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ABSTRACT 
 

This work considers the direct solution of general third order ordinary differential equation. The 
method is derived by collocating and interpolating the approximate solution in power series. A 
single hybrid three-step method is developed. Taylor series is used to generate the independent 
solution at selected grid and off grid points. The order, zero stability and convergence of the 
method were established. The developed method is then applied to solve some initial value 
problems of third order ODEs. The numerical results of the method confirm the superiority of the 
new method over the existing method. 
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1. INTRODUCTION 
 
This paper examines the solution of third order ordinary differential equations of the form 
 

 
   (1) 

 
In the past, equation (1) is solved by method of 
reducing it to its equivalent system of first order 
ordinary differential equations and thereafter 
appropriate numerical method for first order 
would be applied to solve the systems. However, 
it is shown in [1,2], that reduction of higher order 
ordinary differential equations to a system of first 
order has serious problems which include 
consumption of human effort, computational 
burden and non-economization of computer time. 

 

This is also discussed by [3,4,5] and [6]. In order 
to cater for the setbacks encountered in 
reduction method and also bring about 
improvement on numerical method [7,8,9,10] and 
[11] developed block methods for solving higher 
order ordinary differential equations directly in 
which the accuracy is better than when it is 
reduced to system of first order ordinary 
differential equations. 
 

Linear multistep methods for solving equation (1) 
directly have been proposed by some 
researchers such as [12] developed a block 
method for the solution of third order ordinary 
differential equation whereby the accuracy of the 
method is not efficient enough in terms of error. 
A P-stable linear multistep method for direct 
solution of (1) was developed by [13] which was 
implemented in predictor-corrector mode. 

 

Also, various authors such as [14,15] developed 
the hybrid method. This method, while retaining 
certain charateristics of the continuous linear 
multistep method, share with Runge-Kutta 
methods the property of utilizing data at other 
points, other than the step point 

, 0 ,1 1n jx j n   . This method is useful in 

reducing the step number of a method and still 
remains zero stable. 
 

But, in [16], he stated that block method has a 
setback of not being able to exhaust all the 
possible interpolation points because the 
interpolation points cannot exceed the order of 
the differential equation. With this drawback, [17], 
proposed Taylor series approximation method to 

improve on the setback usually faced with 
Predictor-Corrector and Block methods. 

 
In this research, a one point hybrid linear 
multistep method based on collocation and 
interpolation at selected grid and off-grid point is 
developed for the direct solution of third order 
initial value problems of ordinary differential 
equation using hybrid method 

, 0 ,1 1n jx j n   with Taylor’s series being 

used to analyze and implement the method. 

 
2. METHODOLOGY 
 
We consider power series of the form  
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as an approximate solution to equation (1), 
where s is the number of collocation points for 

0 5s    , r is the number of interpolation 

points for 0 3r  , and ja  are the unknown 

parameters to be determined. The first, second 
and third derivatives of (2) give 
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at the points 
3

, 0,1, , 2,3
2

n ix x i  produces 

the following equations 
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                                       (6) 

 

          (7) 
 
 

Solving equations (6) and (7) by using Gaussian 
elimination method to determine the values of the 

unknown parameters ja  which are then 

substituted into equation (2). This gives a 
continuous implicit hybrid scheme of the form 
 

  (8) 

 
Using the transformation   
 

2 ,
1

 n dt

x

x x
t

h d h
 
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                        (9) 

 

Where k = 3, v =3/2 j  and j  are given as: 
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Evaluating (10) at the end point 3nx x    i.e. 1t  gives our hybrid method as 

 

 

(11) 

 

 

With order p = 6 and error constant 2 0.000439453125pc    . 
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Finding the first derivative of (10) gives: 

 

                             (12) 
While the second derivative of (10) gives: 
 

               (13) 
 

Evaluating (12) and (13) at the end points i.e at 1t   gives the following equations (14) and (15):  
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3. BASIC PROPERTIES OF THE METHOD 
 
3.1 Order and Error Constant of the Method 
 
In this paper, we adopt the method proposed by [4], with the linear operator: 
 

3
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k k

j n j j n j
j j

y h f  
 

     

      

We associate the linear operator L with the scheme and define as 
 

  

    

where  and 0  are both non-zero and ( )y x  is an arbitrary function which is continuous and 

differentiable on the interval [a, b]. If we assume that ( )y x  has as many higher derivatives as we 

require, then on Taylor’s series expansion about the point ,x we obtain 
 

   0 1, ( ) ( )q qL y x h c y x c hy x cqh y x          

    
Accordingly we say that the method has order P if, 
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Then, 2pc   is the error constant and 
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  is the principal local truncation error at the 

point nx . 
 

In this paper, since 0 1 2 3 6c c c c c      and 8 2 0pc c    which implies that 

the scheme is of order 6 and the error constant 2 0.000439453125pc    . 

 

3.2 Zero Stability of the Method 
 
Definition (See [4]): A linear multistep method is said to be zero-stable, if no root of the first 

characteristics polynomials  r  has modulus greater than one and if every root of modulus one has 

multiplicity not greater than two. 
 

Our method is zero stable since no root of the first characteristics polynomial  r has modulus 

greater than one that is 1r  . This implies that the method is zero stable if,  
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3.3 Theorem 1: Convergence (See [4]) 
 
The necessary and sufficient condition for a linear multistep method to be convergent is for it to be 
consistent and zero stable. From the theorem above, the method is convergent. 
 

4. IMPLEMENTATION  
 
4.1 Taylor Series Expansion of the Method 
 
Since Taylor’s series expansion is used to approximate yvariables in this research, to generate y  

values for the approximate solution of the scheme, the third derivative is expanded term by term up to 
the order of the scheme developed by Taylor’s series expansion. 
 

   

 

      

 
Where 
 

     

( , , , ) ( ) j j

f f f f f
x y y y y y f f Df

y x y y y

    
       

       
 

    
( , , , ) .j j j j jf x y y y f  

 
 

    

 
Where p is the order of the method. 
 

4.2 Numerical Examples 
 
Problem 1: 
 
We consider the non-linear IVP which was solved by [13] for the step-size h=0.1 
 

'''y y  , (0) 1,  '(0) 1, ''(0) 1, 0.1y y y h    
 

 

Exact solution: ( ) xy x e
  

In this example, our method of order p = 6 is compared with the method in [13]. In terms of accuracy, 
our result performs better than those given in [13]. The details of the numerical result at some 
selected points are shown in Table 1. 
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Table 1. Result of problem 1 
 

X Exact solution Computed solution Error in Taylor 
series 
K=3, h=0.1  
Order, p = 6 

Error in [13] 
K=3,Order, p = 5, 
 h=0.1 (P-C) 
 

0.30 0.740818220681717770 0.740818232946138580 1.226442E-08 3.991507930E-07 
0.40 0.670320046035639330 0.670320061249500610 1.521386E-08 1.036855911E-06 
0.50 0.606530659712633420 0.606530680594479790 2.088185E-08 2.128500409E-06 
0.60 0.548811636094026390 0.548811665913141460 2.981912E-08 3.789530170E-06 
0.70 0.496585303791409470 0.496585346306387790 4.251498E-08 6.130076711E-06 
0.80 0.449328964117221560 0.449329023516181540 5.939896E-08 9.253856792E-06 
0.90 0.406569659740599110 0.406569740582070790 8.084147E-08 1.325713611E-05 
1.00 0.367879441171442330 0.367879548325104060 1.071537E-07 1.822776743E-05 
1.10 0.332871083698079500 0.332871222284604030 1.385865E-07 2.424431283E-05 
1.20 0.301194211912202080 0.301194387241549900 1.753293E-07 3.137525869E-05 

 
Problem 2: 

, 
1

(0) 1,  '(0) , ''(0) 0, 0.01
2

y y y h     

Exact solution: 
1 2

( ) 1 ln
2 2

x
y x

x

 
   

   
 

Our result was compared with [18] which is of order 6. Using the same step size (h = 0.01), it is 

observed that our result performs better. The details of the numerical result at some selected points 

are in Table 2 below: 

 
Table 2. Result of problem 2 

 
X Exact solution Computed solution Error in 

Taylor Series 
K=3, h=0.01 
Order, p = 6 

Error in [18] 
K=3,Order , p = 6,  
h = 0.01 
(block method) 

0.21 1.015001125151899300 1.105388447837780900 7.178702E-13 8.037948 E – 11 
0.31 1.156259497799360100 1.156259497796915600 2.444489E-12 6.043090 E – 10 
0.41 1.207946365635211800 1.207946365629159600 6.052270E-12 2.581908 E – 09 
0.51 1.260753316593162600 1.260753316580459900 1.270273E-11 8.158301E – 09 
0.61 1.315023237096001100 1.315023237071823600 2.417755E-11 2.141286 E – 08 
0.71 1.371153208259014500 1.371153208215620600 4.339396E-11 4.969641 E – 08 
0.81 1.429615588111108300 1.429615588035786400 7.532197E-11 1.620387 E – 07 

 

5. DISCUSSION OF RESULTS 
 
In Table 1, the results of our three-step hybrid 
Taylor series method are more accurate than 
that of [13] which was executed by predictor-
corrector method.  
 
In Table 2, the results of the three-step hybrid 
Taylor series method also perform better than 
[18] block method implemented scheme. Though 
we used the same parameters with that of [18] 
that is, order, P=6, K=3 and h=0.01 our method 
is still more accurate. 

6. CONCLUSION 
 
This research describes the development, 
analysis and implementation of three-step hybrid 
method for solving general third order initial value 
problems of ordinary differential equations 
directly using Taylor Series approximation 
method. 
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