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Abstract 
 

The biharmonic equations arise in many applications such as elasticity, fluid mechanics, and many other 
areas. In this paper, the combination of Explicit Decoupled Group (EDG) method with Successive Over 
Relaxation (SOR) is proposed for solving the biharmonic equation by reducing this equation into a 
coupled second order Poisson equations. Thus, this pair of Poisson equations can be easily solved using 
finite difference method, which discretizes the solution domain into a finite number of grids. The sparse 
linear system derived is usually solved by iterative methods which always take advantage of the existence 
of zeros in the coefficient matrix. However, such methods yield high number of iterations for 
convergence especially if the number of grid points is very large. To overcome of this problem, EDG 
SOR method formulated to accelerate the rate of convergence for the solution of these iterative methods. 
The numerical experiments carried out confirm the superiority of the introduced method over the classical 
standard five point SOR formula in terms of number of iterations and execution time. 

 

Keywords: Explicit decoupled group (EDG) method; successive over relaxation method (SOR); Biharmonic 
equation; coupled second order Poisson equations.  

 

1 Introduction 
 
The biharmonic equation is a fourth order elliptic partial differential equation (pde) frequently arises in 
linear elasticity problems. Due to the existence of the fourth order derivative, the analytical solution for such 
equation is usually difficult to obtain. Consider the Dirichlet problem of the biharmonic equation defined on 
domain Ω and boundary ∂Ω. 
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4 ( , ) ( , ),u x y f x y           ( , )x y                                  

1( , ) ( , ),u x y g x y             ( , )x y                

2( , ) ( , ),nu x y g x y          ( , )x y                                                                                               (1.1) 

 

where   
4 4 4

4

4 2 2 4
2 ,

x x y y

  
   

   
 

 

with the square boundary  ,




n

u
u

n
 is the normal derivative of  u  on  and 


n  is the unit normal 

vector. Several approximation methods carried out for the numerical solution of Equation (1.1) [1,2,3,4,5,6]. 
A popular technique, which was introduced by Smith [5] is to split (1.1) into a coupled of Poisson equations  
 

2 2

2 2

 
 

 

v v
u

x y
,                                                                                                                                   (1.2)  

 
2 2

2 2

 
 

 

u u
f

x y
                                                                                                                                   (1.3) 

 
which may be solved by classical Poisson solvers such as the standard five point formula. Applying such 
formula on each grid point in the solution domain leads to a sparse linear system, which is preferably, solved 
by iterative methods since such method takes advantage of the existence of many zero elements in the matrix 
coefficient. However, this method suffers from slow convergence when the grid size grows. Abdullah [7] 
introduced the Explicit Decoupled Group (EDG) for solving such system of equations as a more efficient 
Poisson solver on rotated grids by using small fixed size group strategy which was shown to be more 
economical computationally than the Explicit Group (EG) scheme due to Yousif and Evans [8]. The outline 
of this work is as follows: Section 2 gives an overview of the construction of EDG SOR iterative method. 
We apply the proposed EDG SOR formula to the coupled Poisson equations in section 3. Section 4 
presented the numerical experimentation and results. The concluding remark is given in section 5. 
 

2 Construction of EDG SOR Iterative Method 
 
Poisson equation (1.3) may be approximated at the point ( , )i jx y in many ways. Assume that a rectangular 

grid in the xy plane with equal grid spacing h in both directions with ix ih, jy jh ( 0 1i , j , ,....N ) are 

used, where , ( , )i j i ju u x y  and 1 /h N . By neglecting terms of 2( )O h , we obtain the simplest 

approximation for (1.2) which is known as the standard five-point difference formula:  
 

2
, 1 , 1 1, 1, 4 .i j i j i j i j ij iju u u u u h f         

 
Another type of approximation that can represent the Poisson equation under study is the cross orientation 

which can be obtained by rotating the xy-plane clockwise by 45  Abdullah [7]. This will result in the 
rotated (skewed) five-point approximation formula:  
 

2
1, 1 1, 1 1, 1 1, 1 4 2 .i j i j i j i j ij iju u u u u h f             

 
In the (EDG) method, the grid points are gathered into groups which can consists of only 2 grid points. Each 
value for u of every grid point is approximated by the rotated five-point formula. These values are calculated 
with a sequence from left to right and then upwards. Hence, the iteration over the solution domain is only 
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carried out on half the mesh points. Once convergence is achieved, the solution at the other half of the points 
is obtained directly once using the standard five-point difference formula [7,9,10,11,12]. 
 
Let us assume that the solution at any four points on the solution domain is solved using rotated five-point 

equation above. This results in a ( 4 4 ) system of equations 
 

2
, 1, 1 1, 1 1, 1 ,

2
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2
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                          (2.1) 

 
This system lead to a decoupled system of two equations whose explisit form are given by 
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Fig. 1. Natural group ordering 

 
Theoretically, the application of either equation (2.2) or (2.3) to each of the group in Fig. 1 with natural 
group ordering will result in a system of equations [9,10]. 
 

Au b
                                                                                                                                                 (2.4) 
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For   i = N-2,       

                          with k = 3(2) N-4 

  

 

The EDG formula is hence written as the following 
 

              
 
                                                  (2.5) 

 

where:    
   

 

As can be seen, the matrix A is a block tridiagonal matrix. Therefore the SOR method applied on this system 
will be converge Smith [5]. In order to obtain the formula of EDG SOR method, we first need to derive the 
formulas of EDG Jacobi and EDG Gauss Seidel method respectively. 
 

The iterative scheme for EDG Jacobi method is given by 
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The iterative scheme for EDG Gauss Seidel method is given by 
 

                                                                             (2.6) 
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Hence, the iterative scheme for EDG SOR method is given by      
    

          
                     (2.7) 

  

where  F1, F2 as shown in (2.6). 
 

3 The Proposed Method for Solving Coupled Poisson Equations 
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Consider a typical dirichlet biharmonic problem 
 
         4 ( , ) 0 ,u x y       ( , ) (0 1) (0 1)x y         

     ( , ) 0,u x y            ( , )x y                                                                                                          (3.1) 
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As in the coupled Poisson equations in (1.2) and (1.3), we need to approximate the boundary condition for v , 
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Solving (1.2) and (1.3) by the standard five point formula, together with the boundary conditions specified 
by (3.1) and (3.2) leads to the following equations  
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and K is the vector containing known values. By applying SOR iterative scheme for solving (3.3), we 
obtained  
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 

  

  

k k k

k k k

u w u w u

v w v w v
                                                     (3.5) 

 
As mentioned before, the SOR scheme (3.5) above suffers from slow convergence when the number of grid 
points grow. Here we solve the pair of equations in (3.3) using the EDG SOR formula (2.4) by the same 
manner above.  
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4 Numerical Experimentation and Results 
 
In this section we check the effectiveness of the proposed iterative method using the modal problem (3.1). 

For the purpose of comparison, we use a tolerance of 
710   as the termination criteria and the range of 

the acceleration parameter is 1 2w  . The computer processing unit is Intel (R) Core (TM) i5 with 
memory of 4Gb and the software used to implement and generate the results was Developer C++ Version 
4.9.9.2. 
 
The results are summarized in Table 1 which showed the comparison between the EDG formula and the 
classical standard five point formula (original system) when solving the biharmonic equation with SOR 
iterative scheme. We can easily observe that the number of iterations and elapsed time significantly reduced 
when using the new EDG SOR method for solving such equation.  
 

Table 1. Comparison of number of iterations (k) and elapsed time (t) between the original system and 
EDG SOR system 

 
N        Original system         EDG SOR system 

k                                t k t 
15 65 10.86 40 9.42 
25 113 39.78 62 23.34 
45 186 59.70 106 45.54 
60 213 67.62 178 57.84 
85 238 75.18 207 66.18 

*Elapsed time measured in seconds 
 

According to Smith [5], for numerical scheme with tolerance value of 
q10

, the number of iterations k is 
bounded by 
 

      

10( log )



q
k


                                                                                                                                   (4.1) 

 

where   is the spectral radius of the iteration matrix which must be satisfied 0 1  for the convergence 

of these types of iterative methods. Clearly k decreases as   decreases. 

 
The iterative matrix for the SOR method case is given by 
 

1( ) ( ) [(1 ) ]   H w I wL w I wU                                                                                                       (4.2) 

 

where L and U are strictly lower and upper triangular matrices respectively for matrix A in (2.1). Table 2 
shows the comparison of the spectral radius of the iteration matrix between the original and the EDG SOR 
systems. 
 

Table 2. Comparison of the spectral radius of the iteration matrix (  ) between the original system 

and EDG SOR system 
 

N Original system               EDG SOR system 
Spectral radius (  ) Spectral radius (  ) 

15      0.562  0.374 
25      0.731  0.534 
45      0.785  0.588 
60      0.813  0.692 
85      0.875  0.713 
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Clearly it can be seen that the spectral radius of the EDG SOR system is smaller compared to the original 
system, thus justifying our findings. 
 

5 Conclusion 
 
In this paper, we derive new iterative method which called Explicit Decoupled Group Successive Over-
Relaxation (EDG SOR) for solving a biharmonic equation. The new schemes have shown improvements in 
the number of iterations and the execution time experimentally. Hence, we conclude that the proposed group 
iterative method is suitable for solving a coupled of Poisson equations and it is able to accelerate the rate of 
convergence of the solution. 
 

Acknowledgements 
 
The author acknowledges the Project No. (2787) in Qassim University for the completion of this article. 
 

Competing Interests 
 
Author has declared that no competing interests exist. 
 

References 
 
[1] McLaurin JW. A general coupled equation approach for solving the biharmonic boundary value 

problem. SIAM J. Num. Anal. 1974;11:14-33. 
 

[2] Greenbaum A, Greengard L, Mayo A. On the numerical-solution of the biharmonic equation in the 
plane. PHYSICA D. 1992;60:216-225. 

 
[3] Mayo A, Greenbaum A. Fast parallel iterative solution of Poisson's and the biharmonic equations on 

irregular regions. SIAM J. Sci. Stat. Comput. 1992;13:101-118. 
 
[4] Smith J. The coupled equation approach to the numerical solution of the biharmonic equation by finite 

differences. SIAM Journal of Numerical Analysis. 1968;5(2):323-339. 
 
[5] Smith GD. Numerical solution of partial differential equations. New York: Clarendron Press-Oxford; 

1985. 
 
[6] Stephenson JW. Single cell discretizations of order two and four for biharmonic problems. Journal of 

Computational Phys. 1984;55(1):65-80. 
 
[7] Abdullah AR. The four point explicit decoupled group (EDG) method: A fast Poisson solver. 

International Journal of Comp. Math. 1991;38:61-70. 
 

[8] Yousif WS, Evans DJ. Explicit group over-relaxation methods for solving elliptic partial differential 
equations. Mathematics and Computers in Simulation. 1986;28:453-466.  
 

[9] Saeed AM, Ali NHM. Preconditioned ( )I S  group iterative methods on rotated grids. European 

Journal in Scientific Research. 2009;37(2):278-287. 
 
[10] Saeed AM, Ali NHM. On the convergence of the preconditioned group rotated iterative methods in 

the solution of elliptic PDEs. Applied Mathematics & Information Sciences. 2011;5(1):65-73. 



 
 
 

Saeed; BJMCS, 9(3): 237-245, 2015; Article no.BJMCS.2015.199 
 
 
 

245 
 

[11] Saeed AM, Ali NHM. Accelerated solution of two dimensional diffusion equation. World Applied 
Sciences Journal. 2014;32(9):1906-1912. 

 
[12] Saeed AM. Fast iterative solver for the 2-D convection-diffusion equations. Journal of Advances in 

Mathematics. 2014;9(6):2773-2782. 
_______________________________________________________________________________________ 
© 2015 Saeed; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
www.sciencedomain.org/review-history.php?iid=1144&id=6&aid=9394 


