 2. (a) Width ax and height ay of particle images obtained from particles close to the center of the FOV using particles either of 5 µm
or 2.5 µm in diameter, and (b) determined width ax,i and height ay,i of individual particle images from particles with bimodal size
distribution. For illustration, the corresponding calibration functions for particles of 5 µm and 2.5 µm are depicted as well.

measurement volume of about 80 µm was smaller than the
height H of the microchannel, the measurement volume was
traversed through the microchannel bymoving the microscope
objective in equidistant steps of 30 µm. At each measurement
position 3000 images were taken in single-frame mode with a
frame rate of 50 Hz.

Before the flow measurements were taken, the fluorescent
particles were dried off on a glass cover slide of the same type
as used for the microchannel. These particle images served
as calibration data for both evaluation methods. An exem-
plary image capture with randomly distributed particles within
the xy-plane is depicted on the right side of figure 1. For
the calibration, these particles have to be positioned on sev-
eral well-known z-positions within the measurement volume,
to obtain the correlation between particle image shape and
depth-position of the particles. However, as can be seen by
the three zoomed-in particle images at the lower left, center
and upper right position within the field of view (FOV), the
particle images slightly deviate from each other, although they
are located at the same z-position. This is further highlighted
by the corresponding intensity profiles depicted in figure 1.
While the particle image intensity profile close to the center
is of nearly Gaussian shape, the particle images on the lower
left and upper right positions are slightly distorted to the left
and the right side, respectively. This asymmetric behavior is
caused by inherently spherical aberrations from the optical
setup, especially caused by the noncorrected cylindrical lens
[13], and may result in a higher error of the particle position as
only undistorted, elliptical particle images of Gaussian shape
are considered in the classical evaluation method. In contrast,
neural networks consider all distinctive features of the particle
images. However, if local variations are present, comprehens-
ive training data sets are necessary to keep the position error
low. Therefore, calibration measurements were done by tra-
versing the glass cover slide with the dried particles not only
in the z-direction, but also in the x- and y-directions. In total,
9225 images were captured with an in-plane displacement of

the glass slide of almost 1 mm and a traversing range of 80 µm
in depth-direction. A step width of ∆z = 2 µm was set in
between the several well–known depth-positions for high spa-
tial resolution in the z-direction. The unidirectional position-
ing accuracy in the z-direction was less than 10 nm and can
be neglected. However, as it turned out later by processing the
data, a slight tilt of the glass cover slide of about 0.04

◦
was

present during the calibration measurements. This very slight
tilt caused a shift of the particles of about 0.7 µm in the z-
direction, while moving the glass cover slide 1 mm in the x-
and y-directions. This undesired particle displacement limited
the positioning accuracy in the z-direction during the calibra-
tion measurements and has to be borne in mind for the discus-
sion about the position error of the experimental test case in
subsection 4.2.

The images were preprocessed with an in-house Matlab
script to detect and validate the individual particle images [28].
The estimated x- and y-positions, as well as the sizes of the
particle images, were fed into the training set for the deep
neural network as initial data. In addition, with the valida-
tion step, taking the maximum and minimum allowable size
of particle images into account, partly overlapping particle
images were excluded from the training data. As flow meas-
urements were conducted with two different particle sizes
at the same time, calibration measurements were done three
times: solely with particles of 5 µm and 2.5 µm in diameter,
as well as with both particle sizes at the same time. Hence,
the total training data for the deep neural network comprised
3× 9225 image captures containing pre-annotated and valid-
ated individual particle images.

In figure 2(a) the particle image width ax and height ay

determined close to the center of the field of view (FOV) are
depicted over the z-position. As expected, the astigmatic defo-
cus is independent of particle diameter dp. The two focal points
of the astigmatic setupFxz andFyz coincidewell for bothmeas-
urements. The general behavior of particle image diameter
a(z), depending on the position relative to the focal point, can

4



Meas. Sci. Technol. 31 (2020) 074015 J König et al

be approximated by [29]

a(z) = M

[
d2p + 1.49λ2

(
n20
NA2 − 1

)

+4 (z− zF)
2

(
n20
NA2 − 1

)−1
]1/2

,

(1)

and depends on particle diameter dp, magnification M, emitted
wavelength λ, numerical aperture NA and the refractive index
of the immersion medium n0 of the microscope objective, as
well as on the actual z-position of the particle relative to the
position where the focal point zF is located. Here, either the
focal point Fxz or Fyz applies, depending on whether the width
ax or the height ay of the particle image is considered. Basic-
ally, equation (1) consists of three terms describing the geo-
metrical and the diffraction limited imaging as well as a blur-
ring of the particle image due to a defocus. The latter plays an
important role for APTV as its principle is based on the defo-
cus [28]. Close to the focal points, the particle images devi-
ate in width ax and height ay mainly due to the geometrical
part in equation (1), and the different particle sizes. However,
as can be seen in figure 2(a), the calibration curves for the
two different particle sizes coincide with increasing distance
to the focal points. With the parameters of the optical setup,
the difference between the particle image diameters of both
particle sizes decreases to less than 10% within a distance of
10 µm to the focal point zF, as the geometrical part becomes
less significant in comparison to the strong defocus. Themeas-
ured particle image width and height confirm this theoretical
estimation quite well. Themeasured particle images during the
calibration measurement using both particle sizes are depic-
ted in figure 2(b) within the axay-space. For clarity, the indi-
vidual calibration functions obtained either using 2.5 µm or
5 µmparticles are indicated by the lines as well. While particle
images close to and in between the two focal points are separ-
ated from each other depending on the particle size, both over-
lap within the axay-space towards the margin of the measure-
ment volume. This makes it difficult to discriminate between
both particle diameters there, if both are present at the same
time. In the case of flow measurements, applying a maximum
allowable Euclidean distance from the calibration curve within
the axay-space as a validation step during post-processing, the
other type of particles can be excluded from the measurement
data in between both focal points, on condition that the particle
sizes sufficiently differ from each other. However, towards the
margins of the measurement volume in the depth direction a
higher position error and, therefore, a higher velocity uncer-
tainty has to be expected.

3. Image processing

In contrast to the artificially-made particle images obtained
from the APTV particle image generator, the experiment-
ally taken images have to be preprocessed due to background
noise occurring in real experiments, e.g. caused by particles
that stick to the channel walls. For background removal, the
minimum intensity for each pixel was determined over all

images taken at each measurement position, and subsequently
subtracted from each individual image. As 3000 images were
taken at each measurement position, a very efficient back-
ground removal was obtained. Therefore, particle images from
particles that stuck on the wall were removed efficiently, so
that they did not have to be taken into account for the PTV
algorithm afterwards. For the calibration measurements, no
background subtraction by using the minimum intensity over
time approach was applied.

To determine the 3D particle positions within the measure-
ment volume, the image captures were then processed using a
deep neural network, as described in subsection 3.1. For com-
parison, the same data sets were evaluated using a classical
evaluation approach, see subsection 3.2.

Knowing all 3D particle positions, the particle trajector-
ies were determined using a probabilistic particle tracking
algorithm for a high vector yield [30]. The parameter set-
tings for the particle pairing were the same for both evaluation
approaches. Outliers were detected using a universal outlier
detection [31]. For further evaluation, the randomly distributed
particle velocity vectors were ensemble-averaged and inter-
polated onto a rectangular grid using Gaussian-weighted inter-
polation based on vector distance from the grid nodes. Since
a laminar fluid flow within a straight microchannel was meas-
ured and no change of the velocity distribution has to be expec-
ted in streamwise direction, only a 2D pattern of rectangular
bins with an edge length of 30 µmwas used. Using an overlap
of the bins of 75% yields a velocity vector spacing of 10 µm.

3.1. Deep neural network

For the two stage analysis process of identifying individual
particle images in the image captures containing many of
them, and then estimating the depth position of the corres-
ponding particles, a cascade of two connected deep convolu-
tional neural networks (CNN) is used. Figure 3 depicts a flow
chart of the cascaded network topology. In a more general con-
text, machine learners refer to the two depicted stages as object
detection and regression, respectively. The first CNN is based
on the faster R-CNN architecture (region-based convolutional
neural network) known for its precise object detection capab-
ilities (‘particle image detection’ box in figure 3). This CNN
is used to generate so-called region proposals containing can-
didate objects and then classifies for each of these candidate
regions whether it contains a particle image or not.

Faster R-CNN is especially effective, since the two net-
works share their initial layers and the connected parameters,
making it possible for an image to be processed in one for-
ward propagation through the network rather than performing
an upfront selective search used in precursor approaches, such
as R-CNN and fast R-CNN [32]. More specifically, the input
of the realized faster R-CNN architecture is an image of any
size containing zero or more particle images. The output is
a set of object proposals each containing a cropped candidate
particle image and the position at which it has been discovered
in the input image. The size of the cropped image was set to a
fixed size of 180× 180 pixels, slightly larger than the maximal
width ax and height ay of the elliptical particle images.
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Figure 3. Flow chart of the cascaded CNN architecture used to detect particle images and determine their position. The architecture
consists of two CNNs in total. The first CNN is based on the faster R-CNN architecture with shared initial layers and parameters, used for
particle detection. The second CNN is used for the estimation of the depth-position of the particles.

Within the faster R-CNN architecture, one can decide about
the actual feature extraction network to be used. Here, a Res-
Net architecture with 101 layers as the feature extractor was
used. Since its introduction in 2015, the ResNet architecture
has been successfully applied to many different problems and
won various benchmark competitions, e.g. MSCOCO 2015–
object detection, ILSVRC 2015–image classification, localiz-
ation, object detection. A rectified linear unit (ReLu) is used
as activation function and a batch normalization is applied
after all convolutional layers. To train the faster R-CNN net-
work, an asynchronous stochastic gradient decent (SGD) with
a momentum of 0.9 was used. The initial learning rate was
set to 3e−4, which was further reduced by a factor of ten
after 900 000 and after 1.2 million iterations. The network
weights were randomly initialized from a truncated normal
distribution with a standard deviation of σ= 0.01. To pre-
vent overfitting a L2 regularization was applied. The hyper-
parameters, especially the learning rate and its decay sched-
ule, mini batch size, and SGD momentum, that have a sub-
stantial effect on the performance of the approach, were
determined by performing a systematic search of these para-
meters to obtain the most suitable values, using the valid-
ation split of the dataset. For further general details about
the faster R-CNN architecture, the reader is referred to
[33]. Since an object should be equally recognizable as its
mirror image, we augment the training data from the calibra-
tion measurements with horizontally flipped counterparts per
image.

What remains unknown after the first stage is the particles’
depth-position. Deriving a continuous output value, such as
the desired z-position, based on a given input (particle image),
constitutes a regression problem from a machine learning per-
spective. The second CNN was used to obtain the relation-
ship between elliptical particle images, discovered in the first
stage, and the z-position of the corresponding particles (‘depth
regression’ box in figure 3). It relies on an up-to-date Incep-
tion V3 CNN architecture [34], but utilizes a mean absolute
error (MAE) as the objective function, since it aims to predict
a continuous numerical value rather than a probability distri-
bution as used for classification problems. The network was
trained with an initial learning rate of 0.01 that exponentially
decreased after each epoch by a factor of 2.4. The network was
trained for 800 epochs with a batch size of 32 and Adam as
optimizer [35]. The network’s training converged almost sim-
ultaneously, after 19 epochs, on the training and the validation
set for the regression network. The simultaneous convergence
of the validation set demonstrates that the network not only
learned but is also able to generalize to unseen data.

Deep neural networks require substantial computational
effort for training. However, this training is required only once.
During the inference phase, each image typically requires less
than 100 ms for processing. However, the actual computation
time heavily depends on the specific hardware the model is
computed on. Here, an NVIDIA graphics processing unit of
type RTX2080 was employed. Using the experimental data-
set, the time required for training the particle detection and
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the particle regression model was about 26 and 23 h, respect-
ively. However, training the two models can happen in paral-
lel. Once both models are trained, they can be applied, with
significantly less effort, in intensive inference. Analyzing one
image capture with our trained model pipeline takes 5.28 ms
on the same hardware.

3.2. Classical method

The particle image detection and the evaluation of the
individual particle images followed the general procedure
described in [11, 28]. First, after subtracting the image back-
ground, a particle image detection algorithm based on a
global intensity thresholdwas used to determine regions where
particles are supposed to be present. For this, the width ax

and height ay of the particle images were allowed to vary
between 6 and 180 pixels, according to the particle sizes over
the entire depth ofmeasurement volume determined during the
calibration measurement. Sub-pixel accuracy for the in-plane
positions and for the width ax and height ay of the particle
images were obtained by correlating the particle images with
a Gaussian particle image [36]. The actual depth-position zi

of a particle within the measurement volume was then derived
by minimizing the Euclidean distance between the measured
point [ax,i, ay,i] and the calibration curve in the (ax,ay) -space,
compare figure 2(b). Only those particle images were accep-
ted with a maximum distance from the calibration function of
about 4 pixels. In this way, outliers caused, for example, by
overlapping particle images, were excluded.

4. Assessment of particle position uncertainty

4.1. Synthetic test case

To test the reliability of the new evaluation approach using
deep neural networks for APTV, artificial particle images with
known ground truth of the 3D particle position were used at
first. For this, a particle image generator was applied. The
algorithm of the image generator is based on the mathem-
atical background derived by Rossi et al [12] and generates
particle images from the known optical setup includingmagni-
fication M, focal length of the cylindrical lens fcy, wavelength
of the light λ, refractive index of the medium and so forth.
Here, particle images were produced for a very similar setup as
described above, using a magnification of M = 20 and a focal
length of fcy = 200mm for the cylindrical lens. However, addi-
tional spherical aberrations, as present in the experimental test
case, are not included in the image generator.

4.1.1. Calibration. Artificial calibration images were gener-
ated with approximately 100 000 individual particle images
randomly distributed within a depth distance from 0 to 90 µm,
using a step width of ∆z = 1 µm. In total, 13 650 artificial
images were generated with approximately eight individual
particle images only. In this way, overlapping particle images
were avoided to a very good extent for training the neural
network. Approximately 90% of the particles were used to

Table 1. MAE and standard deviation σz obtained from artificially
generated particle images for the classical and the new evaluation
method using a deep neural network. Quantities drawn from [37].

Classical method Deep neural network

MAEz in µm 0.046 0.339
σz in µm 0.599 0.941

train the neural network, while 10% were used to evaluate the
accuracy of both methods. Details about parameter settings
during the processing of these images, etc, can be found in
a preliminary study presented at the 13th International Sym-
posium on Particle Image Velocimetry (ISPIV 2019) [37].

The mean absolute error MAEz and the standard deviation
σz derived from the differences between the real prescribed
and the estimated particle z-positions (zreal − zest) from the cal-
ibration data, are itemized in table 1.

According to the results, the MAEz for the deep neural net-
work is about seven times higher than that for the classical
method. This is not surprising, taking into account that the
model for the artificially made particle images coincide with
the model of the particle images considered in the classical
evaluation method. Since the particle images are ideally Gaus-
sian shaped, the only discernible feature for the deep neural
network is the radial intensity distribution. As it is known
that these networks perform better with increasing features,
the optical aberrations as shown in figure 1 are expected to
increase the performance for the neural network, whereas it
is detrimental for the classical method. In general, the larger
the deviations from the assumptions made in classical evalu-
ationmethods, the better the deep neural networkwill perform.
This applies not only for the object detection in machine vis-
ion, but also for flowmeasurement techniques like PIV, if high
local flow variations exist [21]. The standard deviations of both
methods are in the same order of magnitude. For the classical
method, the 13 times higher standard deviation compared to
the MAEz certainly limits the uncertainty, as long as no aber-
rations cause deviations of the particle images from the ideal
model of elliptical Gaussian-shaped particle images.

4.1.2. Influence of the noise level. In order to test the
robustness of the trained deep neural network dependent on
the particle image quality, artificial particle images with and
without noise were generated, applying different signal-to-
noise ratios (SNR) ranging from 0 dB to 30 dB. For each
data set, 1000 images with more than 20 individual particles
in each of them were generated. The particles were randomly
distributedwithin a slightly larger depth-position ranging from
−14 µm to 104 µm, since in a typical measurement scenario
the effective depth of the measurement volume is very often
smaller than the microchannel.

In figure 4 the standard deviation σz is depicted over the
SNR-level. Firstly, the standard deviation of the DNN is more
than one order of magnitude larger than that of the classical
method. Evenwithout noisy particle images, the standard devi-
ation of the DNN is significantly increased compared to that
obtained with the calibration data (compare the values given in
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Figure 4. Standard deviation σz dependent on SNR for the classical
method (CM) and the deep neural network (DNN)

table 1). The reason might be that the higher concentration of
particles applied for the testing data cause a higher probabil-
ity of partly overlapping particle images. While particle over-
laps are being recognized in the in-house software using the
classical evaluation method, those overlaps cannot be detected
with the deep neural network yet, yielding a correspondingly
higher amount of outliers. Another reason can be found in the
range of the prescribed z-values. While the depth-positions
of the particles in the test data coincide with the prescribed
z-positions of the artificial calibration set, randomly distrib-
uted particle positions in between the sampling points exist
now, which have to be estimated by regression. Secondly, as
expected, the higher the SNR, the lower the standard deviation
for both methods. Interestingly, the evaluation with the deep
neural network approaches much faster the standard deviation
obtained without noise, indicating that the use of deep neural
networks is relatively robust to noise.

4.2. Experimental test case

To test the new evaluation method under more realistic condi-
tions, the calibration measurements done, as explained in sec-
tion 2, using the monodisperse particle solution with 5 µm
in size and the particle solution with bimodal size distribu-
tion were evaluated. In this way, particle images aberrant from
ideal 2D Gaussian-shaped particle images exist in the data;
compare the zoomed-in particle images and their correspond-
ing intensity profiles in figure 1. Again, 90% of the particles
were used to train the neural network, while 10% of the cal-
ibration images were kept for testing. The artificially gener-
ated particle images were not considered to train the neural
network for the experimental test case. For quantification, the
MAEz and the standard deviation σz were derived from the
real particle position zreal given by the known depth-positions
of the glass cover slide and the estimated particle positions
zest determined either with the classical method or the neural
network. It should be noted that, in contrast to the synthetic
test case, the ground truth of particle position is not known

here, as calibration measurements are subjected to uncertain-
ties (please see also the explanations given in section 2). In
figure 5, the MAEz and the standard deviation σz are depicted
over the z-position within the measurement volume for both
calibration measurements.

The MAEz obtained for the monodisperse particles is
almost constant over the entire depth of the measurement
volume. No significant difference exists between the CM and
the DNN, which is also indicated by the mean absolute error
averaged over the entire depth of the measurement volume,
listed in table 2. Comparing these values with the determined
positioning accuracy of about 0.7 µm of the calibration meas-
urements, it is obvious that the accuracy of the calibration
measurement mainly limits the achievable MAE. While the
MAE remains constant for the DNN, it significantly increases
for the CM applying the calibration functions obtained for
particles of 5 µm in size to the images captured with the mixed
particle solution. According to figure 5(a), apart from the posi-
tionswhere theminimumparticle imagewidth ax and height ay

are present, significant mean absolute errors occur causing an
increase in the averaged MAE of about four times. Comparing
the experimentally determined averaged mean absolute values
with those obtained for the synthetic test case, see table 1, a tre-
mendous difference between both evaluation methods comes
to light. For the DNN, the MAEs obtained for the synthetic
and the experimental test case are comparable. However, for
the CM the MAE increases about 10 or even 150 times at
maximum, using the monodisperse particles or the particles
with two different sizes, respectively. This can be explained as
follows. First, the real particle images deviate from the ideal
Gaussian-shaped particle image assumed for the classical eval-
uation method, while the distinctive features of the particle
images caused by optical aberrations can be utilized from the
DNN. Second, the CM is based on parametric calibration func-
tions relying on a fixed particle size, while the DNN can be
trained for different particle sizes.

The standard deviations σz obtained along the depth dir-
ection for both methods and both calibration measurements
are depicted in figure 5(b). The standard deviation for the
DNNwith themonodisperse particle solution seems to slightly
increase with increasing z-position. In the case of the CM,
the standard deviation is almost constant over the entire depth
of measurement volume. Again, the positioning accuracy of
the calibration measurements mainly limits the standard devi-
ation. However, applying themixed particle solution the stand-
ard deviation significantly increases towards the margins of
the measurement volume, while a very similar standard devi-
ation results in between the two focal points of the astigmatic
system compared to that of the monodisperse particles. For
the CM, this can be explained with the calibration functions
obtained for both particle sizes separately, see figure 2. As the
optical transfer function does not alter and only the particle
image diameter changes with particle size, the two calibration
functions within the axay-space run almost parallel in between
the two focal points. Hence, with determining the minimum
Euclidean distance between the measured point [ax,i, ay,i] and
the calibration curve close to the center of the measurement
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Figure 5. (a) MAE and (b) standard deviation obtained by evaluating the calibration measurements with monodisperse particles of 5 µm in
diameter and with the mixed particle solution using the CM and the DNN.

Table 2. Averaged mean absolute error MAEz and standard
deviation σz obtained from the calibration measurements with
monodisperse and mixed particle solution, applying either the CM
or the DNN.

Monodisperse particles Mixed particles

CM DNN CM DNN

MAEz in µm 0.61 0.56 1.99 0.53
σz in µm 0.82 1.08 2.1 1.19

volume, the resulting z-position does not change significantly
even though particle images of different size are evaluated. In
the case of the DNN, no unique trend to higher standard devi-
ations can be recognized, indicating that the higher deviations
towards the margins of the measurement volume might be
caused by a lower particle image quality. In comparison to the
synthetic test case, see table 1, the use of real particle images
does not increase the standard deviation, neither for monod-
isperse particles nor for the particle solution with bimodal size
distribution. Contrary to this, the classical evaluation method
is very sensitive to the particle size distribution. While a sim-
ilar standard deviation is obtained using real particle images
instead of artificial ones, the standard deviation for the mixed
particle solution is more than two times higher than for the
monodisperse particle solution.

5. Flow measurements

Flow measurements were conducted as explained in section 2,
and the corresponding image captures were processed accord-
ing to the explanations given in section 3. With the exception
of the determination of the particle positions, no differences
were made for image preprocessing and postprocessing of the
data using the CM and the DNN.

At first, measurements were conducted with fluorescent
particles solely of 5 µm in size. For the classical and the
novel method using the DNN, 696 325 and 844 901 valid
particles were obtained, respectively. Meaning, approximately

Table 3. Mean absolute error of the velocity MAEu in µm s−1 in
streamwise direction determined from the deviations between
measured and theoretically expected centerline velocity profiles.

Monodisperse particles Mixed particles

y-direction z-direction y-direction z-direction

DNN 0.99 2.72 1.28 3.43
CM 1.05 1.84 1.73 3.02

20% more valid particles were detected with the deep neural
network. In figure 6 the ensemble-averaged 2D velocity fields
are depicted. Obviously, more particles close to the top and the
side walls of the microchannel were detected using the DNN.
The reason might be the following: the deeper the penetration
depth of the measurement volume, the larger the differences
between the actual particle images and the ideal model of 2D
Gaussian-shaped particle images, due to stronger optical aber-
rations. In addition, shadowing might affect the local intens-
ity distribution of the particle images close to a side wall. In
both cases, particle images might be identified as outliers and
excluded from the data set. Regardless of the voids close to the
top of the microchannel, a very similar 2D velocity field was
obtained with both methods.

For a quantitative comparison, the measured centerline
velocity profiles in the horizontal and vertical directions are
depicted in figure 7. As can be seen, the velocity profiles of
both methods coincide, indicating a very good quantitative
agreement not only in the horizontal but also in the vertical dir-
ection. In addition, the laminar velocity field in a microchan-
nel with a rectangular cross section was calculated accord-
ing to the result derived for the Poiseuille flow in those chan-
nel geometries given by Bruus [38]. For the estimated width
W and height H of the microchannel used here, the calcu-
lated centerline velocity profiles are also depicted in figure 7.
A very good agreement between theory and experiment can
be found as well. The MAEs of the velocity MAEu along
both profiles were estimated. The values are listed in table 3.
Very similar results were obtained for both methods, not only
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Figure 6. Velocity fields in streamwise direction obtained by evaluating the image captured with (a) the classical method (CM) and (b) the
deep neural network (DNN). Here, particles with 5 µm in size were used as tracers.

in the horizontal but also in the depth direction. The higher
MAEu for the vertical velocity profile results from the larger
deviations between theoretical and measured velocity profiles
within the first 30 µm close to the top and the bottom of the
microchannel.

A second test measurement was conducted under the same
experimental conditions, using the mixed particle solu-
tion with bimodal size distribution. The measured and
ensemble-averaged velocity fields are depicted in figure 8.
Again, a very similar velocity field was obtained applying both
evaluationmethods. In comparison to themeasurement before,
more velocity data close to the top corners were obtained.
However, in the vicinity close to the top of the microchan-
nel, meaning within 40 µm of the top channel wall, no reliable
velocity measurements were possible. In addition, although
the measurements were carried out under the same exper-
imental conditions, the maximum velocity is approximately
15% higher. The reasons for these differences in the meas-
urement result are unknown. However, as only an ordin-
ary Poiseuille flow is considered, comparison between the
measurements in terms of both evaluation methods can be
undertaken. The total number of detected particle images
was about 2.84 million and 1.48 million for the CM and the
DNN, respectively. The significant higher number of detec-
ted particles for the CM results from a higher variation of
the particle image intensities that varies along the measure-
ment volume depth due to the defocus, and now because of
the two different particle sizes. As the intensity of the particle
images scales with the volume of the particles, a much lower
intensity threshold was used for this measurement, to determ-
ine regions where also particles of 2.5 µm in size are sup-
posed to be present. In that way, overlapping particle images
from particles strongly out of focus might be detected as well.
Most of them can be recognized and excluded from the data
set by applying the outlier filter in terms of the maximum
allowed Euclidean distance from the calibration curve within
the axay-space. In conjunction with the universal outlier detec-
tion algorithm during particle tracking, which applies for both
methods, the number of valid particles reduced to 644 525 and

1 094 516 for the classical method and the deep neural net-
work, respectively. For the classical method, the number of
valid particles is almost the same as for the flow measure-
ment using onlymonodisperse particles. However, now almost
70% more valid particles were detected with the DNN, which
considerably lowers the statistical uncertainty of the velocity
measurement.

The centerline velocity profiles in the horizontal and ver-
tical directions for both evaluation methods are depicted in
figure 9. Besides, the theoretically expected velocity profiles
with adapted maximum velocity are illustrated as well, for
comparison. In the case of the horizontal profile, a very good
quantitative agreement is obviously found even very close to
the channel side walls. In the case of the vertical velocity pro-
file, both evaluation methods yield a good agreement with the
theoretical profile, particularly within the first half channel
height. Above from the apex, the measured profiles deviate
more strongly from the theoretical one. Obviously, the larger
the penetration depth of the measurement volume, the larger
the deviations. However, the profiles obtained from both eval-
uation methods coincide well, indicating that no differences
exist between the evaluation methods. The estimated MAEu,
see table 3, confirms the visual agreement. Both methods yield
comparable mean deviations from the theoretical velocity pro-
file. However, the estimated values indicate a small increase
compared to those derived from the measurement with mon-
odisperse particles.

Surprisingly, no significant difference exists between the
CM and the DNN when using the particle solution with
bimodal size distribution. This can be explained as follows. (i)
According to the results obtained from the calibration meas-
urement, see figure 5, the maximum standard deviation σz and
the maximum MAEz are almost 100 times smaller than the
channel size. Hence, the structure of the laminar fluid flow
is comparably large to the expected uncertainty due to the
use of the mixed particle solution. However, using smaller
microchannels the influencewould be significant. (ii) The light
intensity emitted from the particles of 2.5 µm is almost one
order of magnitude lower than that emitted from particles of
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Figure 7. Centerline velocity profiles of the u-component in (a) the horizontal and (b) the vertical direction for both evaluation methods.
Here, particles with dp = 5 µm were used as tracer particles.

Figure 8. Velocity fields in streamwise direction obtained by evaluating the image captures with (a) the classical method (CM) and (b)
the deep neural network (DNN). Here, the particle solution with bimodal size distribution was used as tracers.

Figure 9. Centerline velocity profiles of the u-component in (a) the horizontal and (b) the vertical direction for both evaluation methods.
Here, the particle solution with bimodal size distribution was used for measurement.
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5 µm in diameter. The probability of detecting small particles
close to the margins of the measurement volume, where the
corresponding particle images are strongly defocussed and
maximum standard deviation as well as maximum MAE are
present, is low. (iii) Applying the outlier filter that limits the
maximum Euclidean distance of the measured points from the
calibration curve within the axay-space, the remaining particle
images obtained from small particles located close to or in
between the two focal points of the astigmatic system will be
excluded.

6. Conclusion

The use of a deep neural network (DNN) was investigated for
measuring volumetric velocity distributions in microfluidics
using astigmatic particle tracking velocimetry (APTV). For
this, comparisons were made between the classical evalu-
ation method (CM) based on the Euclidean distance approach
and a three-stage cascaded convolutional neural network.
The first two stages detect individual particle images within
the image captures, while the third estimates the depth-
position of the corresponding particles. Starting from artificial
particle images with known ground truth, calibration measure-
ments with different particle sizes, to flow measurements in a
microchannel employing monodisperse particles and particles
with bimodal size distribution as tracer particles, a compre-
hensive comparison between both evaluationmethodswas car-
ried out. This comprises the uncertainty of particle position
depending on the size distribution of the tracer particles and
the particle image quality, which depends on the SNR and
optical aberrations existing in real experiments. Regarding the
uncertainty of the particle’s depth-position, the following can
be stated:

• The classical evaluation method works best if optical aber-
rations can be neglected and high-quality monodisperse
particle tracers are used. In that case the standard deviation
σz limits the uncertainty of the particle depth-position.

• The DNN is very robust to noise, however, the mean abso-
lute error (MAE) of the particle depth-position as well as
its standard deviation σz are one order of magnitude higher
than that obtained with the classical evaluation method, for
the artificial particle images.

• If optical aberrations come into play, the MAE of the
particle position for the CM increases by about one order
of magnitude, while the uncertainty obtained with the DNN
decreases. For real particle images, both methods show
a very comparable uncertainty in terms of the MAE and
standard deviation of the z-position, on condition that an
APTV setupwith low optical aberrations andmonodisperse
particles as tracers are used.

• In the case of a nonmonodisperse size distribution of
the particle tracers, MAE and standard deviation continue
increasing towards the margin of the measurement volume,
of about one order of magnitude, using the classical evalu-
ation method. Contrarily, the MAE and the standard devi-
ation obtained with the DNN are not affected and remain

almost constant over the entire depth of measurement
volume.

The findings mentioned above can be explained as follows.
If experimental conditions and particle images do not comply
with the basic assumptions made in the classical evaluation
method, the better the result obtained with the DNN com-
pared to the CM. For this, two main reasons exist. Firstly,
real particle images deviate from the ideal Gaussian-shaped
particle image assumed for the classical evaluation method,
while the distinctive features of the particle images caused
by optical aberrations are utilized from the DNN. Hence, the
novel evaluationmethod already promises very robust and reli-
able velocity measurements, even though strong optical aber-
rations may be present, e.g. due to the use of a low-cost APTV
setup or an optical access of low optical quality often found
in applications where measurements have to be conducted
in vivo. Secondly, the CM is based on parametric calibration
functions relying on a fixed particle size. In contrast, the DNN
can be trained for the use of different particle sizes at the same
time.

Besides the advantages of DNNs for APTV, another very
important finding was revealed by the present study: the
classical evaluation method based on the Euclidean distance
approach is extremely robust, on the condition that optical
aberrations can be kept at a moderate level. Even if non-
monodisperse particles are used, reliable flow measurements
may be possible, as demonstrated with the measurement of
the Poiseuille flow inside a microchannel with a rectangular
cross section. With the APTV setup used here and a particle
solution with bimodal size distribution having distinct narrow
peaks at 2.5 µm and 5 µm, the maximum MAE and stand-
ard deviation of the particle position occurring close to the
margins of the measurement volume were less than 10 µm.
Hence, as long as the fluid flow of interest exhibits a com-
parably large structure and a laminar flow behavior without a
pronounced out-of-plane component, the classical evaluation
method can be applied without any doubt, even if the basic
requirement of using high-quality monodisperse particles is
violated. Moreover, a standard deviation of σz < 1 µm can be
ensured by limiting the depth of measurement volume close
to and in between both focal points of the APTV. In that
way, three-dimensional, three-component velocity measure-
ments with very low uncertainty can be achieved, comparable
to those where monodisperse particle tracers are used.

In future, further improvements are expected for 3D velo-
city measurements using APTV with the novel evaluation
approach presented herein, by employing more sophisticated
designs of network architectures better adapted to the needs of
APTV, and by using more comprehensive training data includ-
ing noise and overlapping particle images. For the latter, well-
elaborated training strategies are required. With those training
data, the use of neural networks for APTV may outperform
the classical evaluation method by identifying more particle
images with lower particle position uncertainty, even though
optimized optical measurement setups are used. In addition,
the neural networks can be trained to extend the applicabil-
ity of this measurement technique not only to estimate the 3D
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position of polydisperse particles with very low uncertainty,
but also to determine their size and shape at the same time.
This opens up new possibilities for APTV, to be used not
only for velocity measurement but also for clustering types
of particles within one data evaluation step. Such applications
can often be found in medicine or biology with flow-based
assays, that make more and more use of microfluidic devices
to separate, detect and analyze cells and particles of multiple
species or sizes, respectively. In addition, less computational
costs are expected, as demonstrated recently for PIV applica-
tions. Hence, the use of neural networks holds a lot of promise
for APTV and other defocus techniques to also gain access to
other disciplines, where nonexpert users can make use of the
advanced measurement technique.
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