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ABSTRACT 
 

In this presented work, a facile and efficient method was established for the detection of 
chloramphenicol (CAP) based on target-induced structure transformation of aptamer. This aptamer 
DNA with a hairpin structure can coincidentally serve as a template for the synthesis of bright silver 
nanoclusters (quantum yield 16.36%). The binding of CAP with aptamer DNA could cause the 
destruction of the hairpin structure, resulting in the quenching of the fluorescence of silver 
nanoclusters (AgNCs). It costs less than 10 minutes to complete the assay, and excellent 
sensitivity was achieved with detection limit of 0.052 nmol/L. The selectivity and recovery 
experiments also demonstrated satisfactory results of this proposed protocol. The method has 
potential applicability, and provides a new strategy for the development of label-free sensors based 
on aptamer and AgNCs. 
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1. INTRODUCTION 
 

Antibiotics are widely used worldwide as 
antimicrobial drugs to treat diseases and 
promote animal growth. In recent years, food 
safety problems have been exposed continuously, 
and the current situation of food safety has 
become the focus of more and more people's 
attention. The overuse of antibiotics has   
become one of the biggest problems in the world. 
The abuse of antibiotics, which is an important 
reason of microbial antibiotic resistance [1,2], 
has led to many diseases, such as acute 
appendicitis, pediatric otitis media, and skin 
diseases, thatt are difficult to be cured. There is a 
case of antibiotics overuse in the adult urinary 
system that most of survey population had been 
treated with antibiotics and the anti-infection 
effect was not significantly improved [3-11]. The 
overuse of antibiotic treatment also has harmful 
effect on evolution and ecological environment. 
Most antibiotics ingested by humans and 
livestock are excreted into nature and thus 
increase the rate of mutation, recombination, etc., 
in all microbiome. For example, the overuse of 
antibiotics in the aquaculture industry is 
inevitable, and the associated antibiotic 
contamination and resistance pose an enormous 
threat to the ecosystem [12-15]. At the same time, 
a large number of antibiotics were injected into 
seawater, which greatly reduced the water quality 
of fishery resources and damaged the marine 
ecological environment. Therefore, it is very 
necessary and important to detect antibiotic 
residue in food.  Now, many standard test 
methods such as    high-performance liquid 
chromatography, gas chromatography-mass 
spectrometry, inductively coupled plasma mass 
spectrometry, liquid chromatography-mass 
spectrometry and chemiluminescence         
enzyme-linked immunosorbent [16-34] are 
accurate, the operations of those methods are 
cumbersome and expensive, Therefore, to 
develop simple, friendly economic, portable 
substitutes for determination of CAP is necessary 
[35-37]. 

Aptamers are double-stranded DNA or single-
stranded RNA molecules that bind specific 
molecular targets [38]. Its function is similar to 
the antibody, and has many advantages, such as 
specificity, good affinity, simple synthesis method, 
good stability, easy modification, A wide range of 
target species, repeatable use. Therefore, the 
nucleic acid aptamer analysis was used in all 
kinds of tests, such as colorimetric analysis, 
chromatographic analysis, electrochemical 
sensors, biological imaging [39-42] and other 
areas of the application. Zhou et al. [43] 
developed a new type of unlabeled aptamer 
microfluidic electrophoresis (MCE) equipment for 
automatic detection of antibiotic residues, 
aptamer captured CAP and the whole system 
contained the partial complementary 
oligonucleotide of aptamer, which detected by 
MCE platform that can produce different 
fluorescence signals. This measure owned many 
benefits, such as MCE was a good equipment, 
the detection time was short and the process 
was easy. Chen et al. [44] established a new 
electrochemical aptamer sensor to detect 
different antibiotics synchronously, the nanoscale 
metal organic framework (NMOF), which was 
used to take multiple metal ions, was connected 
with Kanamycin and CAP’s complementary DNA 
series of aptamers to obtain two signals. Square 
wave voltammetry can detect the NMOFs when 
antibiotics connected with aptamers. This 
method owned many merits, including the high 
sensitivity and excellent selectivity. However, all 
of these methods require labeling process, which 
were expensive and cumbersome. 
 

Metal nanocluster (MNC) is an excellent 
fluorescent nanomaterial, which refer to the 
nanomaterials that can produce fluorescence by 
absorbing energy and releasing it in the form of 
radiation transition [45-49]. Compared with dyes 
and quantum dots, MNC including AuNCs, 
AgNCs, CuNCs, and PtNCs, which have been 
widely synthesized and characterized, has many 
advantages, for example small size, good 
dispersion, good photobleaching resistance, high 
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light absorption coefficient, and low cytotoxicity 
[50-57]. AgNCs is a kind of metal nanoclusters 
that have been widely studied. As a kind of 
precious metal, silver has similar properties to 
gold, and the price of silver is relatively cheap 
and easier to obtain. Compared with CuNCs, 
AgNCs has better stability. Moreover, 
conventional probes need to be functional 
modification and purified, which greatly increases 
the preparation time of materials and the cost of 
probe synthesis, nevertheless, the synthesis of 
AgNCs does not require covalent modification 
process. 
 

As a kind of label-free signal reporter, DNA-
templated silver nanoclusters (DNA-AgNCs) 
have gained great attention in the development 
of biosensors. The advantages of AgNCs include 
low cost, no chemical modification and link, easy 
realization of multi-signal output, simple 
synthesis method, strong photobleaching 
resistance, high fluorescence quantum yield, low 
toxicity and good biocompatibility [58-60]. The 
syntheses of AgNCs using DNAs as templates 
endow the DNA-AgNCs with inherent recognition 
function of DNA or aptamer. For instance, Shen 
et al. [61] proposed an unlabeled DNA detection 
method based on EXO-III assisted amplification 
and DNA hairpin -AgNCs with high quantum yield. 
Xu et al. [62] coupled DNA-AgNCs with target 
recirculation amplification assisted by nucleic 
acid exonuclease III, and designed a new 
unlabeled fluorescence detection method. Shen 
et al. [63] first obtained spring green luminescent 
AgNCs by using the "lightbulb" DNA structure as 
a synthesis template. This method had many 
advantages, for example, none of chemical 
modification, low cost of probe preparation, and 
high flexibility of method design. 
 

In our work, we found that the CAP aptamer DNA 
with stem-loop structure can be synthesized 
AgNCs and the combination of CAP and its 
aptamer can influence the fluorescence intensity. 
After synthesis, the fluorescence signal of AgNCs 
was significantly enhanced. After the addition of 
CAP, the AgNCs was destroyed by the 
combination of CAP and its aptamer, and the 
fluorescence was significantly weakened. Based 
on these, a promising aptamer method for 
nucleic acid was developed and could be applied 
in raw milk. 
 

2. MATERIALS AND METHODS 
 

2.1 Reagents 
 

All nucleic acid sequences displayed in Table S1 
were synthesized by Sangon Biotechnology Co., 

Ltd (Shanghai, China). The stock solution of 
DNA/RNA was prepared in ultrapure water and 
accurately quantified based on the UV 
absorbance at a wavelength of 260 nm. The 
buffer solutions for all experiments were 1 × TAE, 
1 × TBE, 1 × TE, 1 × PB, 1 × PBS. All other 
chemicals were purchased from Sinopharm 
Chemical Reagent Co., Ltd. (Shanghai, China), 
and used without further purification. The 
ultrapure water used was purified by a Milli-Q 
A10 filtration system (18.2 MU cm). All solutions 
were prepared using distilled water and stored at 
4°C before use. 
 

2.2 Reaction 
 
The concentration of CAP aptamer was 
accurately quantified by measuring the 
absorbance at 260 nm, and the DNA-AgNCs was 
synthesized. The total reaction system was 200 
uL, including 10 uL of CAP aptamer, 165 uL of 
ultrapure water, 20 uL of buffer solution, 3 uL of 
silver nitrate and 2 uL of sodium borohydride. 
The fluorescence was measured after 9 hours of 
reaction at room temperature [64-66]. 
 

2.3 Detection of CAP 
 
In the sensor detection, the pre-configured CAP 
solution was added into the above reaction 
system and the concentration of CAP in the final 
system was 0 nmol/L, 0.5 nmol/L, 1 nmol/L, 2 
nmol/L, 4 nmol/L, 8 nmol/L, 10 nmol/L, 12 nmol/L, 
14 nmol/L, 18 nmol/L, 20 nmol/L, 40 nmol/L, 80 
nmol/L, 100 nmol/L. The total system was fully 
shaken for 1minute to make it evenly mixed and 
placed in a dark place at room temperature. 
Using the above testing steps, the antibiotics, 
which reacted with DNA-AgNCs, were changed 
from CAP to kanamycin, gamithromycin, 
bleomycin, streptomycin, oxytetracycline, and 
penicillin respectively. The results were 
compared with those of CAP results to evaluate 
the selectivity of the probe. CAP or other 
antibiotics with a final concentration of 10nmol/L 
were used in both optimization and selectivity 
experiments. In addition, the sequence with 
similar CAP aptamer was used to determine 
whether CAP reacted with its aptamer to reduce 
the fluorescence intensity. The fluorescence was 
measured after 0.5 hour. 
 

2.4 Detection of CAP in Milk 
 
First, 4.0 mL raw milk was put into a 15 mL 
centrifuge tube, diluted to 10 mL, and 10% 
trichloroacetic acid and chloroform mixed 
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solution was added to 2.0 mL, and the protein 
was vortex stirred for 1 min to precipitate in the 
sample matrix. The mixture was ultrasound 
treated at 20 ℃ for 15 minutes and centrifuged at 
5000 rpm for 10 minutes to separate the 
sediment. Secondly, the supernatant was 
transferred to another centrifuge tube. After 
centrifugation at 5000 rpm for 10 minutes, 
precipitation was removed again and detected 
with the final solution. 
 

2.5 Measurements 
 

The absorption of DNA-AgNCs solution at 260 
nm was recorded on Eppendorf Ag 22331 
Humburg (Germany). All fluorescence 
measurements were performed on a 
fluorescence spectrophotometer (f-4600, Hitachi, 
Japan). The xenon lamp was used as the 
excitation source, and a quartz fluorescent cup 
with an optical path length of 1.0 cm was used. 
The fluorescence intensity was measured at 
room temperature. According to the repeated 
quantification, the excitation wavelength was set 
at 442 nm and the recording emission range was 
470-600 nm. The excitation and emission 
bandwidth were set at 10 nm, and the maximum 
fluorescence emission spectrum was 520 nm. 
Before each measurement, clean the reaction 
cup with 70% ethanol and ultrapure water for 
three times. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Principle 
 

The enormous DNA templates of different 
sequences and structures, such as single-
stranded DNA (ssDNA), double-stranded DNA 

(dsDNA), triplex DNA, DNA hairpin etc., were 
used to synthesize versatile DNA-AgNCs. Among 
the templates, what the most used template was 
DNA hairpin because of its simple secondary 
structure yet efficient encapsulation of AgNCs. 
For instance, Oneill P R et al. [67] studied the 
relationship between the structure of hairpin 
AgNCs and fluorescence signal by using the ring 
containing 3-12 cytosines (C). The results 
showed that almost all C-ring hairpins had 
obvious fluorescence peaks, and their 
wavelength and intensity varied with the number 
of C-bases in the ring. Gwinn et al. [68] studied 
the DNA hairpin structures containing different 
base pairs of stems and rings. They studied four 
kinds of base (C/T/G/A) hairpins, and the results 
showed that the C-loop hairpins had the highest 
fluorescence intensity. In our design, as shown in 
Fig. 1, in the absence of CAP, DNA has a loop 
circular structure. AgNCs are introduced to form 
DNA-AgNCs at the circular structure to increase 
the fluorescence signal. When CAP was 
introduced, CAP combined with its aptamer, 
which destroyed the structure of DNA-AgNCs 
and reduced the fluorescence intensity. The 
initial system consisted of 100 nmol/L CAP 
aptamer sequence, 3 mmol/L silver nitrate and 3 
mmol/L sodium borohydride. As shown in picture, 
it was found to be stable (maximum fluorescence 
intensity state) in the absence of CAP (black line). 
However, when CAP (2 uL) was added to the 
system, the fluorescence intensity decreased 
significantly (red line). The addition of 10 nmol/L 
CAP can quench about half of the maximum 
fluorescence and the reaction efficiency                   
is very high. Therefore, it is the introduction of 
CAP that leads to the decrease of fluorescence 
signal.

 

 
 
Fig. 1. Schematic diagram of nucleic acid sensor detecting CAP. Feasibility of the system. The 

fluorescence emission spectra of 0 nmol/L CAP (black line), 10 nmol/L CAP (red line) 
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In order to further verify the feasibility of the 
method, a series of control experiments are 
carried out, and the results are shown in Fig. S1 
(a) of SI. First, C6G5C6 (prove sequence) was 
used to see whether it was a non-specific 
quenching mechanism or not, and it was found 
that there was indeed a little quenching. Then the 
aptamer was modified and still able to synthesize 
AgNCs, but perhaps unable to interact with CAP 
because the signal was found to decrease 
slightly. Therefore, it shows that the quenching 
mechanism has both aptamer-specific and non-
specific characteristics. 
 

Quantum dots or carbon dots detect CAP based 
on the electron absorption quenching of CAP. 
With CAP as the target molecule, carbon spot 
(CDs) as the fluorescence detection probe, and 
molecularly imprinted polymer (MIP) as the 
selective enrichment container, Chen et al. [69] 
designed a molecularly imprinted fluorescence 
sensor based on carbon point, which can be 
used for the specific detection of CAP in food 
system. Li et al. [70] established a fluorescence 
detection sensor based on the fluorescence 
quenching of soybean protein gold nanoclusters 
(SP-AuNCs) by CAP. These methods are not 
selective for similar substances because they are 
based on positive and negative electron 
interactions or rich electron group-electron 
absorption group interactions. To verify the 
principle of our scheme again, we synthesized 
AgNCs using two non-aptamer DNA templates 
and detected CAP. The results were shown in Fig. 
S1 (b,c) of SI that the fluorescence intensity was 
significantly reduced only when the original CAP 
aptamer sequence was added, indicating that the 
target sequence was easy to react with CAP, 
leading to the dissolution of a large number of 
DNA-AgNCs. However, the other sequences 
could not react with CAP, and the fluorescence 
intensity did not change significantly, indicating 
that the modified base sequences destroyed the 
original configuration of CAP binding. DNA can 
form some special secondary structures that 
serve as templates for the synthesis of AgNCs, 
the fluorescence properties of AgNCs are closely 
related to the secondary structure of DNA [71-79]. 
Gwinn et al. [68] studied the difference between 
single-stranded DNA and hairpin DNA used to 
synthesize AgNCs, and found that the Hairpin 
structure synthesis with C ring AgNCs have the 
greatest fluorescence intensity. Li et al. [80] 
found that the base pairs in double chain, other 
than the ring area, also helps the formation of 
AgNCs. As seen from Fig. S1 of SI, the modified 

CAP aptamer could not bind to CAP, resulting in 
an insignificant decrease in fluorescence. 
Therefore, the DNA-AgNCs structure was not 
changed at this time. However, the unmodified 
CAP aptamer can combine with CAP and its 
fluorescence decreases significantly. At this time, 
the combination of CAP and its aptamer leads to 
the change of the original structure and the 
release of a large amount of Ag

+
, because the 

existence of the ring has the role of protecting 
AgNCs [80]. The results showed that the 
conformation of CAP aptamer was changed after 
the reaction. 

 
3.2 Optimization of Experimental 

Conditions 
 
For the whole aptamer reaction, the main 
influencing factors include buffer, pH, the 
concentration ratio of silver nitrate to DNA, 
reaction temperature and reaction time.  

 
Different concentrations of silver nitrate can lead 
to different fluorescence signals, for example, a 
low concentration may lead to low fluorescence 
signal after synthesis, while a high concentration 
may lead to the decrease of fluorescence 
intensity due to metal ion quenching. Therefore, 
it is very important to optimize the concentration 
ratio, which is the key to ensure aptamer reaction. 
When different amounts of silver nitrate solution 
were added, the fluorescence intensity was 
measured after the reaction was fully carried out 
at room temperature. As shown in Fig. 2(a), the 
fluorescence intensity increased with the 
concentration ratio of silver nitrate to DNA. 
However, when the ratio of silver nitrate to DNA 
reached 9:1, the fluorescence intensity reached 
the maximum, that is, the reaction reached the 
maximum fluorescence intensity. Therefore, the 
ratio of silver nitrate to DNA was 9:1 to start the 
following reaction. 

 
Different reaction time can produce different 
fluorescent signals. A long or a short reaction 
time can affect the experiment. Therefore, 
optimization of reaction time is also a key factor. 
As we can be seen from the Fig. 2(b), after 
adding different concentrations of CAP solutions 
to the DNA-AgNCs system, a rapid reaction 
occurred immediately. The reaction in the 600 
seconds tended to be stable. Therefore, the 
optimal response time under this system is 10 
minutes. Therefore, we can obtain the rapid 
detection time of CAP. 
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Fig. 2. Optimization of experimental conditions. (a) Evaluation of the effect of the 
concentration ratio of silver nitrate to DNA (The ratios of black, pink, red and blue line are 3:1, 
6:1, 9:1 and 12:1 respectively). (b) Optimization of time (The CAP concentrations of blue, red 

and black line are 1 nmol/L, 20 nmol/L and 100 nmol/L respectively) 
 
In order to improve the detection sensitivity and 
experimental efficiency, the buffer and pH are 
optimized because different buffer and pH can 
lead to different fluorescence signals. To study 
the effect of buffer and pH (Fig. 3), the method is 
to synthesize DNA-AgNCs with different buffer 
and pH, record the fluorescence signal intensity, 
and then add CAP to detect the fluorescence 
signal intensity again. The fluorescence intensity 
of the synthesized DNA-AgNCs was affected by 
different buffers and pH values, optimization of 
DNA-AgNCs synthesis conditions is beneficial to 
improve the detection output signal. As seen 
from Fig. 3, the synthetic fluorescence intensity 
of DNA-AgNCs using PBS buffer was higher than 
that of other buffers. Therefore, the fluorescence 
intensity may be caused by DNA - AgNCs 
synthesis conditions. The most likely reason is 
that the influence of the buffer, TE, TBE and TAE 
contain a lot of Cl

-
, which affects the synthesis of 

DNA-AgNCs, because too much Cl- combine 

with Ag
+
 to form AgCl2 [81]. Under alkaline or 

acidic conditions, the fluorescence properties of 
DNA-AgNCs are easily affected [82]. For one 
thing, under low pH conditions, the protonation of 
DNA bases weakens the interaction between C 
base and Ag

+
, which is not conducive to the 

formation of DNA-AgNCs. For another, under the 
condition of high pH conditions, the concentration 
of Ag+ may be reduced due to the interaction 
between Ag

+
 and the phosphate group on DNA, 

and the interaction between C-Ag+-C is 
weakened, which is not conducive to the 
formation of DNA-AgNCs, thus leading to the 
decrease of fluorescence intensity of DNA-
AgNCs [83-85]. The results showed that the 
optimum reaction condition was PBS (1) pH 6.5 
at room temperature. In conclusion, the optimal 
operating conditions for this test: PBS (1) buffer 
with pH6.5, the concentration ratio of AgNO3 / 
DNA is 9:1, and the reaction time can be 
shortened to 10 minutes. 

 

 
 

Fig. 3. Optimization of experimental conditions. (a) Evaluation of the effect of the different 
buffer solutions. (b) The evaluation effect of pH 
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3.3 Sensitivity and Specificity Investiga-
tion for the Assay 

 

The relative fluorescence intensity (IF = (F0 -F) / 
F0) was regarded as a coordinate to represent 
the optimization result, where F and F0 represent 
the fluorescence intensity in the presence and 
absence of CAP respectively. Under the 
optimized conditions, CAP with different 
concentrations from 0.5 to 100 nmol/L was 
detected. As shown in Fig. 4(a), with the increase 
of CAP concentration, the fluorescence intensity 
of the reaction system decreased significantly. 
This indicates that the AgNCs is destroyed 
gradually with the increase of CAP concentration 
and the combination of CAP and its aptamer. In 
addition, as shown in Fig. 4(b), the fluorescence 
changes showed a significant linear correlation 
(R

2
 = 0.997). The regression equation is y = 

0.02867x + 0.15709, and the detection limit (LOD) 
is 0.052 nmol/L (3S / K, S is the standard 
deviation of blank sample, and K is the slope of 
linear calibration curve), which means that about 
52 pmol/L of CAP can be detected in 1 mL 
detection system. Compared with the existing 
aptamer detection methods, this method has 
similar detection limit, simple reaction process 
and simple sequence design. In fact, this method 
needs further improvement, especially compared 

with the electrochemical nucleic acid sensor, the 
electrochemical nucleic acid sensor has lower 
background signal, more sensitive and better 
stability. Therefore, this method has a good 
application prospect on electrochemical platform. 
 
In addition, the target DNA and different 
antibiotics (Gamithromycin, Oxytetracycline, 
Penicillin, Bleomycin, Kanamycin, Streptomycin) 
were detected with the same selectivity (Fig. 5). 
The results showed that the target DNA and CAP 
have specific binding capacity, because only 
CAP can cause the change of target DNA 
conformation, while any other antibiotics could 
not bind to the target DNA. Therefore, the 
method showed acceptable performance in the 
detection of antibiotic specificity. 

 
In order to verify the accuracy and reliability of 
this method, the recovery tests of CAP with 
different concentrations (1 nmol/L, 10 nmol/L, 20 
nmol/L) were carried out. Considering the 
practicability of this method in complex samples, 
milk was selected as substrate. As shown in 
Table 1, the recovery rate of CAP in milk was 
between 84.01% and 102.90%, indicating that 
the method has good accuracy and can be used 
for the detection of actual samples. 

 

 
 

Fig. 4. Sensitivity of the reaction. (a) Fluorescence emission spectra (0.5-100 nmol/L). (b) 
Relative fluorescence intensity (IF) corresponding to different concentrations of target DNA. 

Inset: linear range between IF and target concentration (0.5-20 nmol/L) 
 

Table 1. Recovery analysis of target DNA 
 

Group Additive amount
（nmol/L） 

Recovery rate（%） RSD（n=3）（%） 

Control 0 - - 
Label a 1 84.01 5.34 
Label b 10 101.15 1.72 
Label c 20 102.90 5.38 
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Fig. 5. Selectivity assessment of the proposed method. Selectivity toward different antibiotics 

(The concentrations of different antibiotics are 10 nmol/L) 
 

4. CONCLUSION AND FUTURE 
PERSPECTIVES 

 
In conclusion, a novel fluorescent sensor based 
on aptamer was established to detect antibiotics. 
The strategy is based on the employment of CAP 
aptamer sequence for the synthesis of DNA-
AgNCs. After adding CAP, a series of reactions 
are carried out to realize specific detection. The 
method does not contain any enzymes. The 
aptamer sequence is simple, accessible, and can 
be detected conveniently at room temperature. 
The detection limit is 0.052 nmol/L, which is low 
enough to meet China National Standard 0.1 
ug/kg. The standard material for quantum yield 
measurement was rhodamine 6G, and the 
quantum yield was 16.36%. Moreover, compared 
with other CAP aptamer detection methods, the 
stability of this method still needs to be improved. 
Due to excellent fluorescent properties, DNA - 
AgNCs can be used as a fluorescence molecular 
probe to build biological sensors used in food 
analysis and detection, including bacterial, virus, 
heavy metal, biological toxins, Farmers additives, 
and illegal veterinary drug residue. Zhang et al. 
[86] used salmonella aptamer sequences and 
hairpin DNA template sequences, combining 
chain displacement amplification, to design a 
label-free fluorescence detection method for 
salmonella. Chen et al. [87] developed a 
detection of fluorescence signal biosensor based 
on DNA-AgNCs, using ochratoxin A aptamer and 
magnetic bead structure transformation of 
ochratoxin A. Chen et al. [88] proposed to 

combine the malathion aptamer with the C rich 
sequence used for the synthesis of AgNCs as a 
probe, when malathion bind to aptamer, the 
space conformation probe changed and the color 
of solution turned brown, which can be used in 
detection of malathion. Dong et al. [89] used 
oligonucleotides with two structural domains, one 
of them can form AgNCs, another was aptamer 
having affinity for cocaine. In the absence of 
cocaine, the fluorescence of AgNCs was low, 
while in the presence of cocaine, the 
fluorescence was high. At present, the most 
important application of our design is detecting 
CAP. Based on the above designs, our plan will 
combine more strategies, having a wider range 
of application in the future. It is expected to 
achieve better results when combined with other 
strategies, such as electrochemical adapter 
sensor [90,91], colorimetric aptamer sensor [92-
99], strand displacement amplification reaction 
(SDA) [100-102], hybridization chain reaction 
(HCR) [103-106] and catalyzed hairpin assembly 
(CHA) [107-109]. In addition, through the 
recovery test in milk, the practicability was 
verified successfully. The experimental results 
show that this method provides valuable 
information for the study of aptamer fluorescent 
sensor for the detection of antibiotics. 
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