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In this work two mathematical models that described the dynamics of cholera in Nigeria were 
presented. The first model examined the bacteria population using a logistic definition for its growth in 
the expected habitat and their interaction with the susceptible population. The second model is an 
optimal control model that includes two time- dependent control functions with one minimizing the 
contact between the susceptible and the bacteria and the other, the population of the bacteria in the 
water. The results from the numerical solutions of the models presented showed that increasing the 
susceptible pool and the infected population above some threshold values were responsible for 
epidemic cholera. It also showed that the difference between the growth rate (r) and the loss rate (n) of 
the bacteria plays a huge role in the outbreak as well as the severity of the disease. 
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INTRODUCTION 
 
Cholera has become a worldwide health problem. It is an 
acute infection caused by the colonization and 
multiplication of Vibrio cholerae 01 or 0139 within the 
small intestine in humans (Emch et al., 2008). It is a 
waterborne disease that causes severe diarrhea and 
vomiting which leads to dehydration of the body and can 
prove fatal unless treated quickly. Outbreaks result from 
contaminated food, poor sanitation and dirty drinking 
water. (Codeco, 2001; Isere et al., 2009) 

Until the 20th century, cholera was confined to the 
Indian sub-continent. From this region, cholera has 
spread  throughout  the  world  seven  times  since   1817 

(Capasso and Paveri–Fontana, 1979; Codeco, 2001; 
Lawoyin et al., 1999). The disease spread through the 
Asian continent during the 1960’s; reached Africa in 1970 
and Latin America in 1991 (Codeco, 2001; Lawoyin et al., 
2004; Isere and Osemwenkhae, 2010).  

In Nigeria, outbreaks of the disease have been 
occurring with increasing frequency since the first 
outbreak in modern times in 1970 (Epstein, 1993 
Osemwenkhae et al., 2009). Since then, cholera has 
continued to cause high mortality in humans, in Nigeria. 
The year 1999 saw the highest number of reported cases 
(WHO,   2009).   Since  then,  cholera  cases  have  been
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persistent in the country. Recently, in Kano, on 
September 22nd 2008, the United Nations office for the 
coordination of Humanitarian Affairs unit reported that 
cholera outbreak killed 97 persons in Kano. That report 
has it that the outbreaks were across Katsina, Zamfara, 
Bauchi and Kano states in northern Nigeria killing close 
to 100 people in just two weeks, making it the worst 
outbreak in the north for several years, according to an 
official from the National Primary Healthcare Agency 
(NPHA) in Abuja (UN, 2008). An earlier outbreak of 
cholera in Kano was reported in the work of Hutin et al. 
(2003). 

More than 60 people have died in Zamfara State in the 
past two weeks, according to Zamfara’s State 
Commissioner for Religion Affairs. The report says 
further; “It is quite unusual for northern Nigeria. If up to 
100 people have died from cholera in just two weeks, you 
can imagine how many more are affected by the 
disease.” The commissioner added, the death toll may be 
higher as reports of new infections are still coming in 
(UN, 2008). Most recently, cholera outbreak has taken 
toll in Adamawa State claiming a 52 year-old man, his 
wife, son and 36 others in the Maiha Local Government 
area of Adamawa state. (The Guardian Newspaper, 
Tuesday, August 18, 2009). It becomes significant we 
carry out a scientific study of this silent killing disease that 
has become endemic, so as to enhance its control in 
Nigeria using a mathematical model with a logistic growth 
term and an optimal control model with time dependent 
control functions incorporated. 

Time dependent control strategies have been applied 
to various disease models. For instance, in Jung et al. 
(2002) an optimal control of treatments in a two-strain 
tuberculosis model was examined. Fister et al. (1998) 
and Kirshner et al. (1997) both studied time dependent 
control strategies used for HIV models. In Joshi et al. 
(2006), two control functions as coefficients in a system 
of differential equations represented treatment effects in 
a two- drug regime in an HIV immunology model. The 
goal was to maximize the concentration of T cells while 
minimizing the toxic effects of the drugs. However, time 
dependent control strategies for cholera is an innovation 
as few mathematical models on cholera did not include 
time dependent controls [Compare Capasso and Paveri–
Fontana (1979) and Codeco (2001)]. 

In this work, we will examine two formulated models 
one without the control term and the other with control 
terms that are time-dependent. Simulations of these 
models are carried out to see the effect of these controls 
in the population dynamics of the disease. 
 
 
FORMULATION OF MATHEMATICAL MODEL USING THE 
LOGISTIC TERM WITHOUT CONTROL  
 
The logistic equation was first used in modeling human population 
by Verhulst in 1838. He followed a suggestion from his mentor 
Quetelet, that the resistance to growth should be quadratic and not 
linear (Britton, 2003). In 1940, this idea was confirmed when human 

Isere et al.         25 
 
 
 
population data of the USA was plotted overtime. The curve took a 
bell shape indicating that human population is non-linear. 

The logistic equation was revived by Pearl and Reed in 1920. 
Pearl and others thought that fitting such a curve to a population 
time series would provide realistic short term forecasts as well as 
estimates of the ultimate steady state population K. 

A careful observation however, shows that bacteria population 
growth is fitted excellently with a logistic growth equation (Britton, 
2003). Since the bacteria population grows at a density-dependent 
rate and the probability of catching cholera depends on the 
concentration of V. cholerae in aquatic environment, then it 
behooves us to know the carrying capacity of the organism. The 
logistic growth term does that and is non-linear with respect to the 
bacteria population and makes the model more realistic since the 
population growth of bacteria is non-linear. Hence, we proposed a 
model using the logistic growth approach. In formulation, the 
dynamics of the infected is extended to include demographic 
factors, thus removing the assumption inherent in a closed 
population model. The mathematical model is proposed below: 
 

SSBa
dt

dS   )(
                                                                 (1) 

 

IdSBa
dt

dI
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eInBKBrB
dt
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                                          (3) 
 

0)0(,0)0(,)0(  BINS                                                   (4a) 
 
However, the parameters for the solution of the model are 
presented below: 
 
The symbols used: 
 
S:  Number of susceptibles 
I:  Number of infected  
B:  Concentration of toxigenic V. cholerae in water (cells/m) 
(cells/ml) 
N:  Total human population  
:  Natural Human death rate (day-1)  
d:  Disease related death rate (day-1) 
a:  Rate of exposure to contaminated water (day -1) 
k:  Concentration of V. cholerae in water that yields 50% chance of 
catching cholera (cells/ml) 
K:  The carrying capacity of V. cholerae  
:  Rate at which people recover from cholera (day-1). 
r:  Growth rate of V. cholerae in the aquatic environment (day-1). 
n: Loss rate of V cholerae in the aquatic environment (day-1). 
e:  Contribution of each infected person to the population of V. 
cholera (cell/ml day-1 person-1) 
α:  Net mortality rate of V. cholerae in the aquatic environment 
:  Recruitment rate into the susceptible class. 
(B): Probability of susceptible to catch cholera  
 

(B)= Bk

B

                                                                              (4b) 
 
where k and B are as defined above. 

Figure 1 shows the schematic representation of the flow between 
the different classes of the state variables (S.I.B).  
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Figure 1. The relationship between the state variables: the Susceptible, Infected and 
the pathogenic bacteria (SIB). 

 
 
 

Table 1. Parameters for the model. 
 

Parameters Description Values A Values B 

N Total human populations 1,000 100,000 
  Natural  human death rate 0.000559 0.00559 

  Recruitment rate 0.559 559 
d Cholera related death rate 0.000156 0.00156 
a Exposure rate to contaminated food and water 0.5 0.5 
k Concentration of V. cholerae in water to yield 50%  chance of catching cholera  106 106 

K The carrying capacity of V. cholerae  108 108 

  The recovery rate from cholera 0.2 0.2 

r Growth rate of V. cholerae 0.2497 0.40 
n Loss rate of V. cholerae 0.4 0.64 
e Contribution rate from the infected 10 10 

 

Source:  parameters customized from Codeco (2001) for demonstration purpose. 
 
 
 

The basic reproductive number  and parameters for the model 
 
The basic reproductive number  is a non-dimensional quantity 
that measures the secondary infection caused by a typically 

infected person. If   then there would be an epidemic 
since one infected is able to infect more than one person in a 
system. Otherwise, there would be a disease free state, that is, 

whenever . What happens when ; We have the 
threshold condition. But cholera becomes endemic whenever  

 over a long period of time. Therefore, it becomes 
imperative to determine this quantity for any dynamical system. For 
our model it is given below: 
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Table 1 below gives a brief description of the parameters. 
 
 
Numerical solutions of the model without control 
 
Figures 2 to 4 represents the plots from values A, while Figures 5 to 
7 represents those  from  values B.  The  state  variables  (SIB)  are 

 
 
Figure 2. The susceptible population. 
 
 
 
plotted in the vertical axis against time in the horizontal axis for the 
entire Figures 2 to 7. 



 
 
 
 

 
 
Figure 3. The infected population. 
 
 
 

 
 
Figure 4. The bacteria population. 
 
 
 

The plot in Figure 2 shows a short decline and after which there 
was an exponential growth. This result is due to an interplay 

between the natural death rate ( ) and the exposure rate to 

contaminated food and water ( ), both are relatively small. 
The result in Figure 3 is a reverse of the Figure 2. Whenever the 

infected population is low the susceptible soars up and vice versa. 
The obvious consequence of Figures 2 and 3 is what we see in 

Figure.4. The population of the bacteria is at low ebb. 
The results of the set of values B from the parameters in Table 1 

are given below: 
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Figure 5. The susceptible population. 
 
 
 

 
 
Figure 6. The iInfected population. 
 
 
 

The result of Figure 5 is reacting to the slight increase in the net 
loss rate (the difference between the loss rate (n) and the growth 
rate (r)). The contribution from the infected is also factor. 

The factors mentioned in Figure 5 are responsible for the plot in 
Figure 6. Interestingly, this result is again the mirror image of the 
result of Figure 5.  

This mild increase in the bacteria population is predicated by the 
infected population which could be effect of immigrants and 
contribution of the infected to the aquatic environment as well as 
the natural growth rate of the bacteria. 
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Figure 7. The bacteria population. 
 
 
 
Optimal control model for the dynamics of cholera 
 
Optimal control is the standard method for solving dynamic 
optimization problems, when those problems are expressed in 
continuous time (Lenhart and Workman, 2006). In this work, we use 
this method as part of control measures for cholera epidemics in 
Nigeria. 

The proposed model that incorporates time dependent controls is 
presented below: 
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where the objective functional to be optimized is 
 
 

  )()(
2

)(
2

)(),(
0

2
2

22
1

1
21  






 

T

dttItu
A

tu
A

tBuuJ
                  (10) 

 

with 
  2

1u
 and 

  2
2u

  being the systemic combination of the organism 
population and the cost of   reducing  contact   of  infected  and  the  

 
 
 
 
susceptible. The parameters here are as defined in Equations (1) - 
(3). 

The control functions 
 

1u
 and 

 
2u

 represent the reduction of 
contact between infected persons and the susceptible, and the 
treatment of water to reduce the growth of the organism 
respectively. In Equations (6) to (8) above, the organism population 

grows at a density - dependent rate 
  )1( KBrB  . The control 

coefficients 
 

2u
 and 

  )1( 1u
 reduce the organism growth and the 

contacts between infected and susceptible accordingly. 

Our interest is to find a pair of control 
 

1u
 and 

 
2u

  in 
appropriately chosen class, and associated state variables SIB to 
minimize the objective functional Equation (10) above. 

 Again we minimize the contact of the infected with the 
susceptible and the associated cost of doing so. The population of 
the V. cholerae in an aquatic environment was also minimized. This 
was done by minimizing the objective functional above. Here, it was 
assumed that the cost associated with reducing contact of the 
infected and the cost of reducing the V. cholerae population in an 
aquatic environment are non-linear and take a quadratic form. This 
agrees with the non-linear nature of the model used. The 

coefficients  and  are balancing cost factors due to the size 
and importance of the parts making up the objective functional. 

Hence we are interested in finding an optimal control pair 
  *

1u
 

and
  *

2u
, such that: 
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We assume that the controls 
 

21 uandu
  are Lebesgue 

measurable. 

That is, 
U = { iiii btuatu  )(:)(

for 
  )(,0 tuTt i
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2,1i } 

 

where 
  2,1,10  iba ii  and

  ntu 1)(0 2  . The goal is to 

find an optimal control pair 
  2,1,  iUui  and associated state 

variables SIB to minimize the objective functional and 
  ,2,1, iba ii  are fixed non-negative constants. 

Next, applying the Pontryagin’s Maximum Principle (Kirschner et 
al., 1997), we derive necessary conditions for our optimal control 
and corresponding state variables, including constraints on the 
controls. Since we have three state variables, SIB, we shall have 

three corresponding adjoint variables where  corresponds to S, 

and  corresponds to I and  corresponds to B. 
 
 
The Hamiltonian adjoint equations 
 
The Hamiltonian equation is formed by allowing each of the adjoint 
variables to correspond to each of the state variables accordingly 
and combining the result with the objective functional as below:  
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The adjoint equations are formed by taking the derivative of the 
Hamiltonian with respect to each of the state variables (SIB). Hence 
adjoint equations are: 
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The Optimality Equations 
 
The equations are obtained by finding the derivative of the 
Hamiltonian equation with respect to the control variables, equating 
to zero and solving the resulting equation. Hence the optimal 
equations are: 
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Similarly, 
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As our control 
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 is bounded below by 
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 and bounded above by  
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  and 
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 bounded below by 
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 and above by
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, we must 

constrain the values of the control and obtain the characterization 
 
 

   

       

   


























,

,

,

112
1

1

112
1

112
1

112
1

1

1

b
BkA

aBS
whenb

b
BkA

aBS
awhen

BkA

aBS

a
BkA

aBS
whena

u







    (18) 

Isere et al.         29 
 
 
 
 

   

,

,

,

2
2

3
2

2
2

3
2

2

3

2
2

3
2

2





















b
A

nB
whenb

b
A

nB
awhen

A

nB

a
A

nB
whena

u







                                (19) 
 
The foregoing shows that the optimality conditions (taking 
derivatives of the Hamiltonian with respect to the controls) only hold 
in the interior of the control set. Next, we need to resolve the 
optimal control model numerically. 
 
 
NUMERICAL RESULTS OF THE OPTIMAL CONTROL 
MODEL 
 
Here, we are going to examine the effect of 
  )( and )( 21 tutu  - control 1 and control 2 respectively vis-
à-vis the epidemiological classes: the susceptible, the 
infected and the bacteria population classes (SIB) as 

shown in Figure 10. It is to be noted that 
 

1u  (control 1) is 
actually controlling the contact between the infected and 

susceptible while 
 

2 u  (control 2) is minimizing the 
concentration of the bacteria population in the water. 
Three sets of results are presented using the parameters 
from Table 2. Figures 8 and 9 correspond with the values 
on column A and column B respectively. Using values C, 
we varied k to see its effect on the system. 

The differences in these parameters lie in the growth 

and loss rates of the bacteria, that is,   '' and '' nr  
respectively. 

Consequently, as shown in Figure 11, keeping 
  510k will be easier to control. The system remains 
controlled for more than four days before it goes out of 
hand. The conclusion is that, the system would effectively 
be controlled when the concentration of bacteria that 
yields 50% chance of catching cholera (k) is not too high. 
The value of 105 is adequate for an effective control of 
the system. Here the first value has  and the 
second value has . 
 
 
DISCUSSION 
 
In this work, two models were examined. We presented a 
cholera model with a logistic term for its growth in the 
expected habitat and their interaction with the susceptible 
population. The second model was an optimal control 
model that included two time-dependent control functions 
with one minimizing the contact between the susceptible 
and the bacteria and the other, the population of the 
bacteria in the water. 

The mathematical model formulated really provided 
insight   into   the   dynamics  of  cholera  in  Nigeria.  The 
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Table 2. Parameters description 
 

Parameters Description Values A Values B Values C 

N Total human populations 1,000 100,000 10,000 
  Natural  human death rate 0.000559 0.000551 0.000569 

  Recruitment rate 0.559 0.00551 0.0569 
d Cholera related death rate 0.000156 0.00156 0.000156 
a Exposure rate to contaminated food and water 0.5 0.5 1 

k Concentration of V. cholera in water to yield 50% chance of catching cholera 106 106 106, 105 

K The carrying capacity of V. cholera 108 108 108 

  The recovery rate from cholera 0.2 0.2 0.2 
r Growth rate of V. cholerae 0.2497 0.10 0.07 
n Loss rate of V.cholerae 0.4 0.043 0.4 
e Contribution rate from infected 10 10 10 

 
 
 

 
 
Figure 8. The controls (Ist Entries). 
 
 
 
results actually substantiated the minimum condition for 
the development of epidemic and endemic cholera 
stated: that if the rate of exposure to contaminated food 
and drink ( a ) and the contribution of the infected (e ) to 
the bacteria population is less than the concentration of 
the bacteria that yields 50% chance of catching cholera 

( k ),
 

0R
will be asymptotically stable.  Therefore, if we 

would attain a cholera-free community, we should keep 
the susceptible population minimal, always below the 

threshold condition.    can be controlled if immigration is 
checked. In Nigeria, prior to 1970, the susceptible could 
have been below the threshold. However, in the late 
1960’s immigrants from the Asian continent came into the 
country, and that increased the susceptible pool and few 
infective that came in triggered an epidemic in 1970 
(Lawoyin et al., 1999). Now that cholera has become 
endemic in Nigeria, we  should  avoid  situations  that  will 

 
 
Figure 9. The Controls (2nd Entries).  
 
 
 
encourage the growth of V. cholerae in our community by 
ensuring sanitary condition perhaps through 
environmental sanitation exercise, and also providing 
portable drinking water. 
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Figure 10.  The effect on The SIB-Populations. 
 
 
 

 
 
Figure 11. The effect from varying K on SIB(where k is the conc. of 
V. cholerae that yields 50% of catching cholera). 
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