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Abstract

In this paper, the discrete Adomian decomposition method (DADM) is applied to obtain the
approximate solution of fuzzy convection-diffusion equation (FCDE). The numerical results are
compared with the exact solution. It is shown that this method is accurate and effective for
FCDE. Also, the analytical-approximate solution of this equation by Adomian decomposition
method (ADM) is offered.
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1 Introduction

The Adomian decomposition method is a powerful method to solve the linear or nonlinear differential
or integral equations [1], [2]. The discrete Adomian decomposition method was first proposed by
Bratsos et al.[3] applied to discrete nonlinear Schrodinger equations. Zhu et al. [4] have developed
the DADM to 2D Burgers difference equations, Abdulghafor M. Al-Rozbayani et al.[5] applied this
method to nonlinear difference scheme of generalized Burgers-Huxley equation. In this work, we
apply this method for fuzzy convection-diffusion equation and obtain the numerical solution of this
equation. Also the analytical-approximate solution of FCDE by Adomian decomposition method
is offered.

Convection diffusion equation (CDE) is a combination of the diffusion and convection equations, and
describes physical phenomena where particles, energy, or other physical quantities are transferred
inside a physical system due to two processes. This equation is solved by many methods such as
finite difference method and Alternating Group Iterative Method [6], [7].

In recent years, some numerical and analytical methods were proposed in order to solve fuzzy
differential equations such as [8], [9], [10], [11], [12], [13], [14], [15], [16]. In this work, we consider
the following fuzzy case of convection-diffusion equation and apply the ADM and DADM to solve
it.

∂ũ

∂t
+ α

∂ũ

∂x
= γ

∂2ũ

∂x2
, 0 ≤ x ≤ l, t ≥ 0, (1.1)

with the initial condition,

ũ(x, 0) = f̃(t), 0 ≤ x ≤ l, (1.2)

where ũ(x, t) is unknown fuzzy function, f̃(x) is known fuzzy function, and α, γ are known crisp
constants.

In section 2, we treat some fuzzy concepts briefly, then in section 3, we apply the ADM for FCDE,
in section 4, we present the DADM for FCDE, and in section 5, we solve two examples and offer
the analytical- approximate and numerical solutions of them by ADM and DADM respectively.

2 Preliminaries

In this section, we recall some basic definitions of fuzzy sets theory mentioned in [17], [18], [19],
[20], [21], [22], [23].

Definition 2.1. A fuzzy parametric number u is a pair (u(r), u(r)) , 0 ≤ r ≤ 1, which satisfy the
following requirements :

1. u(r) is a bounded left continuous non-decreasing function over [0, 1].
2. u(r) is a bounded left continuous non-increasing function over [0, 1].
3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

The set of all these fuzzy numbers is denoted by E1. For u = (u, u), v = (v, v) ∈ E1 , k ∈ R the
addition, multiplication and the scaler multiplication of fuzzy numbers are defined by

(u+ v)(r) = u(r) + v(r),
(u+ v)(r) = u(r) + v(r),
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(u.v)(r) =
min{u(r).v(r), u(r).v(r), u(r).v(r), u(r).v(r)},

(u.v)(r) =
max{u(r).v(r), u(r).v(r), u(r).v(r), u(r).v(r)},

ku(r) = ku(r), ku(r) = ku(r), k ≥ 0,

ku(r) = ku(r), ku(r) = ku(r), k ≤ 0.

Definition 2.2. For arbitrary fuzzy numbers ũ = (u, u), ṽ = (v, v) the quantity

D(ũ, ṽ) = sup
0≤r≤1

{max[|u(r)− v(r)|, |u(r)− v(r)|]}

is the Hausdorff distance between ũ and ṽ.

It is shown that E1, D is a complete metric space [21].

Definition 2.3. A function f : R1 −→ E1 is called a fuzzy function. If for arbitrary fixed t0 ∈ E1

and ε > 0 such that, |t− t0| < δ =⇒ D(f(t), f(t0)) < ε exists, f is said to be continuous.

Definition 2.4. Let u, v ∈ E1. If there exists w ∈ E1 such that u = v + w, then w is called the
H-difference of u, v and it is denoted u	 v.

Definition 2.5. Let a, b ∈ R and f : (a, b)→ E1. Fix t0 ∈ (a, b). We say F is strongly generalized
differentiable at t0, if there exists f ′(t0) ∈ E1 such that

(i) for all h > 0 sufficiently close to 0, there exist f(t0 + h) 	 f(t0), f(t0) 	 f(t0 − h) and the
limits

lim
h→0+

f(t0 + h)	 f(t0)

h
= lim

h→0+

f(t0)	 f(t0 − h)

h
= f ′(t0),

or

(ii) for all h > 0 sufficiently close to 0, there exist f(t0 − h) 	 f(t0), f(t0) 	 f(t0 + h) and the
limits

lim
h→0+

f(t0 − h)	 f(t0)

−h = lim
h→0+

f(t0)	 f(t0 + h)

−h = f ′(t0),

or

(iii) for all h > 0 sufficiently close to 0, there exist f(t0 + h)	 f(t0), f(t0 − h)	 f(t0) and the
limits

lim
h→0+

f(t0 + h)	 f(t0)

h
= lim

h→0+

f(t0 − h)	 f(t0)

−h = f ′(t0),

or

(iv) for all h > 0 sufficiently close to 0, there exist f(t0)	 f(t0 + h), f(t0)	 f(t0 − h) and the
limits

lim
h→0+

f(t0)	 f(t0 + h)

−h = lim
h→0+

f(t0)	 f(t0 − h)

h
= f ′(t0).

(h and (−h) at denominators mean 1
h
. and − 1

h
. respectively)[17].
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Theorem 2.1. Let f : (a, b) → E1 be strongly generalized differentiable on each point t ∈ (a, b) in
the sense of Definition 2.5, (3) or (4). Then f ′(x) ∈ R for all t ∈ (a, b) (see[17]).

Theorem 2.2. Let f : R1 −→ E1 be a function and denote f(t) = (f(t, r), f(t, r)), for each
r ∈ [0, 1]. Then

(1) If f is differentiable in the first form (i), then f(t, r) and f(t, r) are differentiable functions

and f ′(t) = (f ′(t, r), f ′(t, r)),

(2) If f is differentiable in the second form (ii), then f(t, r) and f(t, r) are differentiable

functions and f ′(t) = (f ′(t, r), f ′(t, r)) (see[18]).

Definition 2.6. Let a, b ∈ R and f : (a, b) → E1 and t0 ∈ (a, b). We define the n-th order
differential of f as follows: We say that f is strongly generalized differentiable of n-th order at t0,
if there exists an element f (s)(t0) ∈ E1 ∀s = 1, . . . , n such that

(i) for all h > 0 sufficiently close to 0, there exist f (s−1)(t0 + h) 	 f (s−1)(t0), f (s−1)(t0) 	
f (s−1)(t0 − h) and the limits

lim
h→0+

f (s−1)(t0 + h)	 f (s−1)(t0)

h
= lim

h→0+

f (s−1)(t0)	 f (s−1)(t0 − h)

h
= f (s)(t0),

or

(ii) for all h > 0 sufficiently close to 0, there exist f (s−1)(t0 − h) 	 f (s−1)(t0), f (s−1)(t0) 	
f (s−1)(t0 + h) and the limits

lim
h→0+

f (s−1)(t0 − h)	 f (s−1)(t0)

−h = lim
h→0+

f (s−1)(t0)	 f (s−1)(t0 + h)

−h = f (s)(t0),

or

(iii) for all h > 0 sufficiently close to 0, there exist f (s−1)(t0 + h)	 f (s−1)(t0), f (s−1)(t0 − h)	
f (s−1)(t0) and the limits

lim
h→0+

f (s−1)(t0 + h)	 f (s−1)(t0)

h
= lim

h→0+

f (s−1)(t0 − h)	 f (s−1)(t0)

−h = f (s)(t0),

or

(iv) for all h > 0 sufficiently close to 0, there exist f (s−1)(t0) 	 f (s−1)(t0 + h), f (s−1)(t0) 	
f (s−1)(t0 − h) and the limits

lim
h→0+

f (s−1)(t0)	 f (s−1)(t0 + h)

−h = lim
h→0+

f (s−1)(t0)	 f (s−1)(t0 − h)

h
= f (s)(t0).

(h and (−h) at denominators mean 1
h
. and − 1

h
. respectively ∀s = 1, . . . , n).

Remark 2.1. Note that by the above definition a fuzzy function is i-differentiable or ii-differentiable
of order n if f (s) for s = 1, . . . , n is i-differentiable or ii-differentiable. It is possible that the different
orders have different kind i or ii differentiability.

For a given fuzzy function f ,we have two possibilities according to the definition 2.5 to obtain the
derivative of f at t: D1(f(t)), D2(f(t)).
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Then for each of these two derivatives, we have again two possibilities:

D1(D1(f(t)) = D2
1,1(f(t)) , D2(D1(f(t)) = D2

2,1(f(t)

and
D1(D2(f(t)) = D2

1,2(f(t)) , D2(D2(f(t)) = D2
2,2(f(t).

In similar we consider the n-order differential of f . For example

D3
1,2,1(f(t)) = D1(D2(D1(f(t)))).

3 The Adomian Decomposition Method for FCDE

In this case, we apply ADM to solve the Eq.(1.1)[2]. According to the definition 2.1 with assumption
that ũ is i-differentiable in terms of x, t, we rewrite the Eq.(1.1) in the following form,

(ut, ut) + α(ux, ux) = γ(uxx, uxx), (3.1)

with the initial condition,
ũ(x, 0) = (f(x), f(t)). (3.2)

We consider the following cases, by attention to the signs of α and γ:

1. If α and γ > 0, {
ut + αux = γuxx

ut + αux = γuxx
(3.3)

2. If α > 0 and γ < 0, {
ut + αux = γuxx

ut + αux = γuxx

(3.4)

3. If α < 0 and γ > 0, {
ut + αux = γuxx

ut + αux = γuxx
(3.5)

4. If α and γ < 0, {
ut + αux = γuxx

ut + αux = γuxx.
(3.6)

And initial conditions,
u(x, 0) = f(x), u(x, 0) = f(x). (3.7)

According to the description of the ADM, we consider u =
∑+∞

m=0 um and u =
∑+∞

m=0 um. Then,
we solve the given systems of partial differential equations (3.3)-(3.6).
Hence, we consider,

u0 = f, u0 = f. (3.8)

For m ≥ 1,

in case.1:

um =
∫ t

0
(−α ∂um−1

∂x
+ γ

∂2um−1

∂x2 )dτ , um =
∫ t

0
(−α ∂um−1

∂x
+ γ

∂2um−1

∂x2 )dτ, (3.9)

in case.2:

um =
∫ t

0
(−α ∂um−1

∂x
+ γ

∂2um−1

∂x2 )dτ, um =
∫ t

0
(−α ∂um−1

∂x
+ γ

∂2um−1

∂x2 )dτ, (3.10)
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in case.3:

um =
∫ t

0
(−α ∂um−1

∂x
+ γ

∂2um−1

∂x2 )dτ, um =
∫ t

0
(−α ∂um−1

∂x
+ γ

∂2um−1

∂x2 )dτ, (3.11)

in case.4:

um =
∫ t

0
(−α ∂um−1

∂x
+ γ

∂2um−1

∂x2 )dτ, um =
∫ t

0
(−α ∂um−1

∂x
+ γ

∂2um−1

∂x2 )dτ. (3.12)

In other case of differentiability of ũ in terms of x or t, we can construct other four cases, similar
to the (3.9)-(3.12).

4 The Discrete Adomian Decomposition Method for
FCDE

To apply the DADM to Eq.(1.1), we denote the discrete approximation of u(x, t) at the grid point
(ih, nk) by un

i (i = 0, 1, 2, . . . , N ;n = 0, 1, 2, . . .), where h = l
N

is the special step size and k
represent time increment [5], [3].

We can rewrite the discrete operator form of ut, ux, uxx in the form ofD+
k u

n
i , Dhu

n
i , D

2
hu

n
i respectively,

where that

D+
k u

n
i =

un+1
i − un

i

k
, Dhu

n
i =

un
i+1 − un

i−1

2h
, D2

hu
n
i =

un
i+1 − 2un

i + un
i−1

h2
.

The inverse discrete operator (D+
k )−1 is given by,

(D+
k )−1un

i = k

n−1∑
m=0

um
i . (4.1)

Thus (D+
k )−1D+

k u
n
i = un

i − u0
i .

We consider un
i =

∑+∞
m=0 u

n
i,m and un

i =
∑+∞

m=0 u
n
i,m. By rewriting the discrete operator form

of the system of equations (3.9), (3.10), (3.11) and (3.12), we obtain four new systems by initial
conditions u0

i = f
i

and u0
i = f i, where fi = f(ih).

Then by applying the inverse operator (D+
k )−1 to the discrete operator form of the system of

equations (3.9), (3.10), (3.11) and (3.12), we construct the following relations to obtain the discrete
solution of the Eq.(1.1).

At first, we consider,
un
i,0 = f

0
, un

i,0 = f0. (4.2)

For m ≥ 1,

in case.1:

un
i,m = (D+

k )−1(−αDhu
n
i,m−1 + γD2

hu
n
i,m−1), un

i,m = (D+
k )−1(−αDhu

n
i,m−1 + γD2

hu
n
i,m−1),

(4.3)
in case.2:

un
i,m = (D+

k )−1(−αDhu
n
i,m−1 + γD2

hu
n
i,m−1), un

i,m = (D+
k )−1(−αDhu

n
i,m−1 + γD2

hu
n
i,m−1),

(4.4)
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in case.3:

un
i,m = (D+

k )−1(−αDhu
n
i,m−1 + γD2

hu
n
i,m−1), un

i,m = (D+
k )−1(−αDhu

n
i,m−1 + γD2

hu
n
i,m−1),

(4.5)
in case.4:

un
i,m = (D+

k )−1(−αDhu
n
i,m−1 + γD2

hu
n
i,m−1), un

i,m = (D+
k )−1(−αDhu

n
i,m−1 + γD2

hu
n
i,m−1).

(4.6)
Also in other cases of differentiability of ũ in terms of x or t, we can construct other four cases,
similar to the (4.3)-(4.6).

5 Numerical Examples

In this case, we solve two sample fuzzy convection-diffusion equations by ADM and DADM.

Example 5.1. We consider Eq.(1.1) with α = 0.0001, γ = 1.0001 and f̃(x) = ((2r2−1)ex, (2−r)ex),
also we suppose ũ(x, t) is i-differentiable in terms of x, t, and consider Eq.(3.9). By applying ADM
and choosing ũ0 = ((2r2 − 1)ex, (2− r)ex), we have,

ũ1 = ((2r2 − 1)ext, (2− r)ext),

ũ2 = ((2r2 − 1)ex(
1

2
t2), (2− r)ex(

1

2
t2)),

ũ3 = ((2r2 − 1)ex(
1

6
t3), (2− r)ex(

1

6
t3)),

....

In general ũ = ũ0 + ũ1 + ũ2 + · · · , that it converges to the exact solution ũ = ((2r2 − 1)ex+t, (2 −
r)ex+t).

Now, we apply DADM, by choosing ũn
i,0 = ((2r2−1)eih, (2−r)eih), h = 0.1, k = 0.001 and Eq.(4.3).

The results are shown in table 1 with 5 iterations.

Table 1

t x r uDADM uexact uDADM uexact

1 0.27185 0.27182 0.2785 0.27182
0.5 0.5 1

2
-1.35928 -1.35914 4.07784 4.07742

1
4

-2.37874 -2.37849 4.75748 4.75699

Example 5.2. In this example we consider Eq.(1.1) with α = 0, γ = −1 and f̃(x) = ((4r−3)ex, (2−
r2)ex), also we suppose ũ(x, t) is ii-differentiable in terms of t and i-differentiable in terms of x.
Therefore,

ut = −uxx

ut = −uxx.
(5.1)

By applying ADM and DADM, we construct following formulas,

um =
∫ t

0
(−γ ∂2um−1

∂x2 )dτ, um =
∫ t

0
(−γ ∂2um−1

∂x2 )dτ,
un
i,m = (D+

k )−1(−γD2
hu

n
i,m−1), un

i,m = (D+
k )−1(−γD2

hu
n
i,m−1).

(5.2)

Therefore, by choosing ũ0 = ((4r − 3)ex, (2− r2)ex), the ADM gives us the following results,
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u1 = (4r − 3)ex(−t), u2 = (2− r2)ex(−t),

u2 = (4r − 3)ex(
1

2
t2), u2 = (2− r2)ex(

1

2
t2),

u3 = (4r − 3)ex(−1

6
t3), u3 = (2− r2)ex(−1

6
t3),

....

In general u = u0 + u1 + u2 + · · · , and u = u0 + u1 + u2 + · · · . That it converges to the exact
solution ũ = ((4r − 3)ex−t, (2− r2)ex−t).

Now, by applying DADM and choosing ũn
i,0 = ((4r− 3)eih, (2− r2)eih) and also h = 0.1, k = 0.001.

The results are shown in table 2 with 5 iterations.

Table 2

t x r uDADM uexact uDADM uexact

1 1.3493 1.3498 1.3493 1.3498
0.3 0.6 2

3
-0.4498 -0.4499 2.0989 2.0998

1
4

-2.6986 -2.6997 2.6143 2.6153

6 Conclusion

In this work, we presented the discrete Adomian decomposition method and applied the Adomian
decomposition method to obtain the numerical and analytical-approximate solutions of fuzzy convection-
diffusion equation, and we compared the results with the exact solutions to show the efficiency of
these methods.
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