
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20

Geo-spatial Information Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgsi20

Waveform LiDAR concepts and applications for
potential vegetation phenology monitoring and
modeling: a comprehensive review

Eric Ariel L Salas

To cite this article: Eric Ariel L Salas (2021) Waveform LiDAR concepts and applications for
potential vegetation phenology monitoring and modeling: a comprehensive review, Geo-spatial
Information Science, 24:2, 179-200, DOI: 10.1080/10095020.2020.1761763

To link to this article:  https://doi.org/10.1080/10095020.2020.1761763

© 2020 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

Published online: 22 May 2020.

Submit your article to this journal 

Article views: 3961

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20
https://www.tandfonline.com/loi/tgsi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2020.1761763
https://doi.org/10.1080/10095020.2020.1761763
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2020.1761763
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2020.1761763
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2020.1761763&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2020.1761763&domain=pdf&date_stamp=2020-05-22
https://www.tandfonline.com/doi/citedby/10.1080/10095020.2020.1761763#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10095020.2020.1761763#tabModule


Waveform LiDAR concepts and applications for potential vegetation
phenology monitoring and modeling: a comprehensive review
Eric Ariel L Salas

Agricultural Research Development Program (ARDP), Central State University, Wilberforce, USA

ABSTRACT
Researchers continually demonstrated through published literature how LiDAR could create
unparalleled measurements of ecosystem structure and forest height. There are a number of
studies conducted utilizing waveform LiDAR products for terrestrial monitoring, but those
that deal specifically with the assessment of space-borne waveform LiDAR for monitoring and
modeling of phenology is very limited. This review highlights the waveform LiDAR system
and looks into satellite sensors that could link waveform LiDAR and vegetation phenology,
such as the proposed NASA’s Global Ecosystem Dynamics Investigation (GEDI) and the
Japanese Experimental Module (JEM)-borne LiDAR sensor named MOLI (Multi-footprint
Observation LIDAR and Imager). Further, this work examines the richness and utility of the
waveform returns and proposes a spline-function-derived model that could be exploited for
estimating the leaf-shooting date. The new approach may be utilized for ecosystem-level
phenological studies.
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1 Introduction

Phenology, the study of the timing of recurrent
biological events (Lieth 1974) driven by environ-
mental change is perhaps the simplest process in
which to track changes in the ecology of species in
response to climate change (Intergovernmental
Panel on Climate Change (IPCC) 2007). Globally,
according to the Intergovernmental Panel on
Climate Change (IPCC), most of our knowledge
about changes in terrestrial phenology comes from
the northern hemisphere, with majority of the stu-
dies coming from Europe alone. Although no speci-
fic numbers were shown regarding the spread of the
individual phenological areas of study, Google scho-
lar has a rough estimation that shows phenological
studies conducted on forest biomes and plant spe-
cies constituting the major bulk. Using various key-
words such as plant phenology, forest phenology,
animal phenology, marine phenology, and other
word combinations such as phenological studies –
forest and vegetation phenology always appears at
the top pages. Table 1 shows the estimated numbers
based on the first three result pages.

The popularity of plant phenology is partly attrib-
uted for being the most responsive and easily obser-
vable traits in nature, and most importantly for its
implications on the ecosystem–atmosphere interac-
tions. Changes of the phenological events, such as
the emergence and senescence of leaf, are not only
critical to survival and reproduction (Rathcke and
Lacey 1985) but also indicate important climatic

variations (Schwartz and Hanes 2009; Peñuelas et al.
2013). In the last two decades, the attention on phe-
nology has shifted to its function as a proxy in detect-
ing global climate change (Jackson et al. 2001; White,
Brunsell, and Schwartz 2003; Parmesan 2006; Inouye
2008; Miller-Rushing and Primack 2008; Peñuelas,
Rutishauser, and Filella 2009; Morin et al. 2010;
Cook, Wolkovich, and Parmesan 2012a; Yang et al.
2017) as modeled growing season length affects tree
competition and vegetation dynamics (Kramer,
Leinonen, and Loustau 2000) and correlates with
terrestrial CO2 uptake (Piao et al. 2017). Further,
more and more studies use phenological information
to make inferences on the relationships of life cycle
events of vegetation to their environment (Reed et al.
1994; Fitzjarrald, Acevedo, and Moore 2001; Schmid
et al. 2003; Gordo and Sanz 2010; Wilsey et al. 2018).

Phenological indices that had been assessed in
Europe (Menzel and Fabian 1999; Menzel 2000;
Chmielewski and Rotzer 2001; Ma et al. 2016) had
shown earlier springtime phenological events that
could contribute to an increase biomass formation,
which is part of a global increase in biospheric activ-
ity. In western North America, the same advance-
ment in spring timing was observed (Cayan et al.
2001; Schwartz, Ahas, and Aasa 2006). In order to
monitor the implications of the changing plant phe-
nology on biosphere–atmosphere interactions, which
is highly variable, phenological models have to be in
place. For decades, phenological models have been
developed to predict the timing of leaf onset, such
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as the thermal time model (Cannell and Smith 1983),
alternating model (Murray, Cannel, and Smith 1989),
sequential model (Hänninen 1990), parallel model
(Kramer 1994), and alternating model (Murray,
Cannel, and Smith 1989). The start of the leafing
marks the start of the photosynthetic season for a
deciduous forest (Delpierre et al. 2017) and is a
major determinant of forest duration (Donnelly, Yu,
and Caffarra 2017) and an indication of the onset of
the net carbon uptake (White, Thornton, and
Running 1997). Additionally, Richardson et al.
(2009) showed that the day of leaf emergence controls
the annual carbon sequestration in forests. Carbon
uptake refers to the net annual per-hectare removal of
carbon from the atmosphere while the land is in a
given land-use category. The length of the carbon
uptake period across a latitudinal and continental
gradient of deciduous forests explained 80% of the
spatial variance in annual Net Carbon Exchange Of
Ecosystems (NCEE) (Baldocchi et al. 2001). The
importance of the timing of the forest leaf onset to
the yearly variability of the NCEE had already been
described and conveyed both theoretically (White,
Running, and Thornton 1999) and experimentally
(Black et al. 2000; Schmid et al. 2003).

Within the last couple of decades, the importance of
long-term forest phenological data has been re-empha-
sized by examining existing data sets for evidence of
species change and for temperature response (Menzel
and Estrella 2001; Melaas, Friedl, and Richardson
2016). The low-tech approach offered by phenology
has now being linked with the high-tech approach
through the comparison of satellite observations with
those on the ground (e.g. Duchemin, Goubier, and
Courrier 1998; Guyon and Lagouarde 1999). In fact,
more and more studies are now making use of the
remote sensing data to look at forest leaf-out, leaf-fall
(Zhang et al. 2004; Robin et al. 2007; Liang and
Schwartz 2009; White, Pontius, and Schaberg 2014).

Remote sensing satellites could measure forest fea-
tures such as leaf phenology that are difficult if not
impossible to collect with ground crews (Ustin et al.
2004; DeFries 2008). Although ground-collected for-
est measurements are often more accurate than satel-
lite data at the point and time of collection, satellites
gather data at wide extent areas, sample the full range
of variation in forest metrics, and capture broad

trends and dynamic change in the world’s forests
(Houghton 2005). Hence, satellite datasets allow for
the integration of ground measurements and moni-
toring of vegetation dynamics at regional to global
scales (Myneni et al. 1997).

Several methods exist to estimate the Start Of
Season (SOS) (see de Beurs and Henebry 2010 for
the list) or “distinct green coloration in the forest”
(Thoman and Fathauer 1998) from satellite data. The
identification of the SOS in terms of the Day Of Year
(DOY) is the key to the seasonal characterization of
vegetation. There is, however, no standard approach
to determine the SOS (Reed, White, and Brown 2003;
White et al. 2009; Fu et al. 2014). One common
method is the threshold that uses sets of
Normalized Difference Vegetation Index (NDVI) or
a value calculated from the minimum and maximum
NDVI to know the start, peak, end, and length of the
growing season (Lloyd 1990; Suzuki, Nomaki, and
Yasunari 2003; Shang et al. 2018). NDVI is a quantity
that measures greenness and vigor of vegetation
(Tarpley, Schneider, and Money 1984). Related to
the threshold method is the compound median filter
approach that also uses NDVI for monitoring phe-
nological changes (Kogan 1995). In the inflection
point approach, the time of transition from the tem-
poral NDVI profile is detected and metrics are
derived with time derivatives or logistic functions
(Badhwar 1984; Moulin et al. 1997; Zhang et al.
2003, 2004). The curve-derived method uses delayed
moving average (Reed et al. 1994) and time of largest
NDVI increase (Kaduk and Heimann 1996).
However, these methods are difficult to apply at glo-
bal scales, and generally do not account for ecosys-
tems characterized by multiple growth cycles (Zhang
et al. 2003; Yu et al. 2017). The modeling approach by
de Beurs and Henebry (2004, 2005) models land sur-
face phenology (LSP) using NDVI as a function of
accumulated growing degree day (AGDD). Their
phenological model used a simple regression model
that assessed whether institutional changes in
Kazakhstan had an effect on land surface phenology.
The results showed that across different eco-regions,
the model explained a significant portion of NDVI
variation and could be used to assess significant
changes in land surface phenology.

Passive remote sensing has been effective in mon-
itoring cycles of vegetation phenology. For instance,
the Advanced Very High-Resolution Radiometer
(AVHRR) has been extensively used for monitoring
vegetation phenology (Lloyd 1990; Reed et al. 1994;
White, Thornton, and Running 1997; Delbart et al.
2006; Zhang, Liu, and Dong 2017). AVHRR offers the
only source of global data that could be used to
analyze seasonal-to-decadal-scale dynamics in global
vegetation (e.g. Zhou et al. 2001). However, the lack
of precise calibration, poor geometric registration,

Table 1. Google Scholar search results for the terms “phenol-
ogy” and “phenological studies”.

Areas of Interest

Keyword Used

Phenology
(% occurrence)

Phenological Studies
(% occurrence)

Forest 83.33 80
Other vegetation types 16.67 13.33
Others 0 6.67
Total results listed 185,000 95,400
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and difficulties involved in cloud screening AVHRR
data could result in high levels of noise (Goward et al.
1991). Then, there is the Moderate-Resolution
Imaging Spectroradiometer (MODIS) instrument
that provides daily reflectance data and possesses
seven spectral bands that are specifically designed
for land applications with spatial resolutions as
small as 250 m (Table 2). The improved spectral,
radiometric, and geometric qualities of MODIS data
provide an effective means of monitoring global
environmental changes. The products generated by
MODIS on board Terra and Aqua present an unpre-
cedented chance for scientists to develop long-term
records of vegetation phenology. Time-series MODIS
data have been used for phenology detection (Zhang
et al. 2003; Sakamoto et al. 2005; Peng et al. 2017;
Parente and Ferreira 2018). Phenological models have
been studied to predict the onset of leaf using MODIS
data (Kang et al. 2003; Kim and Wang 2005; Ahl et al.
2006). Zhang et al. (2003) developed a method to
estimate phenological events based on the curva-
ture-change rate for MODIS time series. However,
confusion on the calculation of specific dates of vege-
tation phenological transitions still exist due to the
mix of methods and definitions being used (White
and Nemani 2003). Also, small-scale (<500 m) topo-
graphical variability in the order of 50 m could result
in a 1 to 2-week difference in SOS (Fisher, Mustard,
and Vadeboncoeur 2006). It is also imperative to
establish whether temporal NDVI derived from the
satellite sensors can uncover the SOS dates since the
spatial extent of satellite data permits for a larger area
of study than field observations. Table 2 provides a
list of satellite sensors that may be available for phe-
nological studies of vegetation. The primary advan-
tage of coarse-resolution satellite datasets is their
long-term and frequent revisit time. Medium (e.g.,
Landsat) to high (e.g., IKONOS) spatial resolution
sensors are limited by temporal resolution that
could render them insufficient in mapping phenolo-
gical dynamics in vegetation (Gonzalez-Sanpedro et
al. 2008; Verbesselt et al. 2010). In addition, due to

cloud cover and archive restrictions, Landsat avail-
ability outside the United States is much lower
(Wulder et al. 2016). There have been studies that
integrated higher temporal-resolution images with
Landsat using image fusion techniques (Gao et al.
2006; Roy et al. 2008; Zhu et al. 2010) and showed
comparable results with those using MODIS dataset
(Bhandari, Phinn, and Gill 2012; Li et al. 2019).
Sentinel-2 has a richer spatial and spectral content
compared to Landsat, and with a higher revisit time
of 5 days (Table 2). However, Sentinel-2 acquisitions
are available only from March 2017 onward.

There are technological tradeoffs between the spa-
tial resolution of passive sensors and the dimension of
the swath they could capture (Rosenqvist et al. 2003;
Andersen 2009). The set of commercial high-resolu-
tion satellites like the IKONOS that has a spatial reso-
lution of 4 m and a swath width of 13.8 km is in one
extreme. In the other extreme is the set of coarse-
resolution sensors like AVHRR that has a resolution
of 1 km and a swath width of 3000 km. For satellites,
this tradeoff in spatial resolution and image size affects
the time it takes for a satellite to image the same
location on Earth (temporal resolution). Coarse-reso-
lution satellites could sense the entire Earth fast and
revisit the same location every few days in contrast
with high-resolution satellites, while moderate-resolu-
tion satellites could take 10 to 20 days to revisit a
location. Temporal resolution is imperative in moni-
toring the timing of phenology. Detecting the precise
date of a phenological event depends upon the sam-
pling frequency or with the frequency of passage and
pixel size associated with remote sensing instruments
mounted on a satellite or tower.

Active sensors (e.g., light detection and ranging
known as LiDAR) only constitute a small proportion
of the present satellite fleet, but based on future
scheduled launching; it would dramatically increase
in number and complexity in the next few years. This
would make new types of phenological analysis pos-
sible. The first LiDAR satellite, the Ice, Cloud, and
land Elevation Satellite (ICESat) that ended in the fall

Table 2. High spatial and high temporal resolution sensors available for phenological studies.
High Spatial Resolution Sensors

Temporal Resolution Spatial Resolution Swath Width Operation

LandSat 16-day 30 m 185 km 1972 – present
SPOT 26-day 10 m pan

20 m multispectral
60 to 80 km 1986 – present

IKONOS 3 to 5 days off-nadir and 144 days for true-nadir 1 m pan
4 m multispectral

11.3 to 13.8 km 1999 – present

SENTINEL-2 5-day 10 m
20 m

290 km 2015 – present

High Temporal Resolution Sensors
AVHRR Daily 8 km global coverage

1.1 km conterminous US
3000 km 1981 – present

1989 – present
SPOT Vegetation Daily 1.1 km 2200 km 1998 – present
MODIS Daily, 8-day, 16-day, Monthly, Quarterly, Yearly 250 m, 500 m, 1 km 2330 km 2000 – present
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of 2009 would be followed by two other satellites in
order to address issues in forest ecosystem manage-
ment. First is the ICESat 2 that was recently launched
in September 2018, and the second is the National
Aeronautics and Space Administration (NASA)
Global Ecosystem Dynamics Investigation (GEDI)
(http://science.nasa.gov/missions/gedi) that was
deployed on the International Space Station (ISS) in
late 2018 for a two-year mission (Dubayah et al.
2014). The products from these active sensors would
revolutionize mapping and the monitoring of forest
biomass. In the case of GEDI, it has been designed to
create unparalleled measurements of ecosystem struc-
ture and forest height using LiDAR waveforms (Qi
and Dubayah 2016). These satellites are elaborated
further in a later chapter of this paper.

LiDAR remote sensing promises improved accu-
racy of biophysical measurements and extends the
spatial analysis to the third dimension. However, the
algorithms, models, feature detection for LiDAR ana-
lysis are still to mature as data availability grows
(Zhan et al. 2011). Further, there has been limited
use of the technology for phenological monitoring
and modeling. LiDAR research has focused on the
measurement of canopy height and structure
(Dubayah et al. 1997; Dubayah and Drake 2000;
Drake et al. 2002a; Khosravipour et al. 2014;
Popescu et al. 2018; Silva et al. 2018) and estimation
of aboveground biomass (Drake et al. 2002a; even at a
plot level: Zhao, Popescu, and Nelson 2009; Powell et
al. 2010; Clark et al. 2011; Rosette et al. 2012; Zolkos,
Goetz, and Dubayah 2013; Marvin et al. 2014), with
results illustrating unprecedented accuracy and con-
sistency (Hurtt et al. 2004), even in complex canopies
(Drake et al. 2002b; Salas and Henebry 2016). With
the current technology, it remains a challenge to
distinguish primary forests from older secondary for-
ests in remote sensing image. The additional high-
resolution LiDAR systems available for fusions (e.g.
Asner et al. 2008; Swatantran et al. 2011) show that
there is a promise to address the challenge.
Nevertheless, research seems to be stuck at using
the active system on case studies that focus on a static
condition at a single point in time. The question still
remains whether or not LiDAR data could benefit the
research arena that focuses on phenological monitor-
ing and modeling.

The objective of this paper is to (1) present the
requirements for phenological monitoring andmodeling
and (2) look into the possibility of waveform LiDAR,
specifically space-borne systems, to address those
requirements. Further, this paper is broken down into
three main sections: (1) an introductory section that
provides the background of phenology (2) a discussion
section on LiDAR and its capabilities, including LiDAR
instruments such as the proposed GEDI and MOLI (3)
the later part covers the ways full-waveform LiDAR

could be utilized for phenological monitoring and mod-
eling, which contains an overview of the potentials of
LiDAR that may have remained untapped.

2 Terrestrial applications of LiDAR

LiDAR is active remote sensing with main compo-
nents such as the laser scanner, GPS receiver, the
Inertial Monitoring Unit (IMU) and the control
unit (Reutebuch, Andersen, and McGaughey 2005).
The concept of the technology is to send laser pulses
toward a target to obtain high-resolution measure-
ments of surface altitudes, either from airborne or
space platforms (Parker, Harding, and Berger 2004;
Vierling et al. 2008). The information collected by the
laser scanner is geo-referenced with position and
orientation information from the GPS and IMU.

LiDAR system measures the elapsed time and
amount of return energy pulses scattered back from
the target to the receiving sensor. The time elapse (t)
of the pulse traveling a distance (d) at the speed of
light (c) is described by equation 1:

t ¼ 2d
c

(1)

where the speed of light is assumed constant. The
time component is essential for canopy height esti-
mation. Taking the difference of the time recording at
the top of the canopy (t1) and the time recording at
the underlying ground (t2) may result in an estimate
of the tree height (h) as shown in equation 2.

h ¼ t1 � t2 ¼ 2d1
c

� 2d2
c

¼ 2 d1 � d2ð Þ
c

(2)

Typical commercial LiDAR instruments operate at
around the 1.064 µm wavelength to insure high atmo-
spheric transmittance and minimal loss of signal as
the pulse travel through the atmosphere.

LiDAR returns could be categorized as either dis-
crete or waveform. The two variations differ in terms of
how each vertically and horizontally sample a three-
dimensional canopy structure. The vertical sampling is
described in relation to the number of range samples
recorded for each emitted later pulse, while horizontal
sampling is the area of the footprint coverage and the
number of footprints per unit area (Lim et al. 2003).

2.1 Discrete return LiDAR

Early discrete return LiDAR systems typically
recorded only one discrete return, either the first
peak or the final peak (Naesset 1997; Magnussen,
Eggermont, and LaRiccia 1999) or two, the first peak
and the final peak (Lefsky et al. 1999a) in the
reflected wave (Figure 1). The first generation
LiDAR was used to obtain surface elevations from
airborne systems (Krabill et al. 1984) and usually
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covered diameter footprints as small as 1 m, 5 cm, to
30 cm (Arp, Griesbach, and Burns 1982). Due to the
relatively small geographic area covered by the sen-
sor, challenges in the analysis of the datasets, and
the lack of a standardized method for the geoloca-
tion have limited the use of conventional LiDAR
sensors (Lefsky et al. 1999a). Despite the intense
research efforts, practical applications of small-foot-
print LiDAR have not progressed as far, mainly
because of the current cost of LiDAR data (Farid,
Goodrich, and Sorooshian 2006).

Mapping large areas using small beam size requires
expensive and extensive flying (Dubayah and Drake
2000; Dubayah et al. 2000), although small-footprint
LiDAR has shown its capability for detailed mapping
of the ground and mapping snags and understory
shrubs (Martinuzzi et al. 2009). Additionally, tree
height estimation using small-footprint and limited-
return LiDAR systems could pose major questions in
the estimation of the “real” canopy heights. Having only
one or two reflective returns cannot ascertain a mea-
surement of a shot that penetrates all the way to the
ground (Dubayah and Drake 2000). This, however,
changed when in 2000 commercial systems introduced
multiple (3 to 5) returns per pulse (Figure 1). Still, with
discrete return systems, the full vertical structure of the
vegetation is not sensed and only a portion of the
canopy and ground is recorded (Lim et al. 2003).
There is also a possibility of missing the tree tops
(Zimble et al. 2003) and down-bias the canopy heights.
These deficiencies could cause inherent information
about the reflecting object and its geometric and reflec-
tion characteristics totally neglected. With fewer

guarantees that the top of the canopy would have a
return record from discrete return systems, it is typical
to apply calibration to LiDARmeasured canopy heights
(ML, DB, and DA 2004). Another approach to ease the
limitation is to consider only the upper 10% or so of the
canopy height (Popescu andWynne 2004). Themethod
employed by Harding et al. (2001) used the relative
Canopy Height Profile (CHP), which could create
plot-level CHPs derived by summing all individual
CHP within a study plot.

2.2 Waveform LiDAR

The waveform LiDAR system, in contrast, records
many returns per emitted pulse within the vertical
structure of forest canopies (Figure 1), hence, show-
ing details of the intercepted surfaces or the propor-
tion of the canopy complexity. Dubayah et al. (1997)
and Hurtt et al. (2004) demonstrated how the LiDAR
data could accurately retrieve canopy heights. Lim et
al. (2003) converted the elapsed time difference
between the peaks of the two most prominent
modes in the amplitude waveform into range to esti-
mate the height. However, the highest peak of the
largest mode of the waveform does not necessarily
correspond to the highest point of the canopy, but is
instead a function of the canopy structure. For a
complex forest system, it is likely to have a local
variation in tree heights. Salas and Henebry (2016)
introduced a novel method by exploring the asymme-
trical shape of the waveform and its key profile land-
marks (e.g., location and magnitude of peaks) as a

Figure 1. Discrete LiDAR system generating four returns from a single emitted pulse versus waveform LiDAR where the entire
return pulse is digitized and recorded.
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canopy height indicator. By using synthetic and real
LiDAR datasets, Salas and Henebry (2016) found that
the method could work for any type of waveform,
especially for a single-peak type where canopy height
(canopy peak location minus ground peak location)
cannot be estimated due to the absence of one peak.
The method proved to be robust for any type of
waveform noise (Salas, Amatya, and Henebry 2017).

The waveform LiDAR recorded returns could also
give an ample amount of data that could indicate the
type of canopy structure and describe the vertical
canopy volume distribution (Lefsky et al. 1999a). As
stands age or grow, the vertical distribution of canopy
elements changes (Lefsky et al. 1999b). The waveform
could exhibit these changes relative to younger stands
(Salas and Henebry 2016) and successional canopy
stages (Gu, Sen, and Sanchez-Azofeifa 2018). For
instance, bimodal distributions are associated with
the presence of an understory that may occur in
more mature stands. Older stands characterized by
canopy gaps and trees of multiple ages and sizes
exhibit a more even distribution of canopy
components.

Full-waveform reflections are offered by large-foot-
print LiDAR (>10 m in diameter). Using large footprints
reduces the cost of mapping large forest regions (Blair,
Rabine, and Hofton 1999), rapidly records vertical
canopy profiles (Drake et al. 2002a), and provides a
more defined vertical arrangement of forest structure
from canopy top to the ground surface (Dubayah et al.
1997; Dubayah and Drake 2000). For research, where the
vertical profile is a criticalmeasure, it is best to utilize full-
waveform LiDAR when laser energy is densely sampled
as opposed to a discrete system (Lim et al. 2003). The
general diagram in Figure 1 shows the concept of the full-
waveform LiDAR – from how the vertical structure (at
the scale of the individual trees) could be an important
component to calculating the ground and canopy height.

Waveform LiDAR characterizations of ground and
vegetation profiles are consistently accurate over the
past years of research showing its huge potentials for
broad-scale applications (Lefsky et al. 1999a; Lefsky et
al. 2002a; Drake et al. 2002a, Zhao, Popescu, and Nelson
2009; Popescu et al. 2011; Gwenzi and Lefsky 2014).
Plant biomass is approximately 50% carbon (Drake et
al. 2003; Gibbs et al. 2007), and estimates of the total
aboveground biomass in forest ecosystems are critical
for carbon dynamics studies (Asner et al. 2013; Laurin
et al. 2014; Réjou-Méchain et al. 2015) at multiple scales
and periods (Simonson et al. 2016). A consistent rela-
tionship between forest canopy structure from LiDAR
and aboveground biomass has been illustrated in three
different biomes – temperate deciduous, temperate con-
iferous, and boreal coniferous biomes (Lefsky et al.
2002) using a variety of techniques including height
quantile relationships and simple regression (Lim and

Treitz 2004; Lefsky et al. 2005; Nie et al. 2017). More
and more results from studies could have significant
implications on how global observations from space-
borne LiDAR instruments should be used to produce
global estimates of terrestrial aboveground biomass
(Drake et al. 2003; Chi et al. 2015; Margolis et al. 2015;
Hu et al. 2016; Wang, Sun, and Xiao 2018). Results
showed that the generality of the relationships between
LiDAR metrics and aboveground biomass in closed-
canopy Neotropical forests were affected by forest
dynamics such as leaf phenology.

Waveform LiDAR dataset could be utilized to esti-
mate the vertical distribution of light transmittance
(Parker et al. 2001) and vertical foliar profiles. There
was a good agreement (r2 > 0.70) of the Scanning
LiDAR Imager of Canopies by Echo Recovery
(SLICER) dataset against the upper and lower distribu-
tion of canopy components (Harding et al. 2001). In
addition, these types of datasets are important to
NASA’s Earth Science Enterprise (ESE) Ecology/
Carbon cycle program (Blair, Hofton, and Luthcke
2001). Another waveform LiDAR application is on the
estimation of LAI and canopy cover (Zhao and Popescu
2009; Nie et al. 2016). There have been efforts to mea-
sure the fraction of canopy cover using space-borne
LiDAR by comparing ground reflectance to canopy
reflectance (Lefsky et al. 2005). These efforts require
canopy gaps to be large enough to encompass the foot-
print size. Ground or understory returns indicate
canopy openness and LiDAR waveforms could provide
this information. However, accurate retrieval of canopy
coverage would also require retrieval of the reflectance
from other materials involved, as wave returns record
not only intercepted leaves but also branches. Leaf
inclination angle and topography must be determined
precisely as well (Zhao et al. 2013). Although more has
to be done in this aspect of LiDAR remote sensing, the
present approaches of canopy cover estimation would
suffice in the absence of much better methods.

There are developments in inverting models against
LiDAR observations (Ranson and Sun 2000). A 3D
LiDAR waveform model was inverted to estimate tree
height, fractional cover, and overstory LAI of a coniferous
forest (Koetz et al. 2006). Using two separate datasets, the
approach successfully demonstrated the potential of
model inversion to retrieve horizontal and vertical forest
structure from LiDAR data. However, processing diffi-
culties limited the accuracy of the obtained results. A
follow-up study by Koetz et al. (2007) combined two
different sensor types, LiDAR and imaging spectro-
meters, and successfully derived a comprehensive canopy
characterization relevant for the assessment of biomass
and productivity of vegetation. However, the method
needs to be tested on actual measurements of the respec-
tive sensors and validated against a large variability of real
field measurements.

184 E. A. L. SALAS



Whereas LiDAR provides detailed forest structure
information, spectral remote sensing is more sensitive
to vegetation composition and phenology. The fusion of
the capabilities of different digital image data technolo-
gies is a valuable tool in remote sensing analysis (Pohl
and Van Genderen 1998) and could stimulate more
scientific studies on LiDAR. It is through fusion that
canopy cover, LAI, tree density, etc., could be best
recovered and provide a much more comprehensive
view for understanding the ecosystems. For instance,
the use of hyperspectral and LiDAR data – in tandem –
to create maps predicting species abundance patterns
(derived primarily from Airborne Visible and Infrared
Imaging Spectrometer, AVIRIS, data) augmented with
coincident patterns of stem size or height (derived
primarily from LVIS data) provided a useful adjunct
to traditional canopy inventory approaches (Anderson
et al. 2008). Geological outcrop has been analyzed by
fusing terrestrial LiDAR and hyperspectral products
(Buckley et al. 2013; CChu et al. 2016). Forest biomass
estimates have been improved by integrating LiDAR
and hyperspectral image data (Lucas, Lee, and Bunting
2008; Swatantran et al. 2011; Manzanera et al. 2016).
Also, the system was used together with AVIRIS to map
the three-dimensional spectral and structural properties
of Hawaiian forests (Asner et al. 2008) with results
highlighting the location and fractional abundance of
each invasive tree species throughout the rainforest
sites. Cao et al. (2018) modeled forest aboveground
biomass in arid and semi-arid regions of China using
waveform LiDAR and the Chinese satellite ZiYuan-3
(ZY-3). The authors found that through the fusion of
two datasets, AGB estimates were optimized.

Aboveground biomass was accurately estimated
across the entire forested region of southern Quebec
province in Canada by integrating DEM information
from the Shuttle Radar Topography Mission (SRTM),
spaceborne waveform LiDAR from the ICESat
Geoscience Laser Altimeter System (GLAS), airborne
profiling LiDAR collected over ground plots, and
ground inventory plot data (Boudreau et al. 2008).
Also, GLAS data have been combined with LandSat
data to create accurate regional biomass and height
estimates (Helmer, Lefsky, and Roberts 2009; Wang,
Sun, and Xiao 2018) and MODIS to create a national
biomass map for China (Chi et al. 2015). However,
Milenković et al. (2017) cautioned about the effects
that changing footprint size would have on forest
biomass estimates, specifically when using space-
borne waveform LiDAR.

3 Waveform LiDAR for phenological
investigations

Anderson et al. (2016) highlighted the benefits of
waveform LiDAR for investigating vegetation
dynamics across a range of ecological systems.

However, the full potential of waveform LiDAR as a
tool for phenological studies has yet to be realized
and is currently unpopular when based on the num-
ber of literature published thus far. Articles that are
primarily focused on LiDAR for forest phenology
application are rare. Table 3 shows the keywords
and the number of results using Google Scholar.
While there are limitations of the journals that are
included and indexed by Google Scholar – for exam-
ple, Elsevier journals were not included before the
middle of 2007 – the list of scholarly literature across
an array of publishing formats and disciplines is
sufficient enough to provide a general overview of
the popular and unpopular fields of study.

Considering the first 50 results, only four papers
are somehow associated with LiDAR applied to phe-
nological studies. It is even much worse when “wave-
form LiDAR” and “phenology” are searched together.
One related paper looked at differentiating coniferous
and deciduous tree species using two different seaso-
nal leaf-off and leaf-on LiDAR datasets (Kim et al.
2009) from the temperate forest zone in southern US.
The authors also investigated the distinction between
evergreen coniferous and broad-leaved deciduous
trees, analyzed LiDAR intensity values from trees
with different foliage characteristics, such as the pre-
sence or absence of foliage. Collin, Long, and
Archambault (2010) highlighted the strong relation-
ship (r2 = 0.87) between a new index called the
Normalized Difference LiDAR Vegetation Index
(NDLVI) and the salt-marsh vegetation measured
in-situ. NDLVI was derived from a dual-wavelength
LiDAR using inverted traditional NDVI equation:

NDLVI ¼ Rmax � IRmax

Rmax þ IRmax

� �
(3)

where Rmax is the intensity value of the red or
“Raman peak” (Raman 1928) at 645 nm red LiDAR
channel. IRmax is the intensity value of the NIR peak
at 1064 nm LiDAR channel. The underlying principle
of the NDLVI was to enhance the greenness of plant
communities without predominance of chlorophyll b
(the red LiDAR channel corresponds to the second
absorption peak of chlorophyll b).

Another paper published by Simonson, Allen, and
Coomes (2018), studied four LiDAR variables (max-
imum, mean, standard deviation and skewness of

Table 3. Google scholar search results for LiDAR and phenol-
ogy terms.

Keywords
Total
Results

Best Possible Matches
(Based on first 50

results)

Phenology Studies + LiDAR 7900 4

Phenology + Waveform
LIDAR

1020 2
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vegetation heights) and how they were influenced by
seasonal canopy changes. The specific contribution of
the study, however, was in the investigation of subtler
effects of tree leafing phenology rather than the leaf-
on/leaf-off dichotomy. The work by Calders et al.
(2015) provided insight in the stability of terrestrial
LiDAR measurements when monitoring changes in
spring phenology. Calders et al. (2015) determined
the exact SOS dates for two different species compo-
sition of forests. To improve species classification,
Hovi et al. (2016) acquired waveform LiDAR data
during early summer and showed how intra-species
variations in crown and branch morphology and
vigor were logically linked with waveform features.
Finally, a related study that used simulated wave-
forms also showed the full-waveform canopy LiDAR
capturing the seasonal and vertical variations of
NDVI (Morsdorf et al. 2009).

The inadequacy in terms of the number of scientific
studies conducted using LiDAR regardingmonitoring or
even modeling of forest phenology comes with a well-
founded rationale. Based on the preceding section of this
paper on applications of waveform LiDAR, the system
has been efficient at case studies that focus on a static
condition (e.g., vegetation structure, height) at a single
point in time. Also, there are compelling issues in avoid-
ing LiDAR for phenological monitoring and modeling
and just going for passive remote sensing otherwise.
First, the waveform LiDAR data files are very large.
Since phenological studies require repetitive measure-
ments, LiDAR data could quickly fill up computer ser-
vers and drives. Second, the need for effective access to
and storage of scan data, coupled with the absence of a
universal format standard, has caused developers of
LiDAR software to implement their own storage format,
which, pay little attention to enabling import and export
options. The file format of the LiDAR depends on the
form of representation. In its raw form, LiDAR is a series
of points stored as x, y, z where x and y could be long-
itude and latitude; z is the intensity of return. A simple
ASCII file where each line has a coordinate (x, y, z)
separated by commas (tabs, spaces, etc.) could be used
to represent the data and easily accessible with a text
editor. Only recently a binary file format (LAS) endorsed
by the American Society for Photogrammetry and
Remote Sensing (ASPRS) for the interchange of LiDAR
data has been gaining popularity and support. The.LAS
file format addresses issues on data sharing and flow.

The second issue involves the frequent return time or
the acquisition timing that should be anchored in the
seasonal progression and phenological stage of vegeta-
tion. Take for instance the coarse-resolution passive
sensors that allow for near-daily monitoring of phenol-
ogy; an important consideration for landcover classifi-
cation and detection of future climate change (Morton
et al. 2005; Goetz et al. 2005). The frequent return time
ofMODIS (Table 2) permits phenology-based mapping

of tropical deforestation with 89% accuracy. Repeated
passes that capture seasonal leaf dynamics could
improve the detection of seasonal tropical forests
(Morton et al. 2005). Although flights for airborne
laser systems could be planned for daily LiDAR data
gathering, space-borne waveform LiDAR systems could
be limited to 14 days of orbit repeat period (Dubayah et
al. 1997). In the case of NASA’s proposed GEDI, it is
dependent on the orbit cycle of the International Space
Station (ISS).

The ability to fly during all hours of the day (i.e.,
during the night, as it is independent of solar illumi-
nation) makes LiDAR better than optical remote sen-
sing in this regard. However, rainy days should not
be considered because infrared light does not pene-
trate water vapor. LiDAR data acquisitions during
leaf-on and leaf-off conditions may be shelved when
the acquisition window occurs at a period of optically
thick cloud or continuous precipitation (Drake et al.
2003). Thus, as in the case for airborne LiDAR, the
best way to optimize the timing for data acquisition
to monitor vegetation conditions (tree leaf-on, leaf-
out, senescence, etc.) is to plan ahead of the antici-
pated flight days and schedule longer time windows.

Amidst the issues of LiDAR application to phe-
nology, more scientists are beginning to utilize
LiDAR datasets (Calders et al. 2015). As technologi-
cal capabilities accelerate, the future of geospatial
research is on the integration of different systems
and sensors, from the ground to space-borne (Dold
and Groopman 2017; Parshin et al. 2018). That
being so, the next bulk of research may focus more
on linking both the structural (waveform LiDAR)
and spectral signatures (optical data) for forest
canopy characterization (Fang et al. 2018).
Waveform LiDAR in itself may offer novel ways
that could help expound vegetation phenological
processes, as sensor application and machine com-
puting converge to accurately capture real-world
dynamics. The following sections would examine a
potential methodology for the phenological study of
vegetation using waveform LiDAR.

4. Potential vegetation phenology analysis
using waveform LiDAR

Based on waveform simulations, Koetz et al. (2006)
used the updated 3D waveform model to calculate the
Canopy Fractional Cover (CFC) or the proportion of
the landscape occupied by green or non-green vegeta-
tion. The model constructed a 3D-representation of the
observed forest stand taking into account the number
and position of trees, tree height, crown geometry and
shape as well as the exposition of the underlying topo-
graphy. The crown itself was described as a turbid
scattering medium parameterized by its foliage area
volume density, the Ross–Nilson G-factor (Nilson
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1971) and the foliage reflectance. The updated model
also allowed for the input of LAI instead of the foliage
area volume density. Results of the study showed that
inversion of the LiDAR waveform radiative transfer
model provided reliable estimates of model parameters
describing the vertical as well as the horizontal canopy
structure when linked to a synthetic dataset derived
from a forest growth model ZELIG (Urban 1990). The
parameters were all retrieved with an overall high cor-
relation coefficient and low RMSE (r2 = 0.92 and
RMSE = 0.08, respectively).

LiDAR models of canopy fractional covers have
been tested over several LiDAR datasets collected
across a variety of forest ecozones and canopy struc-
tural classes (Hopkinson and Chasmer 2009). The
models use sensor returns or the amount of back-
scatter elements that are strong enough to register a
distinct amplitude of reflected energy. There are types
of returns in terms of peak property (Miura and
Jones 2010): type 1 (singular returns), type 2 (first
of many returns), type 3 (intermediate returns), and
type 4 (last of many returns). Single returns are for
those for which there is only one dominant back-
scattering surface encountered. Multiple returns
could give a picture of the dominant canopy and
ground elements along the pulse path. LiDAR pulses
are intercepted by the top canopy, lower canopy
vegetation, low-lying understory and/or the ground
surface. In the case of the ground surface, it is inevi-
table that the returns from the ground have passed
through canopy gaps (Hopkinson and Chasmer
2007). Many gaps within the canopy will result into
a fractional cover of close to zero, whereas few gaps
will give CFC a value close to unity. These assump-
tions are based from Beer–Lambert Law (equation 4)
with gap fraction (P) equivalent to the transmit-
tance (T):

P ¼ T ¼ I1
I0
¼ e�kLAI (4)

where I0 is open skylight intensity above canopy, Il is
the light intensity after traveling a path length
through the canopy and k is the extinction coefficient,
which can be approximated to a value of 0.5 in a
canopy of spherical leaf distribution (Martens, Ustin,
and Rousseau 1993) but generally varies between
about 0.25 and 0.75 for the natural needle- and
broad-leaf canopies (Jarvis and Leverenz 1983).

Some authors (e.g. Barilotti 2006) used the total
reflected energy from the canopy to ground profile as
being some proportion of the total available laser
pulse intensity, and the reflected energy from ground
level as a similar proportion of the transmitted pulse
energy. Adapting equation 4, the return power rela-
tionship is given by equation 5:

P ¼
P

IbP
It

(5)

where ΣIb is below canopy power (the sum of all
ground return intensity) and ΣIt is the total power
(sum of all intensity) for the entire canopy to ground
profile.

Another model was created to highlight the inci-
dent pulse intensity as it enters the canopy. This is
one way to estimate canopy FC at near-nadir angles.
Adapting again equation 2, CFC can be estimated
from the ratio of the sums of canopy to total return
intensities (equation 6).

P ¼
P

IcanopyP
Itotal

(6)

where ΣIcanopy is the sum of all canopy level return
intensity and ΣItotal is the sum of all return intensity
for the entire canopy to ground profile.

To take into account the two-way energy transmis-
sion loss (both into and out of the canopy), the CFC
can be computed as the square root of the proportion
of the ground level energy reflectance to the sum of
all return intensity for the entire canopy to ground
profile. The Beer’s law modification of equation 6 will
become equation 7:

P ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

IgroundP
Itotal

s
(7)

where ΣIground is the sum of all below canopy return
intensity.

Among the models tested by Hopkinson and
Chasmer (2009), the canopy-to-total ratio was the
one that demonstrated a strong correlation to the
canopy fractional cover from field data. The authors
also suggested that a combination of equations 6 and
7 could provide a more robust estimation of the CFC
across a range of canopy classes. While it looks like
that these equations only highlight the utility and
applicability of multiple discrete return intensities as
defined by Miura and Jones (2010), they also function
for waveform LiDAR return intensities.

Take, for example, Figure 2 shows a single wave-
form. Instead of only taking specific canopy returns
at x1, x2, x3, and x4 (Figure 2(a)), ΣIcanopy could
become the sum of all canopy level return intensity
at a specified threshold, going from left to right
(Figure 2(b)). This method will not only limit the
calculations in terms of the dominant backscattering,
rather, it will define other elements along the pulse
path by taking into account other significant wave-
form pulses. ΣItotal could become the sum of all
return intensity for the entire waveform extent.
Modifying equation 6 will result to:
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P ¼
Pright

x¼leftðIcanopyÞPend
x¼leftðItotalÞ

(8)

This proposed optimized technique could extract
inherent information of the waveforms by the inte-
gration of single reflections. In one paper, waveform
decomposition was introduced by Gaulton et al.
(2010) to find almost all reflections of the wave,
enabling detection and resolution of small dominated
and young generation trees. The model decomposes
the LiDAR waveform in a region of interest by fitting
a series of Gaussian pulses to the waveform. It utilizes
coordinate positions of the reflections and optimally
the pulse width.

This concept of using pulse width (Gaulton et al.
2010) could be integrated with equation 8 to account
for the likelihood of waveform return intensity
similarities.

P ¼
Pright

x¼left½ Icanopy 1
� �þ ðIcanopy 2Þ�Pend

x¼leftðItotalÞ
(9)

but Icanopy 1 = product of dominant intensity and its
pulse width or I*w and Icanopy 2 is the intensity of all
other non-dominant pulses within the specified
threshold.

Allowing the inclusion of the pulse width, equa-
tion 9 becomes:

P ¼ 1� �
right
x¼left I1w1 þ I2w2 þ :::Iiwið Þ þ Icanopy 2

� �� �
�end

x¼left Itotalð Þ
(10)

The derived fractional cover from equation 10 is
still in a static condition or this P represents a
single LiDAR FC in a specific time. To employ
phenology means to look at the seasonal variation
of the LiDAR-based FC, which then could be

Figure 2. Waveform LiDAR pulses and attributes showing specific canopy returns in (a) and the sum of all canopy level returns
at a specified threshold in (b).
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illustrated in Figure 3. Fractional vegetation cover
is strongly correlated with NDVI (Carlson, Perry,
and Schmugge 1990), even deriving the fraction of
green vegetation from NDVI (Gutman and Ignatov
1998).

As mentioned in the previous section of this paper,
what may be seen as a deterrent in the use of LiDAR
for phenology is the frequent return time or the
acquisition timing of the waveform LiDAR sensor.
Temporal resolution of the planned space-borne
LiDAR system is about 2 weeks. This timing, how-
ever, is still effective in estimating the start of season
and End Of Season (EOS), which are considered as
ecosystem-level, not species-level, phenological
metrics (White et al. 2002).

There are several phenological leaf onset models
that have been published for tree species (e.g.
Cannell and Smith 1983). The existence of a num-
ber of models shows that the nature of the different
phenological phases and their physiological and
morphological status is not yet fully understood.
Each of the numerous quantitative methodologies
is only suited to its specific research question.
While some methods are complex, this paper will
attempt a simple approach to model phenology
using waveform LiDAR product. With the aid of
Figure 3, an algorithm could be formulated to
estimate the SOS and the EOS from a given
LiDAR CFC time series.

For the approximation of a given LiDAR CFC,
the piecewise defined continuous spline function S
(t) could be applied (equations 11 to 13). An
almost similar approach, a triangular function,
was used by Häninnen (1994) and Schaber and
Badeck (2003).

S tð Þ ¼ N2 � N1

2t1t2 � t12 � t22
� t2 � 2t1t þ t1

2
� �þ N1t1

� t< t2 ðleaf � onphase; LPÞ ð11Þ

S tð Þ ¼ N2 � N1

2t2t3 � t22 � t32
� t2 � 2t2t þ t2

2
� �þ N2t2

� t< t3 ðsenescencephase; SPÞ ð12Þ

S tð Þ ¼ N1otherwise (dormancy phase, DP)(13)
The three splines represent the three different

phenological phases (Figure 4) using an increasing
parabolic function for the leaf-on and a decreasing
parabolic function for the senescence phase. The
function is dependent on five parameters: t1 (time
1), t2 (time 2), t3 (time 3), N1 (LiDAR FC 1), and
N2 (LiDAR FC 2). The locations of these parameters
and the quantitative amount of LiDAR CFC could be
resolved from Figure 4 since the plot of LiDAR CFC
vs. DOY is not smooth, and could sharply detects
time transitions. This model approach is not complex
and also less sensitive against circumstances where
there is considerable noise in the LiDAR FC curve, in
contrast with methods based on a modified second
derivative of the NDVI.

As a warning, this method has not been tested yet
and needs to be calibrated with other existing pheno-
logical models. Statistical analysis, such as minimiz-
ing the absolute error, may be applied to measure the
quality of fit.

The same process above could be applied when
trying to assess the phenology of the canopy unders-
tory or the discrimination between younger and older
stands as well as the discrimination between dense
and thinned stands. Koetz et al. (2007) simulated
LiDAR waveforms as a function of the forest stand

Figure 3. A simple illustration of how to interpret and derive the seasonal variation of the LiDAR-based Fractional Cover (LiDAR
FC) from waveform LiDAR.
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structure plus the sensor specifications, and put them
against the results of a forest growth model and the
reflectance spectra from the imaging spectroscopy.
Results showed that different forest growths could
lead to differences in the shapes of the LiDAR wave-
forms. This was not the case, however, for the reflec-
tance where different combinations of forest heights/
structure give rise to similar spectra (Buddenbaum
and Seeling 2008).

This characteristic of LiDAR to define the struc-
ture could be exploited by considering equation 10
and replacing the canopy intensity parameter by, say,
ground/soil parameter or understory parameter. A
similar temporal CFC may be plotted and monitored
for SOS and EOS phases. This is one way to measure
and monitor processes such as forest growth.

5. Satellite sensors to link LiDAR and
phenology

Few LiDAR systems have ever flown in space, owing
to limitations involving high power, high cost (Farid,
Goodrich, and Sorooshian 2006), and the availability
of robust laser sources. There used to be only one
satellite-mounted LiDAR sensor, ICESat GLAS (the
Geoscience Laser Altimeter System, carried on the
Ice, Cloud and Land Elevation Satellite), and
although its large footprint (~65 m) was not explicitly
designed for vegetation applications, the mission is
being used to estimate forest biomass and improve
DEMs (Harding and Carabajal 2005; NASA (National
Aeronautics and Space Administration) 2009; Nelson
et al. 2009). Unfortunately, the ICESat mission is no
longer collecting data as the final GLAS laser ceased
firing in 11 October 2009.

Currently, there are no space-borne LiDAR systems
designed specifically to measure vegetation canopies.
There had been an attempt like NASA’s Vegetation
Canopy LiDAR (VCL) mission in the 1990 s. VCL,
however, never made it to space. The VCL would have
been the first multi-beam waveform-recording LiDAR
to fly in space – holding five lasers, each VCL orbit
could sample an area five miles across. Due to serious
mission viability concerns like costly trials, and the
development dropping way behind schedule, the mis-
sion was canceled. Then, there is a NASA-led, pro-
posed Global Ecosystem Dynamics Investigation
(GEDI) – 3D LiDAR that is scheduled for late 2018
launch. The motivation of the GEDI mission includes
the responses of terrestrial biomass, which stores a
large pool of carbon, to changing climate and land
management. Although a 25-m footprint size is not
considered a high resolution compared to a small
footprint LiDAR, the scientific objectives of the mis-
sion include modeling finer-scale structure (Stysley et
al. 2015). Moreover, GEDI is designed to collect
LiDAR waveform observations for the world’s forests
during cloud-free periods (Stysley et al. 2015; Qi and
Dubayah 2016) over 14 parallel tracks. However, these
observations would only be within the orbit of the ISS
(i.e. 50° N to 50°S), thereby excluding much of the
northern boreal forest. When launched, GEDI would
be the first satellite mission to provide global, high-
resolution observations of forest vertical structure.
Other structure information that could be extracted
from the GEDI waveform includes surface topography,
canopy height metrics, and canopy cover metrics.

Another proposed vegetation LiDAR sensor is the
Japanese International Space Station (ISS)/Japanese
Experimental Module (JEM)-borne named MOLI

Figure 4. Monthly LiDAR FC series with the spline fits (yellow for the leaf-on phase from time 1 to time 2, and red for the
senescence phase from time 2 to time 3). DOY means days of the year. LP, SP, and DP represent the leaf-on, senescence, and
dormancy phases, respectively. N represents the magnitude of the LiDAR FC.
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(Multi-footprint Observation LIDAR and Imager)
(Murooka et al. 2013). Similar to the GEDI, MOLI
has a full-waveform pulse type that could distinguish
canopy heights, crown depth, and other forest fea-
tures. Apart from the LiDAR capability, MOLI has a
high-resolution imager that consists of RGB bands, a
swath width of 500 m, in a ground resolution of 5 m.
The imager is adopted to provide information on tree
crown size, height and field data for the conversion to
AGB (Murooka et al. 2013). MOLI is planned for
2021 launch just after NASA/GEDI finished a two-
year experiment (Asai et al. 2018).

The U.S. National Research Council (NRC), in a
document known as the Decadal Survey (National
Research Council 2007), has identified another
LiDAR space mission of paramount importance to
the U.S. scientific community for monitoring the
status and function of the biosphere. Apart from the
GEDI, the ICESat-2 was launched in September 2018.
Like its predecessor ICESat-1, the main science goals
of ICESat-2 are specifically targeted at measuring ice
sheet changes and sea ice thickness. It also supports
multidisciplinary applications and measures vegeta-
tion biomass. ICESat-2 operates with three pairs of
beams, each pair separated by about 3 km cross-track,
spaced at 90 m (Markus et al. 2017). Each of the
beams has a footprint of 17 m in diameter with an
along-track sampling interval of 0.7 m. Instead of
using an analog full-waveform type, ICESat-2
employs the photon counting Advanced
Topographic Laser Altimeter System (ATLAS). In
this LiDAR system, the arrival time of each photon
is recorded within the vertical distribution of the
reflected signal, resembling a full waveform. ICESat-
2 data would be time-tagged photon elevations as a
function of distance along-track (Neuenschwander et
al. 2018).

ICESat-2 would be capable of producing a global
vegetation height surface with 3 m accuracy at 1 km
spatial resolution. With measurements that span a
minimum of 3 years, ICESat-2 would contribute to
large-scale biomass assessment, would help under-
stand the global distribution of carbon on land, and
would complement those of the GEDI and MOLI
space missions, whose orbit and LiDAR component

is more specifically targeted at vegetation and ecosys-
tem science objectives. The next section of the paper
would discuss system specifications of the waveform
LiDAR products that may have an important bearing
on phenological monitoring and modeling.

6. Waveform LiDAR data characteristics

6.1 Laser footprints

The proposed GEDI and MOLI products could pro-
vide transects of vegetation vertical canopy profiles
overall biomes at 25 m spatial resolution (Table 4). A
laser footprint of 25 m has been designed to ade-
quately resolve vegetation height and structure. This
is seen as one of the advantages of the large-footprint
LiDAR systems over small-footprint LiDAR systems.
While small-footprint LiDAR may under-represent
the canopy structure, especially the true tree height
due to the sensing of portions of forest elements,
GEDI and MOLI guarantee a reflection from the
top of each canopy within the sampled area as well
as intra-tree and inter-tree gaps. For high-density
tropical forests where canopy diameters could reach
to 10 m to 25 m, footprint size of GEDI and MOLI is
suited the best.

6.2 Orbit repeat period

The revisit period for space-borne waveform
LiDAR helps in understanding better temporal
canopy variability. Higher frequency measurements
provide time-varying information of leaf-off and
leaf-on. When the waveform LiDAR datasets are
acquired in leaf-off conditions, the LiDAR intensity
information could be used to differentiate between
deciduous and conifer trees (Reutebuch, Andersen,
and McGaughey 2005). The near-infrared reflec-
tance from branches and stems is much lower
than that from live foliage; therefore, the intensity
of the LiDAR reflections from leaf-off deciduous
tree crowns is significantly lower than that from
leaf-on conifer crowns (Andersen 2009). GEDI
and MOLI data frequencies are dependent on the
ISS orbital cycle. The ISS only operates between ~

Table 4. MOLI, GEDI, and ICESat 2 data characteristics. NA is not applicable.
Parameter MOLI GEDI ICESat 2

Orbit altitude 400 km 600 km 500 km
Laser footprints (Spatial resolution) 25 m 25 m (with 60 m along track spacing) 17 m
Canopy vertical resolution (Height
accuracy)

≈ 3 m ≈ 1 m NA

Orbit repeat period (revisit) ISS dependent
~ 4 days

ISS dependent
~ 4 days

91 days

Orbit inclination 51.6 degrees 51.6 degrees 92 degrees
Wavelength 1064 nm 1064 nm (could be more on NIR) 532 nm
Swath width (Spatial coverage) 1000 m >340 km (multiple beam: 5 beams spaced nominally 5 km

across-track)
6 km along the ground

track
Type of pulse return full waveform full waveform photon counting
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50° north and south latitude, and is in an approx-
imate 4-day revisit cycle (Qi and Dubayah 2016).
The limitation of GEDI is that it only gets 2 years
on the ISS, after which MOLI continues the obser-
vations for another year or two.

6.3 Swath width

Different systems utilize different scan angles that
could allow the collection of data in a much larger
swath. Swath width of GEDI and MOLI could pro-
vide unequaled decimeter level vertical absolute
accuracies of “true ground” even in highly vegetated
regions. Space-borne wide-swath LiDAR with full-
waveform collection capability could provide the fol-
lowing (Blair, Hofton, and Luthcke 2001): landscape
scale (10 km swath) coverage, full earth phenological
coverage at <10 m pixels within 1 year, near-100%
coverage/illumination, change detection measure-
ments at sub-centimeter relative vertical accuracy,
subtle topographic change beneath vegetation, and
vegetation and land cover changes.

6.4 Beyond space-borne LiDAR

Associated with the failed VCL mission is the
operational LiDAR Vegetation Imaging System
(LVIS) (Blair, Rabine, and Hofton 1999). It is an
airborne, wide-swath, large footprint simulator
developed by NASA’s Goddard Space Flight
Center. LVIS collects waveforms using a 25-m foot-
print over a 2-km swath width. Figure 5 shows
examples of the waveforms derived from the LVIS
instrument over the La Selva Biological Station in
Costa Rica in two different years, 1998 and 2005.
The scientific community could look into the loca-
tion of maximum canopy and soil returns (in terms
of time) and their temporal shifting. The weaker
ground returns in Figure 5b are caused by high
canopy closures and low-lying vegetation. It is
worthy to mention that this is one of the advan-
tages of waveform LiDAR over 2D images: the
vertical component of 3D LiDAR data allows the

researcher to separate ground vs. vegetation infor-
mation, which is a prerequisite to most LiDAR
applications, many of which focus exclusively on
one or the other component. Also, in the absence
of space-borne waveform LiDAR, data from the
LVIS can be exploited to test the phenological
concept presented above.

7. Conclusion

The body of knowledge and literature on useful
LiDAR applications has rapidly expanded in recent
years. This means that the remote sensing community
is gaining interest in the ability of LiDAR to measure
topography, capture vegetation height and cover, and
record complex profile of canopy height. LiDAR has
limitations in the arena of phenology monitoring and
modeling. In the case of a waveform system, one
limitation is the spatially sparse distribution of the
target on the ground that could give an inaccurate
reconstruction of the model. This limitation could
likely to be resolved by the combination of LiDAR
with additional data from spatially extensive sensors
such as high-resolution optical images or radar data.
Fusion of data from different sources requires the
understanding of the different data platforms, dates
of acquisition and resolutions. Apart from fusing mul-
tiple sensors, the fusion of LiDAR with different mod-
eling algorithms such as the Support Vector Machine
(SVM), Random Forest (RF) and Extreme Learning
Machine (ELM) could also build more robust empiri-
cal relationships that could be extrapolated to areas
where datasets are sparse.

Another limitation is the lack of precise algorithms
and approaches for operational use of the data, espe-
cially for phenology. This paper has attempted to
illustrate the prospect of using waveform LiDAR for
estimating the onset of leaf, including the few LiDAR
issues that may deter its full applications. It has been
presented in here through a vast list of literature that
the waveform LiDAR product may not only show
potentials in estimating and mapping a wide range
of information such as canopy height and vertical

Figure 5. Examples of LVIS waveforms (a) from the 1998 dataset and (b) 2005 dataset taken from La Selva Biological Station,
Costa Rica.
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distribution profiles, but may also be exploited using
its distinct characteristics to monitor and model leaf
phenology. The new model uses a spline function;
however, a combination of linear or even triangular
functions may result in more defined estimates.

Although the model utilizes CFC in its estimation
procedure, there are also options for translating it to
LAI or other vegetation indices when necessary in the
analysis. The LiDAR research approach could put
importance on phenological assessments to measure
and monitor processes such as forest growth and
eventually carbon sequestration. One of its strengths
is the ability to look at leaf onset from the canopy and
the understory, even to the non-green elements.
There is also a possibility of looking at the spatial
variation in the timing of phenology, which occurs
within the woodland. Further, the algorithm uses
return intensity, an attribute that describes the
strength of the beam backscattering. It is dependent
on the reflectance characteristics of the target; there-
fore, it could potentially be used in target discrimina-
tion. However, it is unclear how much the variation
in accurately predicting the CFC is due to differences,
for instance, in LiDAR sensor types or variability
among biomes. This approach has to be thoroughly
tested for all types of waveform shapes – very com-
plex, slightly distorted, asymmetric, flattened and
peaked.

At present, there is no existing space-borne LiDAR
system designed specifically for vegetation canopies.
The hope is placed on the proposed GEDI, MOLI,
and ICESat-2 missions. The greatest limitation of
these instruments is the acquisition timing that
should be based on the seasonal progression and
phenological stage of vegetation. However, at the
ecosystem-level, the revisit periods of GEDI and
MOLI are still effective in estimating SOS and EOS.

With the wider utilization of LiDAR data usually
hampered by lack of familiarity with the waveform
measurement approach, more models based on the
waveform could be proposed and developed to
exploit the rich information content of such a dataset,
especially in the connections between the LiDAR
signal and foliage parameters. Furthermore, new pre-
dictive models for canopy fuel parameters estimation
should also be looked into and how the new model-
ing concept presented in this paper can be integrated.
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