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Abstract

New distribution of inverse Pareto using kumaraswamy generalized distribution called Kumaraswamy
generalized inverse Pareto distribution is introduced in this paper. The proposed model is applicable in the
study of variety of fields. Several properties of the proposed distribution, including explicit expressions for
the quantile, moments, moment generating function and are studied. The maximum likelihood estimation is
used to estimate parameters model and to derive the information matrix of it. Simulation study is carried out
to evaluate the estimated parameters. The performance of the new model is examined using real data set
comparing with widely known distributions.

Keywords: Kumaraswamy generalized; inverse Pareto distribution; quantile; moment generating function;
maximum likelihood.

1 Introduction

The Pareto distribution is the most popular model for analyzing heavy tailed phenomena. The Pareto distribution
was first proposed by Pareto [1] as a model for the distribution of incomes and other financial variables, and
other phenomena. The Pareto distribution has a wide range of applications in several fields such as life testing,
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economics, finance, engineering, and etc...[2]. Many generalized distributions of the Pareto distribution can be
found in the literature. A few examples of these distributions are the beta-Pareto distribution by Akinsete et al.
[3], the Kumaraswamy- Pareto distribution by Bourguignon et al. [4], the Kumaraswamy-generalized
exponentiated Pareto distribution by Shams [5], the Kumaraswamy transmuted Pareto distribution by Chhetri et
al. [6].

Klugman et al. [7] introduced the cumulative distribution function (cdf) of the two-parameter inverse Pareto (IP)
distribution as follows:

X a
G(x):(ﬂ+xj . a,f,x>0, (1)

where oL is shape parameter and [ is scale parameter. Some authors deal with many families of some well-

known distributions which are more flexible for modeling several types of data. Traditional models do not
provide adequate fits to the real data with highly skewed. To solve this problem several, introducing several
methods including additional one shape parameters, two shape parameters to generating new families of
distributions are available in the statistical literature. Some well-known generators are: the generalized-
exponential by Gupta and Kundo [8], Kumaraswamy generalized distribution by Cordeiro and de Castro [9],
generalized beta-generated by Alexander et al. [10], weibull-generated by Bourguignon et al. [11],
Kumaraswamy weibull-generated by Hassan and Elgarhy [12], generalized additive weibull-generated by
Hassan et al. [13], inverse weibull-generated Hassan and Nassr [14], odd inverse Pareto-generated by Aldahlan
et al. [15], modified weibull-generated by Abdelall [16] and more.

The goal of this article is to provide a new and more flexible distribution, called Kumaraswamy generalized
inverse Pareto (KGIP) distribution and introduces expansions expressions for its cumulative and density
functions. Numerous statistical properties of the KGIP distribution including quantile function, order statistics,
moments and moment generating function are studied in second section. The third section provides parameter
estimation using maximum likelihood method. The simulation study is introduced in fourth section. Fifth
section displays the effectiveness of the proposed distribution by practical application on real data sets. Finally,
the conclusion is provided.

2 Kumaraswamy Generalized Inverse Pareto Distribution

Cordeiro and de Castro [9] defined the cdf of the Kumaraswamy generalized distribution as follows:

F()=1--GX) ], ab>0, @)

where @ and b are additional shape parameters. Using (1), (2), the cdf of the Kumaraswamy generalized
inverse Pareto (KGIP) distribution with parameter & = (a, b, a, ,B) is given by:

b

X aa
Frar (X, &) =1- 1_(ﬂ+xj , X>0. ©)

The corresponding probability density function (pdf), will be

b-1

aa-1 aa
fKG,P(x,§)=abaﬁ(ﬁiW 1—(;”} La,B,ab>0, x>0, 4

where ¢, a and b are shape parameters and 3 is scale parameter.
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2.1 Special distributions

Sub-models can be deduced from KGIP distribution as follows:
If b =1in (4), we get the exponentiated inverse Pareto distribution with parameters a, &z, and £ .

If a =1in (4), we get the exponentiated inverse Pareto distribution with parameters b, &, and £ .
If b =a =1in(4), we get the inverse Pareto distribution with parameters oz and /3.

The survival and hazard rate functions of the KGIP distribution are obtained, respectively as follows:

b

X aa
Skerp (X1§) = 1_(ﬂ+ X]

And

-1

hKGIP(X1§)_abaﬂW 1_(ﬂ+xj

Figs. 1 and 2 display the graphs of pdf and hazard function of the KGIP distribution.
2.2 Model expansions

Here, we give explicit expansions for the cdf and pdf of the KGIP model. By using the generalized binomial
theorem

(1+z)V:i(‘i/jzi ,0<z<l. 5)

i=0

Equation (3) can be rewritten as follows:

1300 5] 2 S, ©

Where

(b .
m=(- 1)'(_), and 7(, @) denotes the Inverse Pareto cdf with parameters & = (cai, £3). Now, using the
|

power series (5) in the last term of (4), we get

frair (X) =bg (-1) [b flJ(a a(i+1)p x“a(iﬂ)—lJ

(i + 1) i (ﬂ n X)aa(i+l)+1

:Z::,ki l//(X,Q),

@)

where
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(b )
k. = (— 1)'(_ 1 ,and W(X,Q) is the Inverse Pareto density function with parameters 9 = (aa(l +l), ﬂ)
1+
Thus, the KGIP density function can be expressed as an infinite linear combination of the Inverse Pareto
density. Thus, some of its statistical properties can be obtained directly from those properties of the Inverse
Pareto distribution.

2.3 Quantile function and simulation

The quantile function of the KGIP distribution can be defined as follows:

-1

Q(Q)=ﬂ{1—(1—(1)b}aa 1—[1—(1—q)i}“ , 0<qg<l. ®)

Median of KGIP distribution can be obtained by putting q=0.5, that is

-1

Q(o.5)=ﬂ[1— o.5i}aa 1—{1— o.sé}aa

For simulating the KGIP random variable, let q be a uniform variate on the unit interval (0,1). Thus, by means
of the inverse transformation method, we consider the random variable X given by:

X :ﬂ{l—(l—U);Ta 1—{1—(1—u)i}‘“ |

which follows (4), i.e, X distributed KGIP (a, b, @, ).

08 I I I I

f(x,01,3,18,2) (g ]

f(x,06,2,13,5)

f(x,15,05,4,01) o4

f(x,3,3,06,4)
f(,2,4,5,05) 02| .- /i< -

Fig. 1. The KGIP(a, b, a, ﬂ) density function
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Fig. 2. The KGIP (a, b, a, ,6’) hazard function

2.4 Skewness and Kurtosis

The Bowley Skewness measure introduced by Kenny and Keeping (1962) based on quantile function as follows:

ag_ Q(3/4)-2Q(1/2)+ Q1/4)
Q@/4)-Q/4)

Also, the Moors kurtosis measure introduced by Moors (1988) as follows:

MK = Q(7/8)-Q(5/8)+Q(3/8)-Q(L/8)
Q(6/8)-Q(2/8)

where Q() is the quantile function. Fig. 3 illustrates plots of the skewness and kurtosis measures of the KGIP
distribution for different values of the parameter b as a function of & and fixed values of aand /. These
plots indicate that these measures decreases as b =0.5,0.8,1,2 (increases) for fixed aand 5.

Y T 20 T
\{ \
BS(a,05) 08 [~ Q\ . MK (c,05) 15[, =
BS(c,08) R ———— MK (., 08) \
----- 06 V. = 10 .
BS(a, 1) ONREEER MK (a, 1) |
N .
_BS(OL,Z) 04 -~ _I\AK(a,Z) 5 _\I|. _
n I
| L _
02 0
0 2 0 1 2
o o

Fig. 3. KGIP skewness and kurtosis measures

26



Abdelall; Asian J. Prob. Stat., vol. 21, no. 2, pp. 22-34, 2023; Article no.AJPAS.96146

2.5 Moments

The r"moment for KGIP random variable X is given by:

s =E(X") = [X" figp (x)dX
Using (7), we have

) aa(i+1)ﬂxaa(i+l)_l

=Yk .
Hy ; |£X (ﬂ+X)aa(l+l)+1

dx,

, after simplification, we obtain

Letz =

X
(B +x)
© 1
po=y aap (i+Dk [z (1-2) " dz,
i=0 0

Using beta function, we get

aapB (i+1)k Blaa(i+1)+rl-r)

NgE

Uy =

Il
o

Bk, Ma ag(;)gi)l)r)(l_ ") _qa(i+l)<r<i

M

I
o

1
where B(c,d) = I 27 (1-2)"tdz = M is the beta function, and T(.) is the gamma function. If ¥
) I(c+d)

is a negative integer, the r'™" moment is obtained as follows:

(~r)!

1= Bk (@a(i+)-1).(aai+)+r)

i=0

The r'™ incomplete moment for KGIP random variable X is then equal to:

W (t) =] X° frgp (X) dx

ot—

:iaaﬁs (i +D)k; B(ﬁ aa(i+1)+s, 1—5), —aa(i+)<r<l, 9)

i=0

X
where B(x,c,d) = J. 2¢(1—2)*"dz is the incomplete beta function. Also, the moment generating function
0

of the proposed distribution is defined as:
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0= |5 = 3 (O Hen0ed s rr)

=

2.6 Order statistic

Taking a simple random sample of size n from KGIP(&) with cdf and pdf  Fy g, {X; &) and fyqp (X E)

given by (3) and (4) respectively. The ordered statistics sample obtained from random sample is
Xy <X , X . - The pdf of the rth order statistic X ., is:

In — 2n—"

e L] o) i B @0

where B(.,.) is the beta function. Since 0 <F(X;&) <1 for x>0, we can use the binomial expansion of

[1— F(x; §)]”_r given as follows

h-Fexo] =§(”i‘r](—1)‘ [Foss). ay
Substituting from (11) into (10), we obtain
o) gy O é);( )(—1)'[F(x;§)]'+. )

Based on (6) and (7), we can write

. 2 (-Dap (([i+r-1))(b(+1)-1 )
f X, F X, i+r-1 — ab (— Xaa(l+l) l. 13
(FMXE) L Bt | &
Inserting (13) in (12), the pdf of X. written as
f.(X,8)= Z Ay | i V/(X,ﬁ)1
k,1,i=0
oot (=) n—r\((i+r-1)\(b(l+1)-1
where @y ;) :gﬁ( i J((H—k )j( ( +| ) ] ,l//(X,Q) denotes the Inverse Pareto

distribution with parameters Qz(aa(l +1), ﬂ). Thus, the pdf of the KGIP order statistics is a linear
combination of the Inverse Pareto density. Also we can define first order statistics
Xin :min(Xl; Xyien Xn), and the last order statisticsas X ., = max(Xl; Xyien Xn).

2.7 Mean deviations

The useful measures of variation for population are mean deviations about mean and median. If the KGIP has
mean (,u) and median (m) the mean deviations about mean and median are respectively, can be defined as:
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D(/u) = Zlu l:KGIP (/u)_ 2 W, KGIP (:u)v and D(m) =H- 2 WlKG|P (m)v
where W, (.) is the first incomplete moment of KGIP obtained from (9) for s =1.
3 Parameter Estimation of KGIP Distribution

Using the maximum likelihood estimation, we derived the estimated parameters of the KGIP distribution. Let
Xy X5,y X, be a random sample from KGIP (5 ) where & = (a b,a,p ) be the vector of the parameters,

the log-likelihood function, ¢ , is given by:

f(ﬁ):nloga+ nlogh + nloga+nIogﬂ+(aa—1)ilog(xi)—(aa+1)zn: log(s + x;)
J . (14)

The score vectorU (é): (8( | 0a,otlob, ol | da., 0010B )T , Where the components to the parameters in & are

+ X

+(b—1)iZ::Iog 1_(,BXI

given by differentiating (14). By setting Z; = X; ([5’ + X )71,

az Iog(zi)

n. < z y
Ua:g+aglog(xi)—aglog(ﬂ+xi)—(b—l); [W} (15)

u, =E+ > log( - 2¢) , (16)
i=1

U =—+a2|og(x) aZIogﬂ+x i[%f?—i(z'r)} 17

i=1
And

n

n n aaz’®
Uﬂ:E—(aa+1)IZl:(,B+x .Z[,Beri)(l—zi“a)] (18)

The maximum likelihood estimates (MLESs) of the unknown parameters are obtained by setting system of non-
linear (15) - (18) equations to zero and solve them simultaneously. From equation (16), The MLE of b can be
rewritten in the closed form as follows

A —

b_n—
> logh— 2]
i=1

: (19)

When estimates (é,&) known. Substituting from (19) into (15), (17), and (18), we get the MLEs (é,&,f}).
These equations cannot be solved analytically and statistical software can be used to solve them simultaneously.
For interval estimation of the parameters, we require the 4x4 observed information matrix J(§)= {Usyt},

29



Abdelall; Asian J. Prob. Stat., vol. 21, no. 2, pp. 22-34, 2023; Article no.AJPAS.96146

where S,t =(a,b,u,[3) given in Appendix A. To construct the approximate confidence intervals for the

A\-1
parameters &,b,«,and £ of the KGIP distribution, the multivariate normal N4(0, J (f) ) distribution can

be used. Here, J(gf)is the total observed information matrix evaluated atf. The asymptoticlOO(l—n)%

confidence intervals for parameters a, b, ,and /3 are respectively given by:

4+2, ,var(a), b+ Z,]/ﬂ/variﬁi, a+Z,,ver(d),and B+ Z,,/ﬂ/vari,éi,

where Z(”/z) is the upper (77/2)lh percentile of the standard normal distribution and the Var(.)'s denote the

~A\-1
diagonal elements of J(gj) corresponding to a, b, o, and ﬂ

4 Simulation Study

Simulation study has been performed for average MLEs, Mean Square Error (MSE), and Bias. The KGIP
random number generation was performed of size n =50(50) 200 for N =1000 replications. The parameter
values used in the data generation processes are followed in Table 1. Bias and MSE are calculated by:

Bias:%z:\;(gi _5) ’ MSE:%Z:\;(& _‘5)2 '

where & = (a, b,a, ﬂ). Simulation results were obtained for several combinations of parameters. Table 1 lists

the means of the MLEs of the four parameters KGIP with respective MSEs, and Biases. It can be illustrated
from table that, the MSEs and Biases decreases for all parameter combinations when sample size increase.

5 Data Analysis

The importance and flexibility of the KGIP distribution can be examined by application to real data set. We
compare the fit of KGIP with some competitive distributions namely: the Kumaraswamy-Pareto (KP),
Exponentiated Pareto (EP), Beta Pareto (BP), and Pareto distributions [4]. The data set correspond to the
exceedances of flood peaks of the Wheaton River near Careross in Yukon Territory, Canada. The data consist of
72 excessdances for the years 1958-1984, rounded to one decimal place. They were analyzed by Choulakian and
Stephens [17] and are listed in Table 2.

In order to compare the distributions, we calculated the MLEs of the parameters, -2 log-likelihood (—2/¢) and
the goodness of fit statistics measures namely: Akaike Information Criteria (AIC), and Bayesian Information
Criteria(BIC), Consistent Akaike Information Criteria (CAIC), and Kolmogorov-Smirnov statistic (K-S) for all
distributions and listed in Table 3. The KGIP distribution has the lowest AIC, CAIC, BIC and K-S among all the
fitted other distributions. All required computations are performed using Mathcad package. From the results, the
proposed distribution is the best model under these data than other competitive distributions.
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Table 1. Mean estimates, corresponding MSE and Bias of the MLE of (a, b, a, ,B)

Actual Values n Mean Bias MSE
(@) (b) (&) (B) (€)) (b) (&) (B) (@) (b) (&) (B)

a=0.5 50 0.734 1.955 2.158 0.509 0.234 1.455 0.668 0.093 0.055 2.122 0.437 0.00014
b=05 100 0.716 1.887 2.160 0.511 0.216 1.387 0.650 0.017 0.047 1.924 0.436 0.00013
o =15 150 0.714 1.861 2.140 0.510 0.213 1.361 0.640 0.011 0.046 1.853 0.410 0.00012
,3 —05 200 0.707 1.848 2.130 0.509 0.207 1.348 0.631 0.010 0.043 1.818 0.395 0.00012
a=0.5 50 1.249 1.955 1.250 0.509 0.749 0.455 0.750 0.093 0.561 0.212 0.562 0.00015
b=15 100 1.236 1.885 1.237 0.511 0.736 0.387 0.737 0.018 0.542 0.150 0.543 0.00014
o =05 150 1.232 1.860 1.233 0.511 0.732 0.361 0.733 0.015 0.536 0.131 0.537 0.00013
,3 —05 200 1.229 1.848 1.229 0.510 0.728 0.348 0.729 0.012 0.531 0.121 0.532 0.00012
a=0.5 50 1.249 1.955 1.249 0.509 0.749 1.455 0.749 0.009 0.562 2.122 0.561 0.00015
b=05 100 1.236 1.887 1.237 0.510 0.736 1.387 0.737 0.016 0.542 1.924 0.543 0.00014
o =05 150 1.232 1.861 1.233 0.510 0.732 1.361 0.733 0.014 0.537 1.853 0.536 0.00012
,3 =05 200 1.229 1.848 1.229 0.509 0.729 1.348 0.729 0.011 0.531 1.818 0.532 0.00011
a=0.5 50 0.721 1.955 2.163 0.509 0.221 0.455 0.663 0.093 0.049 0.212 0.441 0.00015
b=15 100 0.714 1.887 2.142 0.511 0.214 0.387 0.642 0.018 0.046 0.150 0.412 0.00014
o =15 150 0.712 1.861 2.135 0.510 0.212 0.361 0.635 0.011 0.045 0.131 0.403 0.00013
,3 —05 200 0.710 1.848 2.129 0.510 0.210 0.348 0.629 0.014 0.044 0.121 0.395 0.00012
a=05 50 0.703 2.507 2.011 0.777 0.203 1.007 0.511 -0.023 0.041 1.023 0.262 0.00063
b=15 100 0.693 2.424 2.002 0.776 0.193 0.924 0.508 -0.024 0.037 0.856 0.259 0.00059
o =15 150 0.687 2.395 2.008 0.776 0.187 0.895 0.505 -0.024 0.035 0.801 0.257 0.00052
’3 —0.8 200 0.685 2.382 2.005 0.776 0.185 0.882 0.502 -0.025 0.034 0.778 0.255 0.00051
a=05 50 0.608 3.991 1.874 1.873 0.114 2.684 0.386 -0.124 0.013 6.211 0.149 0.018
b=15 100 0.614 4.184 1.882 1.876 0.108 2.491 0.384 -0.127 0.012 6.010 0.147 0.017
o =15 150 0.603 3.931 1.883 1.870 0.103 2.431 0.383 -0.131 0.011 5.912 0.146 0.016
’3 =2 200 0.601 3.908 1.886 1.870 0.101 2.408 0.374 -0.133 0.010 5.800 0.144 0.014
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Table 2. Exceedances of Wheaton River flood data

1.7 2.2 14.4 11 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3
1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6
0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 11 0.6
9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6
5.6 30.8 13.3 4.2 25.5 3.4 11.9 215 27.6 36.4 2.7 64.0
1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 275 2.5 27.0
Table 3. MLEs,-2log-likelihood, AIC, CAIC, and K-S

Model a b o Jij -2/ AlC BIC CAIC K-S
Pareto 1 1 0.2438 0.1 606.2 608.2 610.4 608.2 0.332
EP 2.8797 1 0.4241 0.1 574.6 578.6 583.2 578.8 0.198
BP 3.1473 85.7508 0.0088 0.1 567.4 573.4 580.3 573.8 0.174
KP 2.8553 85.8468 0.0528 0.1 542.4 548.4 555.3 548.8 0.170
KGIP 1.112 2.712 0.865 2.191 507.7 515.8 524.9 516.4 0.168

6 Conclusion

In this article, we introduce a new generalization of the inverse Pareto distribution, termed as KGIP distribution,
which can be quite flexible in analyzing real data in different fields. Study several statistical properties of the
proposed distribution. Maximum likelihood estimation has been used to estimate the model parameters. The
simulation study is used to assess the performance of the estimated parameters. The applicability of the
proposed distribution is examined by applying to a real data set. The KGIP distribution provides better fit than
other compared distributions.
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Appendix A

Elements of the information matrix J (§)= {US’t } where S, t = (a b,a,pB )are given by:

o =508 | |

olem]l
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where Z, = X; (,8 + X; )71.
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