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Plant growth-promoting rhizobacteria (PGPR) are well-known to influence plant growth via a variety of 
mechanisms such as nitrogen fixation, production of volatile organic compounds and enzymes, and 
bioremediation contaminants from the environment. PGPR have been previously identified by other 
researchers using laboratory screening methods. It was hypothesized that relying on these routine 
laboratory tests, some PGPR species are being overlooked. These species could promote growth 
through genes that encode for the synthesis of specific growth stimuli or other growth-promoting traits 
such as vitamins, antibiotics, and secondary metabolites. To evaluate this hypothesis, PGPR (MA-7, 
ON-4, SP-7, and RA-9) and previously overlooked PGPR (SE-7, LE-26, SQ-7, and SQ-9) were tested both 
with sterilized and non-sterilized soil in pot and greenhouse experiments. The PGPR isolates 
significantly increased pea plant growth, albeit to different degrees based on isolate, in both types of 
soil. The increases were recorded in shoot and root length and fresh matter in non-sterilized soil 
whereas increases in root length and root fresh weight were observed in sterilized soil.  Interestingly, 
strains SE-7 and SQ-7 of the four overlooked PGPR isolates tested were also able to promote pea plant 
growth similarly to the PGPR isolates under both pot and greenhouse conditions. Morphological and 
biochemical characterization of the four original PGPR isolates revealed that they were rod-shaped, 
gram-positive, and spore-forming. Sequencing of 16S ribosomal RNA showed that these strains were 
mostly similar to Bacillus sp. (99% similarity). Using the EzBioCloud 16S rRNA database, it was found 
that one strain was likely to be Bacillus paramycoides based on 100% similarity, two strains were 
Bacillus wiedmannii based on 99.05 and 100% similarity, and the remaining strain was Bacillus 
amyloliquefaciens based on 99.64% similarity.  
  
Key words: Plant growth-promoting rhizobacteria (PGPR), pea, soil, 16S rRNA, Bacillus. 

 
 
INTRODUCTION 
 
Plant growth-promoting rhizobacteria (PGPR) are 
bacteria which can directly or indirectly enhance plant 
growth (Joseph et  al.,  2007;  Lugtenberg  and  Kamilova, 

2009). PGPR promote growth directly by producing 
siderophores, phytohormones (such as auxins), 
solubilizing phosphate and indirectly by inducing systemic  



                                                                                                                            
 
 
 
 
resistance (Kumar et al., 2012; Spaepen et al., 2009).  

Numerous bacterial species that promote plant growth 
have been identified, including Azospirillium, Rhizobium, 
Serratia, and Enterobacter strains. Furthermore, several 
bacterial genera, such as Streptomyces, Pseudomonas, 
and Agrobacterium have been studied and are 
increasingly marketed as biocontrol agents. These 
bacteria suppress plant disease by producing antibiotics 
and antifungal metabolites such as hydrogen cyanide and 
phenazines (Bhattacharyya andJha, 2012; Mahanty et al., 
2017; Saharan and Nehra, 2011; Tilak et al., 2005). 
 PGPR increase the growth and yield of many important 
crops, including maize, banana, and Bt cotton (Agbodjato 
et al., 2016; Apastambh et al., 2016; Pindi et al., 2014). 
Furthermore, inoculation of pea and wheat plants with 
bacterial species of the genus Pseudomonas and 
Bacillus enhances plants shoot and root growth 
(Egamberdieva, 2008). Moreover, PGPR have contributed 
in regulating the growth promoting by a different functions 
and mechanisms such enhancement of crop production, 
protection from stresses, and bioremediation 
contaminants from the environment (Guo et al., 2015; 
Zhang et al., 2013; Zhuang et al., 2007). 

Previous screening for PGPR has relied on routine 
laboratory tests. It was hypothesized that some PGPR 
have been overlooked using these method because 
promotion of plant growth may occur through genes 
involved in traits such as vitamins, antibiotics, and amino 
acids production (Babalola, 2010; Zhou et al., 2008). 
Alternatively, these overlooked PGPR may use quorum-
sensing to secrete specific substances, where 
extracellular release of these substances improves plant 
growth (Lopes et al., 2017; Monnet and Gardan, 2015). 
The main objectives of the present study were to isolate 
PGPR, including some previously overlooked PGPR 
strains, and to evaluate their effects on pea plant growth 
under both pot and greenhouse conditions.  
 
 
MATERIALS AND METHODS 
 
Isolation and screening of plant growth-promoting traits 
 
Soil samples were collected from the rhizospheres (1-15 cm) of 
different crop plants including maize, onion, sweet potato, sesame, 
hyacinth, and radish at two sites located in the Jiangsu province, 
China. Isolation was done on nutrient agar by using a pour plate 
method and the plates were incubated at 37°C for 48 h. Based on 
morphology, eight bacterial isolates that showed different colonies 
morphology were picked up and purified many times. The eight 
bacterial isolates MA-7, ON- 4, SP-7, RA-9, SE-7, LE-26, SQ-7, and 
SQ-9 were screened for their ability to promote plant growth using 
routine laboratory methods, including production  of  indole-3-acetic  
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acid (IAA), siderophores, ammonia, and solubilization of phosphate. 

 
 
Indole acetic acid (IAA) production 

 
IAA production was tested in tryptone broth medium. Freshly 
cultured isolates were inoculated into tubes containing 5 ml tryptone 
broth and incubated at 37°C for 7 days. Kovac’s reagent (0.5 ml) 
was added and the formation of a red color in the alcohol layer was 
considered a positive result.  

 
 
Siderophores production 

 
Detection of siderophores was performed using king’s B agar 
medium containing chrome azurol S as an indicator dye, 
FeCl3.6H2O solution and hexadecyltrimethyl ammonium bromide. 
Five microliters of each fresh culture was inoculated onto a plate, 
and then was incubated at 28°C for 72 h. The presence of an 
orange halo around a colony indicated a positive result (Lacava et 
al., 2008).  

 
 
Ammonia production 

 
Detection of ammonia was assessed in peptone water medium. 
Bacterial isolates cultured for 24 h were inoculated into tubes 
containing 10 ml peptone water and incubated at 37°C for 48 h. 
After incubation, the culture was supplemented with Nessler’s 
reagent (0.5 ml), and a positive result was recorded upon the 
development of a yellow color (Yadav et al., 2010). 

 
 
Phosphate solubilizing activity 

 
Phosphate solubilizing test was performed on Pikovaskaya’s 
medium (PVK) supplemented with tricalcium phosphate. Freshly 
cultured isolates were inoculated onto plates containing PVK 
medium and the plates were incubated at 30°C for 7 days. A clear 
zone around colonies indicated a positive result. 

 
 
Identification of PGPR strains 

 
Identification according to Morphology, including cell shape, gram 
staining, and spore formation was characterized for PGPR isolates 
MA-7, ON-4, SP-7, and RA-9. Biochemical traits were assessed, 
including Voges-Proskauer test status, carbohydrates utilization, 
nitrate reduction, and hydrolysis of gelatin and starch. Growth at 
different pH (pH 5, 6, and 7), temperatures (5, 10, 20, 30, 40, 50, 55, 
and 60°C) and sodium chloride concentrations (2, 5, 7, and 10%) 
was also tested as previously described (De Vos et al., 2009). 

Sequencing of 16S ribosomal RNA (rRNA) was performed for the 
PGPR isolates MA-7, ON-4, SP-7, and RA-9 by the Shanghai 
Sangon Biological Engineering Technology and Services CO., Ltd. 
The resulting sequences were assembled using the DNAMAN 6.0 
software package, compared to the NCBI reference database, and 
submitted to NCBI Gene bank. A phylogenetic tree was generated 
using the MEGA 6.0 software package.   
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Pot and greenhouse experiments 
 
The eight bacterial isolates of interest, PGPR (MA-7, ON-4, SP-7, 
and RA-9) and overlooked PGPR (SE-7, LE-26, SQ-7, and SQ-9) 
were tested both in pot and greenhouse experiments with mock 
(sterile tap water) and E. coli treatments as controls. For pot 
experiment, the experiment was arranged in a single factorial 
analysis of variance with three replicates using sterilized and non-
sterilized soil. Clay soil was collected from a farm located in the 
Jiangsu province, China. The soil was air-dried, milled, sieved 
through a 2 mm mesh, and then halved. The first half was sterilized, 
while the remaining half was left without sterilization. 

Pea (Pisum sativum L.) seeds were sterilized for 3 min in 3% 
sodium hypochlorite then rinsed five times with sterilized distilled 
water, and placed on Petri dishes in the dark at 25°C for 2 to 4 days. 
The day before treatment, pots (10 cm, Diameter × 12.5 cm, Height) 
were divided into two groups and filled with the sterilized and non-
sterilized soil and watered.  

Prior to inoculation, the eight bacterial isolates, PGPR (MA-7, 
ON-4, SP-7, and RA-9) with overlooked PGPR (SE-7, LE-26, SQ-7, 
and SQ-9) and E. coli were subcultured overnight on nutrient agar 
at 37°C. For the inoculation, a loopful of each isolate were put in 5 
ml tubes of sterilized tap water. Subsequently, the germinated 
seeds with small visible roots were transferred into the bacterial 
suspensions, and soaked gently for 1 to 2 min. The soaked 
germinated seeds were sowed directly into the prepared pots (in 
total 48 pots), where each pot received six germinated seeds. The 
mock replicates were created by soaking germinated seeds in 
sterilized tap water prior to sowing into the pots. 

After inoculation, the total number of viable bacteria was 
calculated for all isolates by serially diluting 1 mL of each bacterial 
suspension down to 10−7.  Quantification was performed using the 
pour plate method and the number of colony-forming units was 
recorded. The pots were incubated under controlled conditions in a 
small plastic house for 30 days and watered regularly.  

The same eight bacterial isolates PGPR (MA-7, ON-4, SP-7, and 
RA-9) and overlooked PGPR (SE-7, LE-26, SQ-7, and SQ-9), 
together with the E. coli and sterile tap water (mock) controls were 
studied in the greenhouse based on their performance in the pot 
experiments. The greenhouse experiment was conducted in the 
greenhouse belongs to the college of Horticulture, Yangzhou 
University, China. The experiment was carried out in a completely 
randomized design with four replicates using the same inoculation 
method used for the pot experiments and grown for 21 days.  
 
 
Harvesting and data analysis  
 
For both pot and greenhouse experiments, the plants were 
removed from the soil pot for each replicate, washed gently, and 
put to loose surface moisture. Parameters included shoot length 
and root length was measured. The number of germinated 
seedlings and shoot and root fresh weights were also recorded. 
Data from both pot and greenhouse experiments were analyzed 
using IBM SPSS statistics software package version 19. Duncan's 
honest significant post-hoc test was used to identify statistically 
significant differences between means (p< 0.05) for both pot and 
greenhouse experiments. 

 
 
RESULTS 
 

Screening of plant-growth promoting traits 
 

Based on the results of the laboratory tests for  screening  

 
 
 
 
PGPR, the bacterial isolates MA-7, ON-4, SP-7, and RA-
9 were identified as PGPR. Isolates ON-4, SP-7, and RA-
9 solubilized phosphate and produced IAA, siderophores, 
and ammonia. MA-7 was capable of all this except the 
ammonia production. Bacterial isolates SE-7, LE-26, SQ-
7, and SQ-9 were tested negative for all these traits 
(Table 1). 
 
 
Strains identification 
 
Based on morphological tests, MA-7, ON-4, SP-7, and 
RA-9 were determined to be rod-shaped, gram-positive, 
and spore-forming bacteria. Biochemical and 
physiological tests included carbohydrates utilization, 
growth at different temperature, pH values, and sodium 
chloride concentrations showed that the isolates 
belonging to the genus Bacillus (Table 2).16S rRNA 
genes sequences were performed, compared to NCBI 
reference database, and submitted to NCBI Gene bank 
(accession number for MA-7 was MG371983, ON-4 was 
MG371984, SP-7 was MG371985, and RA-9 was 
MG371986).   

The four bacterial isolates were found to be closely 
related to Bacillus sp. (99% similarity). Using the 
EzBioCloud 16S rRNA database, MA-7 was found to 
most likely be B. paramycoides, ON-4 and SP-7, despite 
different morphologies, were B. wiedmannii, and RA-9 
was B. amyloliquefaciens. A phylogenetic tree was 
constructed using neighbour-joining method based on 
16S rRNA gene sequencing and the related sequences in 
EzBioCloud databases (Figure 1A, 1B, 1C, and ID).  
 
 
Pot and greenhouse experiments 
 

Overall, the PGPR isolates MA-7, ON-4, SP-7, and RA-9 
successfully promoted pea plant growth. For the pot 
experiment, significant differences in shoot and root 
length and shoot fresh weight were observed between 
treatment cohorts. Significant increases in root fresh and 
dry weights were also recorded (p ≤ 0.05 and p ≤ 0.001). 
The PGPR isolate with the most growth-promoting 
potential was RA-9 which performed the highest for all 
growth parameters assessed. Interestingly, overlooked 
PGPR isolates SE-7 and SQ-7 performed similarly to the 
PGPR isolates in terms of promoting increases in shoot 
length and shoot and root fresh weights (Figure 2). 

The greenhouse experiments were conducted 
according to the performance of the isolates in the pot 
experiment.  

Significant differences were observed between 
treatments cohorts in terms of number of germinated 
seedlings and shoot and root fresh weights (p ≤ 0.05 and 
p ≤ 0.001). There were also significant increases in shoot 
and  root  dry  weights  using  non-sterilized soil (Table 3).  
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Table 1. Laboratory PGPR screening tests. 
 

Isolate Phosphate solubilization Siderophores   production IAA production Ammonia production 

MA-7 + + + - 

ON-4 + + + + 

SP-7 + + + + 

RA-9 + + + + 

SE-7 - - - - 

LE-26 - - - - 

SQ-7 - - - - 

SQ-9 - - - - 

 
 
 

Table 2. Biochemical and physiological tests. 
 

Characteristics MA-7 ON-4 SP-7 RA-9 

Gram stain + + + + 

Endospore stain Ellipsoidal Cylindrical Ellipsoidal Ellipsoidal 

Aerobic growth + + + + 

Anerobic growth + + + - 

Voges-Proskauer + - + + 

Acid from:     

D-Glucose + + + + 

D-Mannitol - - - + 

Hydroysisof starch + + + + 

Hydrolysisof gelatin + - + + 

Nitrate reduction - - + + 

Growth at pH     

5 + + + + 

6 + + + + 

7 + + + + 

Growth in NaCl     

0% + + + + 

2% + + + + 

5% + + + + 

7% + + + + 

10%   + + + 

Growth at     

5°C - - - - 

10°C + + + + 

20°C + + + + 

30°C + + + + 

40°C + + + + 

50°C - - - + 

55°C - - - - 

60°C - - - - 

 
 
 
The isolate most effective at promoting growth was MA-7, 
which had the greatest positive effect on growth, resulting 
in the highest number of germinated seedlings  and  fresh 

and dry matter (Table 3). Interestingly, the overlooked 
PGPR isolates SE-7 and SQ-7 had effects on plant 
growth   similar    to   those   of   PGPR   isolates,   where
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Figure 1. A. Phylogenetic tree based on 16S rRNA sequencing of MA-7 and those of related 
bacteria and out-group species.B.Phylogenetic tree based on 16S rRNA sequencing of ON-4 and  
those of related bacteria and out-group species. C. Phylogenetic tree based on 16S rRNA 
sequencing of SP-7 and those of related bacteria and out-group species. D. Phylogenetic tree 
based on 16S rRNA sequencing of RA-9 and those of related bacteria and out-group species. 

 
 
 

 
 

Figure 2. The effect of PGPR and overlooked PGPR isolates on pea plant growth in pot 
experiment using non-sterilized soil. PGPR: MA-7, ON-4, SP-7, and RA-9. Overlooked 
PGPR: SE-7and SQ-7, Controls: Mock treatment (Sterile tap water) and E. coli. Means 
having the same letter(s) and not significantly different; from one another according to 
Duncan’s honest significant difference post-hoc test (p ≤ 0.05). 
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Table 3. Effects of PGPR and Overlooked PGPR isolates on pea plant growth in greenhouse experiments 
using non-sterilized soil. 
 

Treatment 
Germinated   seedlings 

 

Shoot fresh 

weight/*P(g) 

Shoot dry 

weight/P (g) 

Root fresh 

weight/P (g) 

Root dry 

weight/P (g) 

Mock 3.00 d 1.93 c 0.26 d 1.02 de 0.17 b 

E. coli 6.50 b† 3.04 abc 0.41 bcd 0.75 f 0.28 ab 

MA-7 8.00 a 6.71 a 0.83 a 3.84 a 0.39 a 

ON-4 7.50 ab 6.09 ab 0.73 abc 3.62 ab 0.38 a 

SP-7 6.75 b 4.63 abc 0.60 abcd 2.81 abcd 0.30 ab 

RA-9 4.00 cd 2.40 bc 0.31 d 1.40 cde 0.15 b 

SE-7 7.25 ab 6.39 ab 0.75 abc 3.70 a 0.35 ab 

LE-26 4.25 c 2.99 abc 0.37 cd 1.66 bcde 0.16 b 

SQ-7 7.00 ab 6.48 a 0.80 ab 4.11 a 0.35 ab 

SQ-9 6.50 b 4.15 abc 0.52 abcd 3.26 abc 0.28 ab 
 

PGPR isolates: MA-7, ON-4, SP-7, and RA-9. Previously overlooked PGPR isolates: SE-7, LE-26, SQ-7, and SQ-
9. Controls: Mock treatment (water) and E. coli. Means having the same letter(s) and not significantly different 
from one another according to Duncan’s honest significant difference post-hoc test (p ≤ 0.05); P, Plant. 

 
 
 

 
 

Figure 3. The effect of PGPR and overlooked PGPR isolates on pea plant growth in pot experiment using 
sterilized soil. PGPR: MA-7, ON-4, SP-7, and RA-9. Overlooked PGPR: SE-7and SQ-7, Controls: Mock 
treatment (Sterile tap water) and E. coli. Means having the same letter(s) and not significantly different; from 
one another according to Duncan’s honest significant difference post-hoc test (p ≤ 0.05). 

 
 
 
promoted increases in shoot and root fresh weights 
(Table 3). Significant increases in shoot and root fresh 
weights were also recorded in sterilized soil (p ≤ 
0.001and p ≤ 0.05 respectively) (Figure 3). 
 
 
DISCUSSION 
 
In the present study, it was shown that PGPR isolates 
overlooked in the previous screens may perform well in 
terms of improving plant growth. The previously 
overlooked PGPR isolates SE-7and SQ-7 were  found  to 

be good promoters of pea plant growth.  Specifically, they 
significantly increased shoot fresh and root fresh weights. 
Overall, these results support that routine laboratory used 
to screen for PGPR traits may overlook beneficial isolates. 
These overlooked isolates may promote growth through 
genes encoding for certain growth-promoting traits such 
as vitamins, antibiotics, and secondary metabolites or 
specific secreted substances related to quorum-sensing.  

Based on partial 16S rRNA sequencing and 
microbiological tests, PGPR isolates MA-7, ON-4, SP-7, 
and RA-9 were found to be different Bacillus species. 
Phylogenetic   tree  was  constructed    using   neighbour- 

 



                                                                                                                            
 
 
 
 
joining method based on 16S rRNA genes sequences of 
the isolates and those of related bacteria in the 
EzBioCloud 16S rRNA databases and out-group species 
in the NCBI database. It was found that, MA-7 was most 
likely B. paramycoides, ON-4 and SP-7, despite different 
morphologies, were B. wiedmannii, and RA-9 was B. 
amyloliquefaciens. Strains MA-7, ON-4, SP-7, and RA-9 
improved pea plant growth under both pot and 
greenhouse conditions, potentially by producing IAA, 
siderophores, and ammonia, and/or solubilizing 
phosphate. Typically, the major mechanisms underlying 
direct promotion of growth by PGPR involve 
phytohormone and siderophore production and 
solubiliztion of phosphate (Bhattacharyya andJha, 2012). 
Furthermore, numerous PGPR species are able to 
chelate calcium irons or exudate organic acid and, thus, 
solubilized phosphate through metabolic activity 
(Saharan andNehra, 2011). 

It was also found that strain RA-9 (B. amyloliquefaciens) 
was the best promoter of growth of the PGPR strains 
tested under pot conditions. Idriss et al. (2002) and Idris 
et al. (2007) reported that diluted culture filtrates or 
growing cells of B. amyloliquefaciens strains enhanced 
the growth of maize seedlings and duck weed. Other 
researchers have reported that B. amyloliquefaciens and 
B. subtilis promote plant growth by secreting extracellular 
phytases and releasing volatile components (Ramírez 
andKloepper, 2010; Ryu et al., 2003). Studies on 
biocontrol of plant pathogens, such as Fusarium 
(Fusarium oxysporum) and Ralstonia (Ralstonia 
solanacearum), found that B. amyloliquefaciens strains 
release antifungal compounds, which suppress these 
diseases and, thus, improve plants growth (Huang et al., 
2013; Li et al., 2017; Wei et al., 2011; Yuan et al., 2013).  

For greenhouse experiments, the highest number of 
germinated seedlings and most fresh and dry matter 
occurred in the presence of MA-7. This is corroborated by 
the work by Penrose et al. (2001), who reported that 
bacterial-secreted IAA stimulates cell division and 
promotes root elongation in seedlings. Similar result 
reported by Ambrosini et al. (2015) reported that B. 
mycoides strain B38V isolated from the rhizospheres of 
sunflower (Helianthus annuus L.) was shown to improve 
plant growth. Other researchers have identified Bacillus 
species that solubilized phosphate, produce antimicrobial 
peptides, and promote growth (Jouzani et al., 2017; Lee 
et al., 2009; Raddadi et al., 2008). Based on EzBioCloud 
16S rRNA database, it was found that strains ON-4 and 
SP-7, despite having different morphologies were both 
most likely to be B. wiedmannii. These two strains 
significantly improved pea plant growth in terms of 
increasing shoot and root fresh weights. Liu et al. (2017) 
identified novel bacillus strains with more than 97% 
similarity to B. cereus strains that could be further 
separated into branches. These strains included  Bacillus  
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Para mycoides, B. wiedmannii, and B. proteolyticus  

These findings corroborate the findings of this present 
study, where Bacillus species can be PGPR. In addition, 
it was expected that these strains also promote pea plant 
growth by additional mechanisms such as secreting of 
metabolites, production of vitamins, and facilitation of 
amino acids production uptake (Babalola, 2010). 
Furthermore, Bacillus species are considered an 
important source of bio active substances and their ability 
to form pores allows them to survive in a wide range of 
environments and increases their longevity in commercial 
formulation (Ongena andJacques, 2008; Pérez-García et 
al., 2011).  

In this study, some previously overlooked PGPR and 
original PGPR significantly improved pea plant growth 
under pot and greenhouse conditions. Therefore, 
additional research is needed to study the mechanisms 
by which previously overlooked PGPR strains promote 
growth. In addition, further screening is required to 
identify previously overlooked PGPR strains for different 
crops under different conditions. Furthermore, sterile tap 
water could be a good resource to prepare and store 
bacterial suspensions until further work can be done. 
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