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Abstract

The plethora of photometric data collected by the Kepler space telescope has promoted the detection of tens of
thousands of stellar rotation periods. However, these periods are not found to an equal extent among different
spectral types. Interestingly, early G-type stars with near-solar rotation periods are strongly underrepresented
among those stars with known rotation periods. In this study we investigate whether the small number of such stars
can be explained by difficulties in the period determination from photometric time series. For that purpose, we
generate model light curves of early G-type stars with solar rotation periods for different inclination angles,
metallicities, and (magnitude-dependent) noise levels. We find that the detectability is determined by the
predominant type of activity (i.e., spot or faculae domination) on the surface, which defines the degree of
irregularity of the light curve, and further depends on the level of photometric noise. These two effects significantly
complicate the period detection and explain the lack of solar-like stars with known near-solar rotation periods. We
conclude that the rotation periods of the majority of solar-like stars with near-solar rotation periods remain
undetected to date. Finally, we promote the use of new techniques to recover more periods of near-solar rotators.

Unified Astronomy Thesaurus concepts: Stellar rotation (1629); Detection (1911)

1. Introduction

Stellar brightness variations at the timescale of stellar
rotation are caused by transits of magnetic features (such as
dark spots or bright faculae) rotating across the visible disk.
These variations have routinely been observed by transit
photometry missions. In particular, the Kepler telescope
obtained light curves of roughly 150,000 main-sequence stars.
Some of these light curves exhibit clear signatures of stellar
rotation, which can be extracted by standard frequency analysis
tools such as Lomb–Scargle periodograms, auto-correlation
functions, or wavelet transforms. The biggest survey of rotation
periods based on the Kepler data has been published by
McQuillan et al. (2014, hereafter MMA14), who detected
rotation periods for 34,030 presumably main-sequence stars.

However, for the majority of the main-sequence stars the
light curves were either too noisy or too irregular for the
rotation period to be determined. MMA14 found that the
fraction of stars with detectable periods strongly depends on the
effective temperature. Interestingly, this fraction appeared to be
lowest for stars with near-solar effective temperature (between
5500 and 6000 K, hereafter referred to as early G-type stars),
reaching only 16% (see Table 3 in MMA14). On the contrary,
van Saders et al. (2019) used Galactic evolution models to
predict that ∼59% of the early G-type stars should have
detectable rotation periods.

The lack of stars with known rotation period becomes even
more severe for early G-type stars of near-solar age. Recently,
Reinhold et al. (2020) showed that only a dozen Kepler stars
with near-solar fundamental parameters and rotation periods
between 20 and 30 days (i.e., encompassing the solar rotation
period of ∼25 days) exhibit rotational variability levels similar
to that of the Sun. In contrast, the majority of these stars are
substantially more variable than the Sun and also show more

regular light curve patterns. It has been proposed that such a
conspicuous difference between the Sun and other solar-like
stars can be explained by a detection bias toward more active
stars in bulk rotation period measurements (see the discussion
in Amazo-Gómez et al. 2020), thus missing the majority of
early G-type stars with near-solar rotation periods and small
variabilities.
In this Letter we address the question whether the “missing”

solar-like stars (i.e., stars with solar fundamental parameters
and rotation periods) do not exist or simply go undetected. Our
approach is based on the solar paradigm, i.e., we build on the
comprehensive understanding of solar brightness variability
(see, e.g., reviews by Ermolli et al. 2013; Solanki et al. 2013),
and extend solar models to solar-like stars. Namely, we
combine two recently developed physics-based models by
Witzke et al. (2020) and Nèmec et al. (2020). This allows
calculating light curves of stars with a solar distribution of
active regions and solar effective temperature, but various
metallicities and observed at arbitrary inclination angles. These
light curves are used to identify obstacles in the period
determination of solar-like stars, and to discuss possible
limitations of period measurements in real data sets. We
further compare the number of actual period measurements in
Kepler data to predictions from Galactic evolution models
using the detection rate obtained from the model light curves.

2. Methods

2.1. The Curious Case of the Sun

The morphology of the solar light curve (as it would be
observed in the Total Solar Irradiance or in the broadband
spectral passband like those of CoRoT, Kepler, or TESS)
changes significantly depending on the phase of the solar
activity cycle. While it appears to be quite regular at 11 yr cycle
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minima when activity is low, the regularity disappears at
periods of intermediate and high solar activity (Lanza &
Shkolnik 2014; Aigrain et al. 2015; He et al. 2015). In
particular, Amazo-Gómez et al. (2020) showed that if the Sun
were observed by Kepler, the standard frequency analysis tools
would most probably fail to detect the correct rotation period
(unless observations are done during epochs of low solar
activity). The causes of this inability are manifold: solar
rotational variability is mainly brought about by spots (see,
e.g., Shapiro et al. 2016). The relatively short lifetimes of
sunspots from days to weeks (see, e.g., Solanki 2003) implies
that most of the spots transit the visible solar disk only once,
which leads to irregularities in the solar light curve, and
hampers the detection of the solar rotation period. Furthermore,
the brightness changes of dark spots and bright faculae partly
compensate each other, which decreases the amplitude of the
rotational signal, further hindering the period determination
(Shapiro et al. 2017; Nèmec et al. 2020; Witzke et al. 2020).
The exception from this general tendency are epochs of low
solar activity with a small number of active regions. At these
times the rotational variability is attributed to long-lived facular
features and the light curve pattern becomes more periodic.

2.2. The Model

While the irregularity of the solar light curve is quite well
understood, the situation gets more complicated for other early
G-type stars. Their light curves look different, partly because
the stars are observed at various inclinations. For example,
faculae appear brighter at the limb and therefore contribute
more strongly to the variability when the star is observed out of
the ecliptic plane (Nèmec et al. 2020). Additionally, stellar
metallicity [Fe/H] affects facular (and to a smaller degree spot)
contrasts (Witzke et al. 2018), which eventually has an impact
on the period detectability (Witzke et al. 2020).

To synthesize the light curves of solar-like stars, we built on
recent calculations by Nèmec et al. (2020) and by Witzke et al.
(2018). Nèmec et al. (2020) utilized a semi-empirical sunspot-
group record by Jiang et al. (2011) and the Surface Flux
Transport Model by Cameron et al. (2010) to reconstruct the
distribution of active regions on the solar surface from the year
2010 back to 1700 with a daily cadence. By applying an
appropriate geometrical transformation, Nèmec et al. (2020)
calculated the distribution of active regions on the solar disk as
it would be observed at arbitrary inclinations. Witzke et al.
(2018) calculated the brightness contrasts of faculae and spots
relative to the quiet Sun (i.e., free from any apparent
manifestations of magnetic activity) as a function of wave-
length and position on the visible disk for stars with different
metallicities and solar effective temperature.

All in all, by combining the reconstructed disk distribution of
active regions with their brightness contrasts, we generated
light curves with a time span of 310 yr as they would be seen in
the passband of the Kepler telescope. The light curves were
calculated for 10 inclination angles 0°� i� 90° (with a step of
10°), and nine different metallicities− 0.4� [Fe/H]� 0.4 dex
(with a step of 0.1 dex). The solar record from 1700 to 2010
covers epochs of both low solar activity (like the Dalton
minimum around 1790–1830), and very high solar activity (like
the modern grand maximum around 1950–2000; see Solanki
et al. 2004; Usoskin et al. 2007), which allows studying
rotation period detectability during activity cycles of very
different strengths. We note that, by assuming a solar disk

distribution of active regions, we only account for the
metallicity effect on the contrasts of magnetic features. A
change in metallicity also affects the depth of the convective
zone, which in turn could influence the stellar dynamo, in
particular the length of the stellar activity cycle or the
emergence latitudes of magnetic bipoles (Schuessler &
Solanki 1992). However, this effect is rather weak, e.g.,
doubling the metallicity of a star with solar temperature will
deepen the convective zone by only approximately 8% (van
Saders & Pinsonneault 2012; Karoff et al. 2018). Therefore, we
expect these effects to be relatively small. Studying them is
beyond the scope of the present Letter, but would be an
interesting future exercise.

2.3. Monte Carlo Approach

We take a Monte Carlo approach to analyze light curves with
different realizations of inclination angles and metallicities. The
distribution of inclination angles is uniform in icos , where
i= 0° denotes a pole-on view and i= 90° an equator-on view.
The input distribution of metallicities was adapted for solar-like
stars in the Kepler field (see Figure A1 in Appendix A, and
Reinhold et al. 2020). For each (random) parameter combina-
tion (i, [Fe/H]), we chose the model light curve from the grid
with the closest parameters in metallicity and inclination angle.
Following the observing strategy of the Kepler telescope, we

pick a random 4 yr segment of the full time series (see, e.g., the
top row of Figure 1). This light curve is then cut into 90-day
segments (i.e., similar to the Kepler observing quarters), where
each 90-day chunk is normalized by its median, and appended
to the previous one, to form a 4-yr time series. These
Keplerized light curves (Figure 1, middle row) will be analyzed
for rotation in the next step. The detrending is necessary
because it filters out brightness variations on the activity-cycle
timescale, and renders the light curves comparable to detrended
Kepler data.
In addition to the various inclination and metallicity

combinations, we study the impact of noise on the period
detectability. The model light curves are by definition noise-
free. In real observations, the visual stellar magnitude defines
the noise level. We use the distribution of Kepler magnitudes
Kp of solar-like stars to compute different noise realizations σ
(see Reinhold et al. 2020 for details). A noise time series with
zero mean and standard deviation σ is then added to the time
series in the Monte Carlo simulation. In total, we conducted
50,000 Monte Carlo runs, both for the noise-free and the noisy
cases to study them separately.

3. Results

3.1. Period Detection

From among the various period detection methods, we chose
the auto-correlation function (ACF) to search for periodicity in
the time series (i.e., the same method as employed
by MMA14). The ACF returns peaks of different power as a
measure of the periodicity in the light curve. To quantify the
strength of the periodicity, we adapt the measure of MMA14,
where the local peak height (LPH) is computed as the
difference between the highest peak and the mean of the two
troughs on either side (see Figure 1, bottom row). We only
search for peaks at periods less than 70 days, consistent
with MMA14. If the highest ACF peak lies between 24 and
30 days and LPH> 0.1, we count it as a detection. If the peak
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lies outside this period range or is smaller (LPH< 0.1), it is
counted as a false or non-detection.

Figure 1 illustrates the difficulty of detecting the correct
rotation period of the Sun from the photometric time series
obtained in the Kepler passband. The top row of Figure 1
shows the modeled light curve computed for a star with solar
metallicity, [Fe/H]= 0, as it would be observed outside of its
equatorial plane at i= 40°. The bottom row gives the ACF and
the computed LPH for three different 4-yr segments of the
same light curve. Depending on the selected segment, the ACF
shows the highest peak at different periods. The first panel
shows a peak with a moderate LPH but outside the range of
24–30 days (red dashed lines), i.e., a false detection. The
second panel shows a peak close to the model rotation period of
27 days, although with a rather low LPH. The last panel shows
a clear peak within the range 24–30 days, although this period
is found to be the first harmonic of the highest peak at twice the
correct rotation period (so that this panel corresponds to a false
detection again). The light curve segment shown in this panel
corresponds to an epoch of relatively low magnetic activity
when the rotational variability of the Sun becomes faculae-
dominated. Because faculae have significantly longer lifetimes
than spots, this segment shows a more stable periodicity, but

even in such cases the correct rotation period is not necessarily
associated with the highest ACF peak.
We now consider how the apparent magnitude of a star

affects the period detection. For that purpose, Figure 2 shows
the same light curve as Figure 1, but with different noise levels
to simulate the star as observed at different magnitudes. To
demonstrate the effect of noise on the ACF, we chose a
segment during solar minimum5 where the correct period was
detected, and added Poisson noise to the light curve,
representative of a solar-like star at 11th, 13th, and 15th
Kepler magnitude (see Reinhold et al. 2020 for details). In all
cases, the correct period was detected. While from 11th to 13th
magnitude the LPH only slightly decreases, it decreases by
more than half at 15th magnitude.

3.2. LPH Dependence on Spot Area

The two examples in Section 3.1 illustrated how the period
detection is affected by the activity level (Figure 1) and the
amount of observational noise (Figure 2). Figure 3 combines
both of these effects by showing the LPH when the highest

Figure 1. Top row: model light curve (black) with an inclination of i = 40° and solar metallicity [Fe/H] = 0, with three randomly chosen 4-yr segments (green).
Middle row: Keplerized light curves of the chosen segment from the top row (see Section 2.3 for details). Bottom row: auto-correlation function (ACF) of the selected
4-yr segment. The measured period is indicated by the red asterisk, and the local peak height (LPH) is shown as the vertical gray line between the peak and the two
troughs on either side. The vertical dashed red lines indicate the period detection window from 24 to 30 days.

5 The chosen segment slightly differs from the one chosen in the top-right
panel of Figure 1 to demonstrate the effect of noise on the LPH.
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peak was found between 24 and 30 days, as a function of the
sunspot coverage on the visible solar disk, averaged over the
4-yr segment (in ppm), for different magnitudes. The red
diamonds show the median LPH values for the selected spot
area bins to better illustrate the LPH dependence.

The top-left panel shows only stars brighter than 12th Kepler
magnitude (i.e., with small noise levels). The LPH increases
with decreasing spot area. As mentioned above, small spot
coverages are typically found during activity minima when
variability becomes faculae dominated. Consequently, the light
curves become more regular. A similar trend is found for stars
between 12th and 13th magnitude but with larger scatter (top-
right panel). Between 13th to 14th magnitude (bottom-left
panel), the noise level becomes comparable to the variability
amplitude during epochs of small spot coverages. As a result,
the LPH drops for small coverages and the increase of the
LPH with decreasing spot area can only be identified down to
spot areas of 100 ppm. For the faintest stars down to 15th
magnitude (bottom-right panel), the larger noise further
decreases the LPH for small spot areas, and for spot areas
above 100 ppm no trend can be identified any longer.

3.3. Period Distribution

As shown in the previous section, the position of the highest
peak and the associated LPH determine the period detection.
The percentages of correct and false detections are given in
Table 1. The period distribution is shown in Figure 4 for
different LPH constraints for the noise-free (black) and the
noisy (red) case. From the top-left to the bottom-right panel, the
LPH threshold increases from 0.1 to 0.4. Consequently, the
detection fraction decreases, but also the number of false
detections drops. The decrease of detections is even stronger
for the noisy case. We note that also the false detections
decrease more strongly for the noisy case (see Table 1). This is
caused by the fact that a peak is more easily found in the noise-
free case, but the associated period lies outside the range of
24–30 days, and therefore is counted as false detection.
When measuring rotation periods in real data, the period is

a priori unknown, and one has to assign a certain
LPH threshold, for which periods are considered as significant.
The top-left panel in Figure 4 shows that even for small values
(LPH > 0.1), most detections are found at the correct (model)
rotation period of 27 days. However, the number of false
detections is also quite high (see Table 1). Further increasing
the LPH threshold significantly decreases the number of false
detections but also lowers the number of correct detections.

Figure 2. Same as Figure 1 but choosing the same light curve segment for three different noise realizations corresponding to 11th (left), 13th (middle), and 15th (right)
Kepler magnitude. The LPH decreases toward fainter stars.
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Finding an optimal LPH threshold that compromises between
discarding correct detections and not having too many false
periods is non-trivial. We stress that MMA14 required
LPH> 0.3 to count the period as a real detection. As seen in
the bottom-left panel, this threshold eliminates almost all false
detections but strongly decreases the number of real detections
(see the discussion below).

3.4. Detection Rate

We now turn to the question how the period detectability is
affected by stellar inclination and metallicity. For that purpose,
we define the detection rate as the number of detections divided
by the number of different Monte Carlo runs at a given
parameter. In Figure 5 we show the detection rate as a function
of the inclination of the rotation axis of the model star
(integrated over all metallicities) for different LPH values. The
error bars indicate the square root of the number of detections

divided by the number of models. As before, we consider the
noise-free (left panel) and the noisy (right panel) cases
separately.
The noise-free case qualitatively displays the same behavior

for all LPH thresholds. As expected, the detection rate is zero
for the pole-on view. However, when increasing the inclination
angle the detection rate steeply increases to the maximum at an
inclination near 20°, and gradually decreases toward the
equator-on view at 90°. This result might be surprising at first
glance, but can be explained by the dominant contribution of
faculae to brightness variability for stars with near-equatorial
activity belts (similar to those on the Sun) observed close to the
pole-on view (Shapiro et al. 2016). In such stars each facular
feature spends roughly half a rotation period on the far-side of a
star and the remaining half of the time near the limb on the
visible disk. Faculae appear especially bright near the limb, and
usually last for several stellar rotations. Consequently, the light
curves of such stars appear more regular, leading to higher
LPH values. We note that the calculations are performed
assuming a solar latitudinal distribution of active regions. A
change of the distribution would affect the visibility of the
active regions, and consequently, the inclination angle
corresponding to the maximum of the detection rate. However,
we expect that a solar distribution is typical for stars with solar
rotation period and temperature (see Section 2.2).
In the noisy case (right panel) the detection rates are

generally smaller (see Table 1 and Figure 4). While the curves
have a similar shape to the noise-free cases, their maxima are
shifted to higher inclinations. Such a shift is caused by the

Figure 3. Local peak height (LPH) vs. spot area fraction for different Kepler magnitudes. The red diamonds show the median LPH values for the selected spot area
bins. The very few peaks with LPH < 0.01 were excluded from the analysis.

Table 1
Detections and False Detections for Different LPHs for Both the Noise-free and

Noisy Cases

LPH Detection False Detection

Noise-free Noisy Noise-free Noisy

>0.1 23.8% 17.3% 35.2% 27.4%
>0.2 15.5% 7.4% 9.0% 4.5%
>0.3 9.5% 2.9% 1.9% 0.5%
>0.4 6.1% 1.0% 0.4% 0.0%
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decrease of the amplitude of brightness variability with
decreasing inclination (Nèmec et al. 2020), and consequently
a decrease of the signal-to-noise ratio. Consequently, the
detection peak near 20° is suppressed, leaving a residual peak
near 40°. As already shown in Figures 3 and 4, the noise
decreases the LPH such that only a few cases with LPH> 0.3
remain.

In Figure 6 we show the detection rate as a function of
metallicity (integrated over all inclinations) for different
LPH values. We note that the qualitative shape of the
LPH> 0.1 curve is consistent with the one found in Witzke
et al. (2020), who considered the noise-free case (see
Appendix C for the difference between the calculations in this
study and those employed in Witzke et al. 2020). Figure 6
shows that for both the noise-free (left panel) and the noisy
(right panel) case, the detection rate increases with metallicity.
This is caused by the stronger contribution of the faculae to the
overall variability. Only for the cases LPH> 0.1 and
LPH> 0.2, does the detection rate show a minimum at [Fe/
H]=− 0.3 dex or −0.2 dex (noisy), increasing again toward
smaller metallicity values. We expect that this trend continues
toward even smaller metallicities.

3.5. Comparison with Observations

We now compare our detection rates (see Table 1) to period
detections of solar-like stars in the MMA14 sample. As
mentioned above, MMA14 used a relatively conservative
detection threshold of LPH> 0.3. The bottom-left panel of

Figure 4 and Table 1 indicate that this threshold represents only
the tip of the iceberg: for LPH> 0.3 (noisy case), the rotation
periods can be correctly detected for only 2.9% of our modeled
light curves.
Galactic evolution models (van Saders et al. 2019) predict

that 16% of the (dwarf) stars in the Kepler field with effective
temperatures 5500< Teff< 6000 K should have rotation
periods between 24 and 30 days (J. L. van Saders 2021,
private communications). Using the latest Kepler parameter
catalog (Mathur et al. 2017), we select stars in this temperature
range, with surface gravities >glog 4.2 to exclude more
evolved stars, and brighter than 15th Kepler magnitude
(following the selection criteria used in Reinhold et al. 2020).
We further restrict the catalog metallicities to− 0.45< [Fe/
H]< 0.45 dex, which corresponds to the range of simulated
metallicities (see Figure A1). Selecting such stars from Tables 1
and 2 in MMA14 yields N= 16890 stars. Among those, only
16% will have periods between 24 and 30 days, and according
to our analysis, only 2.9% of these stars will have detectable
periods. Thus, we estimate that = * * =N N 0.16 0.029 78det
stars should have detectable periods.
MMA14 found 455 stars in this parameter range with

periods 24� Prot� 30 days. However, the vast majority of
these stars exhibits variability levels much higher than the Sun,
and represent a regime of variability very different from that of
the Sun (Işık et al. 2020; Reinhold et al. 2020; Zhang et al.
2020). Consequently, the light curves of these stars cannot be
accounted for by our model. To correct for such stars, we
followed the approach of Witzke et al. (2020) and selected the

Figure 4. Rotation period distribution for different LPHs of the noise-free (black) and noisy (red) cases. The blue dashed–dotted line indicates the model rotation
period of 27 days.
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stars with variability (regressed to solar values of effective
temperature, metallicity, and rotation period; see Figure S8 and
its detailed discussion in Reinhold et al. 2020) below 0.18%,
which corresponds to the maximum variability of the Sun over
the last 140 yr. All in all, only 73 out of the 455 stars satisfied
such a criterion. This number is gratifyingly close to our
estimate of 78 stars.

4. Conclusions

In this study we identified biases in the period determination
of stars with solar-like variability. The detection rates among
these stars are lower than for stars of other spectral types. In
particular, only 2.9% of them would be detectable using the
thresholds set in MMA14. This is mainly caused by the small
variability amplitudes of the rotational tracers and their
relatively short lifetimes compared to the rotation period.

The very low detection rate explains the large discrepancy
between the number of measured rotation periods (MMA14),
and those predicted by Galactic evolution models (van Saders
et al. 2019). The predicted number of stars with detectable
periods (78), and that for which rotation periods have actually
been measured (73), is remarkably similar. Figure 4 shows that
many more rotation periods of solar-like stars may be measured
when lowering the thresholds in the automated period surveys.
However, this will also add a number of false periods,
depending on how the thresholds are set.

Our study revealed that the rotation periods of most solar-
like stars will go undetected using standard frequency analysis
tools. Thus, we emphasize the importance of alternative
methods for period detection such as the GPS method
(Amazo-Gómez et al. 2020; Shapiro et al. 2020) or new
approaches based on Gaussian process regression (Foreman-
Mackey et al. 2017; Angus et al. 2018; Kosiarek &
Crossfield 2020).

We would like to thank Jennifer van Saders for providing
model numbers and for helpful discussion. This work has
received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 715947). This work
has been partially supported by the BK21 plus program through

the National Research Foundation (NRF) funded by the
Ministry of Education of Korea. We would like to thank the
International Space Science Institute, Bern, for their support of
science team 446 and the resulting helpful discussions.

Appendix A
Monte Carlo Input Distribution

Figure A1 shows the distributions of input parameters used
in the Monte Carlo simulation. The left panel shows the
distribution of inclination angles. It can be shown that isotropic
inclination angles i exhibit a uniform distribution in icos (see
e.g., http://keatonb.github.io/archivers/uniforminclination for
a detailed derivation). The last bin of the distribution (85°–90°)
only contains half the number of realizations because no
inclination angles greater than 90° exist. The same argument
applies to the first bin from 0° to 5°.
The middle panel shows the distribution of metallicities of

the solar-like stars in the Kepler field. The catalog values were
adapted from Mathur et al. (2017) and the selection of solar-
like stars can be found in Reinhold et al. (2020). We note that
the Sun ([Fe/H]= 0) is slightly more metal-rich than the peak
of the distribution.
The right panel shows the apparent magnitudes of the stars in

the Kepler field. It is obvious that the majority of stars is very
faint. Because the stellar magnitudes define the noise in the
light curves, it is crucial to adapt this distribution for the noise
model (see Reinhold et al. 2020) to make realistic predictions
about stars in the Kepler field.

Appendix B
Generating Light Curves

The total spectral flux at a certain time is composed of fluxes
emerging from surface areas with different levels of magnetic
activity. Following the detailed description in Shapiro et al.
(2014), we decompose the spectral flux from a star, F, into
contributions from the quiet stellar region (FQ), faculae (Ffac),
and spots (Fspot):

( ) ( ) ( ) ( ) ( )l l l l= + +F F F F , B1Q fac spot

Figure 5. Detection rate as a function of inclination angle, integrated over all metallicities, for different LPH thresholds. The error bars show the square root of the
number of detections divided by the number of models at a given inclination.
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where λ is the wavelength. For the quiet stellar region, the disk-
integrated flux FQ(λ) is obtained by integrating

( ) ( ) ( ) ( )òl l m w m m=F I d, , B2Q
0

1

Q

where ( ) ( )w m pm= r d2 star star
2 is a weighting function with

the stellar radius, rstar, and the distance between the star and the
observer, dstar. The emergent intensity, IQ(λ, μ), also depends
on μ, which is the cosine of the angle between the observer’s
direction and the local stellar radius. In this formulation the
stellar disk center is associated with μ= 1 and the limb
with μ= 0.

Both faculae and spots are taken into account through their
contrast with respect to the quiet regions. Therefore, the
contribution of faculae is defined as

( ) ( )[ ( ) ( )] ( ) ( )òl a m l m l m w m m= -F I I d, , , B3Fac
0

1

Fac Fac Q

where the fractional coverage of the ring corresponding to a
given μ by faculae is given by the function αFac(μ).

The contribution from spots consists of those from spot
umbrae and spot penumbrae:

( ) ( )( ( ) ( )) ( )

( )( ( ) ( )) ( )

( )

ò

ò

l a m l m l m w m m

a m l m l m w m m

= -

+ -

F I I d

I I d

, ,

, , ,

B4

spot 0

1
pen pen Q

0

1
umb umb Q

where Iumb and Ipen are the emergent intensities from the spot
umbrae and spot penumbrae, respectively, and the αumb and
αpen denote the corresponding surface coverages.

The surface coverages for the magnetic features (i.e., αFac,
αumb and αpen) used in this work are taking from Nèmec et al.
(2020). Furthermore, calculations of the emergent intensities
for all stellar regions follow the approach used in Witzke et al.
(2020), but with a small modification which is explained in
Appendix C.

Appendix C
Calculating Emergent Intensities

The model atmospheres and corresponding emergent spectra
computed by Unruh et al. (1999) for the solar faculae, spots,
and quiet regions (hereafter, original models) proved to be very
successful in reproducing the solar brightness variations with
high accuracy (Krivova et al. 2003; Ermolli et al. 2013; Solanki
et al. 2013).
Here, we extend the intensities for different surface

components to different metallicities following the approach
outlined in Witzke et al. (2018, 2020), but with slight
modifications to cover a broader metallicity range. In our
modeling approach, we aim to match the intensity contrasts for
the solar metallicity as closely as possible to the original
models. Thus, in the first step we searched for the model
parameters (input parameters for calculating stellar atmo-
spheres with ATLAS9), such as convection settings, surface
gravity, and continuum opacity sources for the quiet Sun, spot-
umbra, and spot-penumbra, to match the original models and
spectra by Unruh et al. (1999). The closest match is achieved
by the parameters listed in Table 2. Then for the generation of
the faculae model we assumed that the temperature difference,
ΔT, and pressure difference, ΔP, as a function of column mass
between the original facular and quiet Sun models are the same
as between our new facular and quiet Sun models.
Finally, to calculate atmospheric models for different

metallicity values, we first generated atmosphere models for
the quiet regions and the spots assuming radiative equilibrium.
Then we followed up on the Witzke et al. (2018) approach and
assumed that a change of the metallicity value has the same
effect on the temperature and pressure structures of the quiet
Sun and faculae. Using the quiet stellar atmosphere models for
different metallicities, we applied the solar ΔT and ΔP with
column mass to calculate the facular models. Using these
atmospheric models for the quiet regions and magnetic
features, we generated the emergent intensities Iλ,μ for each
metallicity value using the MPS-ATLAS code (V. Witzke et al.
2021, in preparation).

ORCID iDs
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Figure 6. Detection rate as a function of metallicity, integrated over all inclinations, for different LPH thresholds. The error bars show the square root of the number of
detections divided by the number of models at a given metallicity.
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Table 2
Input Parameters for Model Atmospheres in Radiative Equilibrium

Model Effective Surface Mixing Over
Temperature (K) Gravity -length -shoot

Quiet region 5777 4.43777 1.25 on
Spot umbra 4500 4.0 1.25 on
Spot penumbra 5450 4.0 1.25 on

9

The Astrophysical Journal Letters, 908:L21 (9pp), 2021 February 20 Reinhold et al.

https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-8842-5403
https://orcid.org/0000-0002-0929-1612
https://orcid.org/0000-0002-0929-1612
https://orcid.org/0000-0002-0929-1612
https://orcid.org/0000-0002-0929-1612
https://orcid.org/0000-0002-0929-1612
https://orcid.org/0000-0002-0929-1612
https://orcid.org/0000-0002-0929-1612
https://orcid.org/0000-0002-0929-1612
https://orcid.org/0000-0001-6090-1247
https://orcid.org/0000-0001-6090-1247
https://orcid.org/0000-0001-6090-1247
https://orcid.org/0000-0001-6090-1247
https://orcid.org/0000-0001-6090-1247
https://orcid.org/0000-0001-6090-1247
https://orcid.org/0000-0001-6090-1247
https://orcid.org/0000-0001-6090-1247
https://orcid.org/0000-0001-6163-0653
https://orcid.org/0000-0001-6163-0653
https://orcid.org/0000-0001-6163-0653
https://orcid.org/0000-0001-6163-0653
https://orcid.org/0000-0001-6163-0653
https://orcid.org/0000-0001-6163-0653
https://orcid.org/0000-0001-6163-0653
https://orcid.org/0000-0001-6163-0653
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://orcid.org/0000-0002-3418-8449
https://doi.org/10.1093/mnras/stv853
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.3211A/abstract
https://doi.org/10.1051/0004-6361/201936925
https://ui.adsabs.harvard.edu/abs/2020A&A...636A..69A/abstract
https://ui.adsabs.harvard.edu/abs/2020A&A...636A..69A/abstract
https://doi.org/10.1093/mnras/stx2109
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.2094A/abstract
https://doi.org/10.1088/0004-637X/719/1/264
https://ui.adsabs.harvard.edu/abs/2010ApJ...719..264C/abstract
https://doi.org/10.5194/acp-13-3945-2013
https://ui.adsabs.harvard.edu/abs/2013ACP....13.3945E/abstract
https://doi.org/10.3847/1538-3881/aa9332
https://ui.adsabs.harvard.edu/abs/2017AJ....154..220F/abstract
https://ui.adsabs.harvard.edu/abs/2017AJ....154..220F/abstract
https://doi.org/10.1088/0067-0049/221/1/18
https://ui.adsabs.harvard.edu/abs/2015ApJS..221...18H/abstract
https://doi.org/10.3847/2041-8213/abb409
https://ui.adsabs.harvard.edu/abs/2020ApJ...901L..12I/abstract
https://doi.org/10.1051/0004-6361/201016167
https://ui.adsabs.harvard.edu/abs/2011A&A...528A..82J/abstract
https://doi.org/10.3847/1538-4357/aaa026
https://ui.adsabs.harvard.edu/abs/2018ApJ...852...46K/abstract
https://doi.org/10.3847/1538-3881/ab8d3a
https://ui.adsabs.harvard.edu/abs/2020AJ....159..271K/abstract
https://doi.org/10.1051/0004-6361:20030029
https://ui.adsabs.harvard.edu/abs/2003A&A...399L...1K/abstract
https://ui.adsabs.harvard.edu/abs/2003A&A...399L...1K/abstract
https://doi.org/10.1093/mnras/stu1206
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.1451L/abstract
https://doi.org/10.3847/1538-4365/229/2/30
https://ui.adsabs.harvard.edu/abs/2017ApJS..229...30M/abstract
https://doi.org/10.1088/0067-0049/211/2/24
https://ui.adsabs.harvard.edu/abs/2014ApJS..211...24M/abstract
https://doi.org/10.1051/0004-6361/202037588
https://ui.adsabs.harvard.edu/abs/2020A&A...636A..43N/abstract
https://doi.org/10.1126/science.aay3821
https://ui.adsabs.harvard.edu/abs/2020Sci...368..518R/abstract
https://ui.adsabs.harvard.edu/abs/1992A&A...264L..13S/abstract
https://doi.org/10.1051/0004-6361/201936018
https://ui.adsabs.harvard.edu/abs/2020A&A...633A..32S/abstract
https://doi.org/10.1051/0004-6361/201527527
https://ui.adsabs.harvard.edu/abs/2016A&A...589A..46S/abstract
https://doi.org/10.1051/0004-6361/201323086
https://ui.adsabs.harvard.edu/abs/2014A&A...569A..38S/abstract
https://doi.org/10.1038/s41550-017-0217-y
https://ui.adsabs.harvard.edu/abs/2017NatAs...1..612S/abstract
https://doi.org/10.1007/s00159-003-0018-4
https://ui.adsabs.harvard.edu/abs/2003A&ARv..11..153S/abstract
https://doi.org/10.1146/annurev-astro-082812-141007
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..311S/abstract
https://doi.org/10.1038/nature02995
https://ui.adsabs.harvard.edu/abs/2004Natur.431.1084S/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...345..635U/abstract
https://doi.org/10.1051/0004-6361:20077704
https://ui.adsabs.harvard.edu/abs/2007A&A...471..301U/abstract
https://doi.org/10.1088/0004-637X/746/1/16
https://ui.adsabs.harvard.edu/abs/2012ApJ...746...16V/abstract
https://doi.org/10.3847/1538-4357/aafafe
https://ui.adsabs.harvard.edu/abs/2019ApJ...872..128V/abstract
https://doi.org/10.1051/0004-6361/201936608
https://ui.adsabs.harvard.edu/abs/2020A&A...634L...9W/abstract
https://doi.org/10.1051/0004-6361/201833936
https://ui.adsabs.harvard.edu/abs/2018A&A...619A.146W/abstract
https://doi.org/10.3847/2041-8213/ab8795
https://ui.adsabs.harvard.edu/abs/2020ApJ...894L..11Z/abstract

	1. Introduction
	2. Methods
	2.1. The Curious Case of the Sun
	2.2. The Model
	2.3. Monte Carlo Approach

	3. Results
	3.1. Period Detection
	3.2. LPH Dependence on Spot Area
	3.3. Period Distribution
	3.4. Detection Rate
	3.5. Comparison with Observations

	4. Conclusions
	Appendix AMonte Carlo Input Distribution
	Appendix BGenerating Light Curves
	Appendix CCalculating Emergent Intensities
	References



