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Abstract

Nodal cilia play an important role in the left-right symmetry breaking at the early stage of the
mammal embryos and show an apparent rotational motion. This study is about the flow induced
by cilia sweeping out circular/elliptical cones above a no-slip plane in the low Reynolds number
regime. Using the regularized Stokeslet method, we examine the properties of flows generated by
a single cilium and multiple cilia, especially two cilia, which are assumed to be anchored to the
embryonic heart wall. For a short-term Lagrangian fluid tracer trajectory, epicycles are presented
as a nodal cilium precesses in either a circular cone or a non-circular cone shape. For the long-
term behavior, the trajectory is periodic around both the circular and elliptical cones. Compared
to the circular cone cases, the vertical variances are enhanced in elliptical cone cases. Besides
tracer trajectories, fluid velocity fields are presented to demonstrate the flow structure. When
two cilia are considered in the system, the flow structure is analyzed for the different phase angles

and relative orientation of the elliptical cones.
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1 Introduction

A cilium is a slender protuberance projecting from many cells [1, 2]. It plays a critical role in
cellular motility, fluid transport and a variety of signal transduction pathways. For example, beating
nodal cilia drive the directed fluid flow in the vertebrate embryos. A number of studies have been
reported on this problem. The readers are referred to a review by Hamada (2008) [3] about the
study of left-right asymmetry. However, it is still not fully understood how the rotating cilia drive
unidirectional fluid flow in the node. Quantifying the flow generated by the nodal cilia is beneficial
to understand their biomechanical properties of the biological system and especially the left-right
symmetry breaking in the early development of mammals [1]. A few studies have been reported
from the fluid mechanics view [4, 5, 6]. In this paper, we examine the flows induced by rotatory
nodal cilia in the viscous dominated flow, i.e., in the Stokes regime.

In the Stokes regime, the singularity method seen in [7], [8], [9], and [10] has been used widely
in research and is especially suitable for Stokes’ problems with regular boundary geometries. The
vital components for this method are to identify the type of singularities, determine the distribution
and strength of the singularities, and eventually construct the velocity. Following the derivation of
the fundamental singularity solution of the Stokes equations, but replacing the delta function with
a smooth approximation, the method of regularized Stokeslet has been developed by Cortez [11].
The method has been very useful in many applications in areas of biological fluid flows [12]. To
model fluid in the vicinity of a stationary plane boundary, Blake [13] derived the Stokeslet image
system satisfying the no-slip, no-penetration condition on a flat plane. As cilia are anchored to
the embryonic heart wall, we use the image system for regularized Stokeslet [14, 4] to acquire the
no-slip condition for our fluid analysis.

In order to understand the microfluidic environment in embryos, an understanding of the fluid flow
generated by precessing cilia is essential. Here we present a mathematical model and numerical
method that solves the Stokes equations of zero Reynolds number flow with the precession of cilia
emanating from a planar wall in 3D. Three different shapes of the cone are considered and compared.
After computing the velocity field due to a collection of forces applied over the cilia, we explore the
fluid tracer trajectory.

2 Model of Nodal Cilia Sweeping Cones

In this study, we explore the fluid flow induced by nodal cilia attached to a flat plane wall and
precessing cones in a viscous dominated fluid. We utilize the method of regularized Stokeslet
and the image system previously derived for the method of regularized Stokeslet to account for the
presence of a plane wall [11, 15, 14]. Below we briefly discuss the equations of motion in this viscous
regime, the method of regularized Stokeslet and its image system, and the prescribed position and
motion of the cilium.

The governing equations are the incompressible Stokes equations [9, 16, 17],
uNV?u—-Vp+f = 0, (2.1)
Vu = 0,

where u is the velocity of the fluid, Vp the gradient of the pressure, u is the dynamic viscosity, and
f is the extern force due to the cilium.

2.1 Stokeslet

One analytical tool for obtaining solutions to Stokes equations is singularity theory [18, 19, 7, 9]. The
basis is to construct solutions to particular boundary value problems through the superposition of
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fundamental solutions. Fundamental solutions are found by solving Stokes equations with singular
force in an unbounded domain. The primary fundamental solution, called the Stokeslet [7], is
constructed by applying a point force, represented by the three-dimensional Dirac delta function
d(x), to the Stokes flow field. The Stokeslet velocity field

a [a-(x—58)] (x—s8)

— s = 2.2
uosia) = g S (2.2

satisfies the steady, free space, singularly-forced Stokes equations

pViu+8rpad(x—s) = Vp, (2.3)
V-u = 0.

The vectors e and s characterize the Stokeslet’s strength and location, respectively. Fundamental
solutions are also called singularity solutions. Since the Stokes equations are linear, higher order
singularities can be constructed through derivatives of the Stokeslet solution with the corresponding
singular, external, applied force being the equivalent derivative of the point force 8w pa d(x — s).
Thus, higher order singularities, such as Stokes doublets and point-force dipoles, become available
to singularity theory for building solutions to Stokes flow boundary value problems [7].

2.2 Regularized Stokeslet Method

The regularized Stokeslet method [11] is based on the smoothing of the forces and itself has a wide
applicability. The resulting expressions provide the pressure and velocity field as functions of the
forcing. The relation between the velocity and force is inverted to find the forces that impose a given
velocity boundary condition or to compute the velocity with the given forces directly. Numerically,
this forms the relation in an explicit linear system.

The approach is to consider the forces to be applied over a small ball, where they vary smoothly
from a maximum value at the center to zero on its surface, rather than being concentrated at
points (as Dirac measures for the Stokeslet). The radius of the support of the forces is a parameter
that can be controlled independently with given boundary discretization. Similar to Stokeslet, the
regularized Stokeslet is a fundamental solution to

pViu+ fopo(x—s) = Vp, (2:4)

V-u = 0.
where ¢.(x — s) is a radially symmetric smooth function with the property that [ ¢.(x)dx = 1.
These functions are called blobs or cutoffs. Fig. 1 shows a typical blob with different values of ¢,

which control the width, or spreading. A smaller ¢ is, the tighter and taller the integrand ¢.(x)
will be. In the limit € — 0, the blob approaches a Dirac delta.

The regularized Stokeslet is the velocity field
1
w= (o V)VB: ~foGe], (25)

where G.(x) is the solution of V?G. = ¢-(x) in infinite space and B.(x) is the solution of V?B. =
G:(x) in infinite space. The function G¢(x) is a smooth approximation of the Green’s function

11

- - = ; 3
G(x) = yrm in R, (2.6)
for x| > €. And,
B(x) = —%', in R?, (2.7)
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is the solution of the biharmonic equation V2B(x) = §(x). For our choice of the blob

15¢*

PO e

the resulting velocity field is

1 2e2 4+ x2 fo - x)x
u=—— |fo 573~ (fo )3/2 : (2.9)
Bmp | (x| +€2) (Ix[? +¢2)

In particular to the numerical simulation in this paper, the system is based on totally N point forces

distributed along the centerline of the nodal cilium. In the governing equations (2.1), the extern
N

force f = ka¢g due to the cilium. With N point forces, fr centered at x, (k= 1,---,N), the
k=1

pressure and velocity can be directly computed by as a linear combination of those point forces

u(x) = i Z [(fx - V)VB:(x — xx) — frG:(x — x3)], (2.10)
p(x) = ka - VGe(x — xi). (2.11)
k=1

As G, and B are given smooth functions, the obtained velocity and pressure from (2.10)-(2.11) for
the flow field are explicit formulas. And, the resulted velocity field in this approach is mesh-free.

2.3 Image System for a Stokeslet

Instead of studying the system in the free space, it is important to consider the wall-effect to the
fluid flow. To enforce no-slip boundary conditions on the wall, the method of images is commonly
implemented to handle the no-slip plane. The image system for the singular Stokeslet near a plane
wall was obtained by Blake [13]. It is a sum of singularity solutions (Stokeslet, Stokeslet doublet
and Stokeslet potential dipole) evaluated at the image point. The image system of regularized
Stokeslet near a plane wall was previously derived in [14]. It is the combination of the regularized
Stokeslet, regularized Stokeslet doublet, regularized Stokeslet potential dipole, and, different from
the singular image system, also includes the regularized Rotlet. In this study, we use the blobs and
regularized singularity solutions in the forms found in [14, 20].

Figure 1: Typical blob for two different values of ¢.
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Figure 2: Circular cone Figure 3: Elliptical cone

2.4 Prescribed Motion of Nodal Cilia

To model the flow driven by nodal cilia, we distribute singularities along the centre-line (i.e., the
axis of the cilium) and prescribe the rotatory motion of the cilium. Two types of cones swept out
by the nodal cilia are shown in Fig. 2 and 3. In the figures, the cilium is depicted as the black
slim body along the surface of the cone. The base of the cilium is anchored at the origin of the
coordinate. The horizontal axis plane is the no-slip plane in the system. At any instantaneous time,
the position of the cilium is uniquely defined by cone angle x, and azimuthal angle 6 for an upright
cone. The cone angle, k, is the angle from the axis of the cone to the centerline of the cilium. In
others work, it sometimes is referred as the semi-cone angle. For circular cones, cone angle x is
constant. For elliptical cones, cone angle s varies while the cilium sweeps along the cone.

Assume the length of the cilium is ¢. Using standard rotation matrices, the centerline of an
idealized-straight nodal cilium is defined in different frames used in this paper:

o In the body frame where the cilium is along the positive x-axis: x5, = (5,0,0)7, 0<s < £.
e In the tilted body frame where the cilium is titled with the cone angle x in the xz-plane:
Xs0 = (ssink, 0, s cos H)T, X509 = RiXsp. The transformation matrix R, is

sink 0 —cosk
R, = 0 1 0 . (2.12)
cosk O sin Kk

e In the frame where the cilium is sweeping an upright cone:

Xst = (ssin s cos O(t), ssin ksin O(t), scos k)", or Xg = RygXso, (2.13)
in which
cosO(t) sinO() 0
R.o = sin®(t) cosO(t) 0 |. (2.14)
0 0 1

Eqn. (2.13) describes the position of the cilium as a function of time. ©(t) depends on the
frequency of the rotation and the phase angle ¢.
Suppose that the trace of the cilium fall on the surface of the elliptical cone
2 2

x y 2
§+b—2—z. (2.15)
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For elliptical cones, we assume the cilium is sweeping along the surface of the elliptical cone with
a constant rate in the elliptic coordinate, i.e., the polar angle is wt + ¢, where ¢ is the given phase
angle from the reference position. In our simulations, the positive z-axis is used for this reference
position. Then the azimuthal angle of the cilium is

© — arccos a cos(wt + ) + 7 floor (LW) ) (2.16)
Va2 cos? (wt + ¢) + b2 sin?(wt + ¢) ™
Moreover, the cone angle x satisfies
tank = \/a2 cos?(wt + @) + b2 sin? (wt + ¢). (2.17)

For a nodal cilium sweeping an elliptical above a no-slip plane, the cone angle 0 < x < 7/2.
Therefore,

k = arctan \/a2 cos?(wt + @) + b2 sin®(wt + ). (2.18)

To determine the velocity field of the flow, the no-slip boundary condition for the surface of the
cilium is imposed to the system. Given the position of the cilium in time, the velocity of the cilium
is founded by differentiating its position with respect to ¢. Then,

dx
dt

= quﬁRnxsb + Rw(ﬁRmxsb- (219)

Since R, and R4 are given in Eqn. (2.12) and (2.14), the velocity of the cilium is

—sin©O(t) —cosO(t) 0

u = dxs _ cosO(t) —sinBO(t) 0 R,{xsb@ (2.20)
dt dt
0 0 0
cosk(t) 0 sink(t) e
+Rup 0 0 0 Xep' T (2.21)
—sink(t) 0 cosk(t)
where Z—’: and ‘fi—? are computed from Eqn. (2.18) and (2.16), respectively.

3 Results

Based on the model built in the paper, the velocity field of the flow field is expressed as a linear
combination of the regularized Stokeslet and corresponding image systems. The strength of the
regularized Stokeslet is determined by the boundary condition on the surface of the cilium. After
the velocity field is obtained, the fluid tracer trajectory is computed as an initial value problem,
numerically. First we will show the trajectory of a single fluid tracer for different cone figurations.
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fk/ v

Figure 4: Force distribution on the centerline of the cilium as it sweeps
along an elliptical cone (@ = b/10 = tan(7/6)).
1.0 -
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f/(pwl)
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Figure 5: Normalized total force f/(wL) over one period.

Then, the system with multiple cilia, especially two cilia, will be studied to show the flow structure.
To explore the flow induced by multiple cilia, we will analyze effects of phase difference and the
relative orientation of elliptical cones.

In the simulations, the geometry of the cilium will be fixed. We set that the length of the cilium is
¢ = 10 and its cross-section radius is 0.05, which is also the value of the regularization parameter e
used in Eqn. (2.9). The shape of the cone is controlled by parameters a and b in Eqn. (2.15).

As the strength is important information about the drag force the cilium experiences, we present the
force distribution in Fig. 4 and 5. The force varies its direction and magnitude over time, however
the properties are similar. Fig. 4 shows the force distribution f; on the cilium at the position ¢t = 0,
when the cilium is sweeping out an elliptical cone. At this position, the force strength components
in the z and z direction are almost negligible, compared to the y component. Fig. 5 shows the
total force f, which is found by integrating the force acting on each point on the cilium, during one
period of the motion. The total force is normalized by the length of the cilium ¢ and the rotation
ration parameter w.
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3.1 Lagrangian Fluid Tracer Trajectory with One Cilium

To qualitatively study flow properties, the Lagrangian fluid tracer trajectories are explored. Fig.
6-10 show the trajectory of a fluid tracer when a single cilium rotates above a no-slip plane. The
initial positions of the fluid tracer are set the same for all three different cones. For the circular
cone, a = b = tan(n/6), which sets cone angle x = 7/6. The initial position of the trace is
(z,y,2) = (0,3,8) and marked as a green dot on the trajectory. The end point of the trajectory
is marked as a red dot. The values for other parameters are frequency w = 27 and phase angle
¢ = 0. Fig. 6 and 7 show two views of a trajectory when the cilium sweeps on an upright circular
cone. While the cilium rotates, the fluid tracer moves along a slow, large, periodic orbit surrounding
the cone. The epicycles on the trajectory are with a time scale proportional to one revolution of
the cilium [21, 5]. Except for the fluctuation during each epicycle, the fluid tracer stays at a fixed
z-level. This property is illustrated clearly from the side view of the trajectory in Fig. 7 and the
plot of z component of this trajectory in Fig. 12. This can be confirmed by the Poincare map [6].
The Poincare map is a plot of the trajectory through a vertical plane in the body frame, where the
cilium is fixed and the background flow is purely rotating flow. The Poincare map of this trajectory
is a dot.

Figs. 8-9 and 10-11 show trajectories when the cilium sweeps on upright elliptical cones a = 2b =
tan(7/6) and a = 10b = tan(7/6), respectively. For elliptical cone a = 2b = tan(w/6), the maximum
cone angle is x = § and the minimum cone angle is x = {5. From these trajectories, the epicycle
and periodicity of the trajectories around the cone also clearly show up. Similarly, each epicycle is
roughly corresponding to one rotation of the cilium and the orbit is surrounding the elliptical cone.
From the top views, the trajectories of the fluid tracer are deformed consistently as shapes of the
cone. When the cone is circular, the trajectory is circular in a long period of time. For elliptical

cones, the trajectory is elliptical in the long term.

Besides the deformation shown in the top view, we see the tracer behaves differently in the vertical
direction from the side view. Fig. 12 and 13 show vertical components of three trace trajectories in
Figs. 8-11. In Fig. 12, the red dotted curve is for the z component the trajectory with the circular
cone shown in Fig. 6-7, and the black curve is for the z component of the trajectory with elliptical
cone a = 2b = 1 shown in Fig. 8-9. The horizontal axis T is referred to the number of rotations of
the cilium. The vertical variance of the trajectory when a cilium sweeps on the elliptical cones is
enhanced compared to the circular cone. There are two periodicities of the vertical components for
elliptical cones situations. The first one is due to the periodicity of rotation of the cilium and the
second is due to the time variance of the cone angle « for elliptical cones.

3.2 Velocity Field

On the surface of the ciliated ventral node of the developing embryo, the interaction of the cilia
are extremely important to the proper direction of fluid. We check the velocity field for different
alignments of the cilia in the flow. For multiple cilia presenting in the system, the symmetry property
of the cone is broken. We focus on analyzing the phase difference for multiple cilia sweeping cones.

Figs. 14-16 show the instantaneous velocity field computed on a horizontal surface with a single
cilium or two cilia sweeping. The horizontal surface is at z = 10 for these figures. The cone angle is
k = m/6 and the geometry of the cilium is the same as in the previous subsection. For two-cilium
cases, phase angles for cilia are randomly chosen for each scenario.

Fig. 14 shows the velocity field for flow induced by a single cilium.

Figs. 15 and 16 show velocity fields with two cilia precessing. These two cilia are anchored at (-5,0)
and (5,0) on the no-slip plane (the z-plane). Since phase angles are randomly chosen, these are only
two scenarios.
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Figure 6: Circular (a = b): top view Figure 7: Circular (a = b): side view

Figure 9: Elliptic (a = 2b): side view

Figure 10: Elliptic (§ = 10): top view  Figure 11: Elliptic (§ = 10): side view
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With these two samples, the velocity field shows that there are directional flows as Fig. 15 and

also circulation as Fig. 16 in the near field.

Fig. 17 shows velocity fields of flow driven by with 2 x 2 cilia. For all three scenarios, cilia are

anchored at (-5, -5), (-5,5), (5,-5) and (5,5) on the no-slip plane. Phase angles for four cilia are also

randomly values. Rivers and whirlpools appear in the flow fields.

ith Multiple Cilia

1es w

3.3 Properties of Fluid Tracer Trajector

we consider two cilia in the system. In many

)

To explore the tracer trajectory with multiple cilia

biology systems, cilia move in a coordinated fashion in either complete synchrony or by maintaining

a constant phase difference [1]. The frequency of sweeping is set the same for all cilia.
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Figure 17: Velocity field for 2 x 2 cilia.

Figs. 18 and 19 are the top view and the side view of a tracer trajectory in the flow generated by
two cilia precessing circular cones. The frequencies of the rotation for these two cilia are same. The
phase difference between two cilia is zero, which means the cilia start at the same relative location
on the cones. For this trajectory, both cilia are initialized in the z-z plane as shown in the figures.

Figs. 20-21 show tracer trajectories when two cilia sweep out circular cones but with the phase
difference ¢ = /2, and 7, respectively. Since the trajectory is almost planar as Figs. 18-19, only
top views are presented for these cases.

Figs. 22 and 23 are views of a tracer trajectory when two cilia sweep out elliptical cones. For both
elliptical cones, a = 2b = 1 and the phase difference is zero.

These plots demonstrate the importance of phase difference for flows. It is interesting to see that
the periodic tracer trajectory is deformed more when changing the phase angle than changing the
shape of the cone.

As the elliptical cone has its orientation based on the major axis and minor axis, we check the
trajectory for a fluid trace with different orientations of the elliptical cones. Figs. 24-29 show fluid
tracer trajectories when two cilia sweep elliptical cones, whose major axises are perpendicular to
each other. For the green cilium (on the left), a = 2b = 1. For the black cilium (on the right),
2a = b = 1. For these three pairs of views (3D and top) in Figs. 24-29, the phase differences are 0,
/2 and 7, respectively. These phase differences can be checked from two views of the cilia. These
figures illustrate that, given the configuration of the cones, the phase difference affects the shape of
the epicycles rather than the long-term orbits.
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Figure 21: Circular cone ¢ = 7

Figure 23: Side view of Fig. 22
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Figure 24: Black cilium: a = 2b =1,
green cilium: 2a =b =1,
zero phase difference
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Figure 26: Black cilium: a = 2b =1,
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Figure 25: Side view of Fig. 24

Figure 27: Side view of Fig. 26

Figure 29: Side view of Fig. 28

258



Zhao; BJMCS, 9(8), 246-260, 2015; Article no.BJMCS.2015.200

Conclusions

In this study, we have considered the flow driven by nodal cilia with prescribed motions. This study
can be used to gain insight into the left-right symmetry breaking during embryo development. We
have formulated a model describing the motion of a fluid tracer in the flow. Using the method of
regularized Stokeslet and its image system to our model, the velocity field in a viscous fluid flow due
to non-circular rotatory cilia precessing above a no-slip flat wall has been computed. The motion of
the tracer in the fluid is then attained with the forward Euler method. The numerical results show
that the model successfully captures epicycles and large periodic orbits surround the cones from the
tracer trajectory. These epicycles and large orbits had been observed in the flow experiments [6].
We have found that when cilia sweep elliptical cones, the vertical variance of tracer trajectories is
enhanced. Additionally, we have demonstrated the fluid velocity field and properties of trajectories
with multiple cilia precessing.

A natural extension of this study is the generalization to a periodic lattice of cilia attached to a
surface. More thorough study about the variance of the rotation frequency and the phase difference
would also be interesting. Moreover, the results reported in this paper are for cilia sweeping upright
cones. When the cone is tilted, the symmetry between the cone and the no-slip plane is broken.
The tilted rotation and directional flow are close related. Efforts have been made to investigate new
phenomena introduced by the tilt. Such results will be reported in the future work. Furthermore,
motions of the cilia are prescribed in this paper. A future study of the cilia motion based its
microstructure coupled with the fluid mechanics would be useful. Ultimately we would like to
model unidirectional fluid transport driven by cilia movement.
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