

Journal of Pharmaceutical Research International

33(43A): 103-116, 2021; Article no.JPRI.72788

ISSN: 2456-9119

(Past name: British Journal of Pharmaceutical Research, Past ISSN: 2231-2919,

NLM ID: 101631759)

Psychological Wellbeing and Personal Coping Strategies during COVID-19 Lockdown: An Empirical Study

Swati Bajpai¹ and Swati Vispute^{1*}

¹Symbiosis Institute of Management Studies, Symbiosis International (Deemed University), Khadki, Pune, Maharashtra, India.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i43A32471

Editor(s):

(1) Dr. Rafik Karaman, Al-Quds University, Palestine.

(2) Dr. P. Veera Muthumari, V.V. Vanniaperumal College for Women, India.

Reviewers:

(1) Bhagyashree Kar, Nai Subah Institute of Mental Health & Behavioural Sciences, India.
(2) Tundevrentsen Aldarmaa, Mongolian National University of Medical Sciences, Mongolia.

(3) Simo Salminen, University of Helsinki, Finland.

Complete Peer review History: https://www.sdiarticle4.com/review-history/72788

Original Research Article

Received 22 June 2021 Accepted 27 August 2021 Published 04 September 2021

ABSTRACT

This study analyzes the factors affecting psychological wellbeing and personal coping strategies adopted by individuals, "during the lockdown of the COVID-19 pandemic". Ox CAP-MH and Brief COPE was used to develop an online survey. Using the data collected from 351 respondents of the Indian general population, it was found that psychological well-being was affected by activity levels & social involvement; endogenous & exogenous sense of influence; leisure, bias & self worth; adaptability & mindfulness; and mental stress & sleep. Factors associated with personal coping strategies included positive reframing & active coping; defence mechanisms & self-doubt; use of emotional support & planning for the recovery of the pandemic covid-19 by personal coping; substance use & humour; spirituality; persistence threshold; using social support system. Finally result obtained is "the attitude of females and males varies", towards the majority of the factors. The implications theoretically and in practice have been discussed.

Keywords: Pandemic; COVID-19; psychological wellbeing; coping strategies; factor analysis; mental health.

1. INTRODUCTION

According to WHO, "Corona viruses (CoV) are one of the broad family of disease-causing viruses. It causes diseases that vary like Severe Acute Respiratory Syndrome (SARS). General indicators of infection include trouble breathing, fever, and cough [1]. In some cases, it causes shortness of breath, and in more severe cases, respiratory failure, pneumonia, failure of the kidneys, and sometimes death may be triggered by the infection".

In Wuhan, Hubei, China, COVID-19 was initially discovered in December 2019 and has since been an ongoing epidemic. The epidemic was called whose "global emergency".

Around 13.2 million-plus cases have been reported worldwide, as of 15th July 2020. It has also resulted in the death of more than 577,000 people across the world with the recovery of more than 7.37 million people (COVID-19 Dashboard, John Hopkins University, 2020) [2].

The COVID-19 epidemic, which soon arose as a global pandemic is not only a health concern but also a significant cause of worry that is affecting mental stability and "psychological well-being" of many individuals worldwide [3].

While the cases in countries around the world are increasing, the symptoms of anxiety and fear have been triggered, among the masses. The pandemic has caused uncertainty about the future as it has caused economic instability, work losses, financial deprivation, and social alienation within a brief period. The general population is scared and there is apprehension amongst others relating to the health and well-being of themselves and their loved ones [4].

Keeping the emergency in mind, a variety of scientific trials has been carried out around the globe to find a vaccine. However, the effect on psychological health and mental well-being and associated therapies and programs for COVID-19 stay mostly understudied. The recorded rise in mental health problems related to social isolation, physical distance, and quarantine mechanisms render more work crucial in this field to examine, identify, and customize effective therapies systematically.

Therefore, this empirical study aims to add to the current information base by analyzing the factors affecting psychological well-being as well and the personal coping strategies adopted by individuals

in India. The study also aims to analyze "the difference in the attitudes of males and females" towards the same [5].

1.1 Literature Review

Psychological well-being is a part of the overall health and quality of life of an individual. It is evident from the fact that social well being is the impact of mental strength. It further emphasizes that it also means the absence of infirmity or disease. According to WHO, is "the perception of an individual of their position in life; about their concerns, expectations, goals, and standards, in the context of value systems and culture surrounding them" [6]. Further, it is stated that "the concept is broad-ranging and is affected in a complex way by the psychological state, social relationships, physical health, and personal beliefs of a person".

Apart from this, Richard Burns has stated psychological well-being as the positive functioning of intra- and inter-individual levels, which may include the aspects of how one is related to others. He further stated that psychological well-being also refers to self-referent attitudes that cover the aspects of the sense of personal growth and mastery of an individual [7].

Several other works have concentrated on disparities in psychological well-being around the board, including gender, social connectedness degrees, individual nature, money spending behaviour [8], levels of income, and age.

Some recent works have also shown a significant and broad variety on society in general and individuals in particular.

adverse psychological The reported consequences involve signs of anger, posttraumatic stress, and confusion [9]. Longer duration of Quarantine, fear of infection, the inadequacy of supplies and information, and loss in terms of finance were some of the stressors mentioned by them regarding the impact of an epidemic outbreak on happiness, concluded that there was a drop of 74% in the overall emotional well-being as the epidemic of coronavirus set its foot in China. In yet another study conducted by for management students of the final year, on psychological well-being; they observed a percentage of 43 for the level of depression among students. Some of the reasons mentioned for the same included revocation of job offers, the downturn of the economy, issues related to

finance, and tension regarding the future. The study [10] shows the association of longer quarantine durations with increased Post Traumatic Stress Disorder symptoms' prevalence.

Moreover, a systematic review health hazards due to covid reveals that 50.4% of healthcare workers showed symptoms of depression. Another 34% of healthcare workers were facing sleep difficulty, while the other 44.6% were experiencing anxiety. Also [11], in their study on mental health and the impact of economic COVID-19 uncertainty during pandemic established that there is a positive relation of economic uncertainty to uncertainty of job and identity disturbance of whereas. psychological well-being, it possesses a negative relationship.

Consequently, this research is carried out based on the factors influencing psychological well-being and personal coping strategies. This study would help in finding out the root cause factors for the negative and positive effects on psychological well-being, as well as the personal coping strategies, which can be utilized to devise therapeutic strategies across the COVID-19 crisis to enhance the mental health of disadvantaged populations.

2. MATERIALS AND METHODS

Data was obtained using the means of Google terms. The questionnaire for psychological well-being was designed using standardized "Oxford Capabilities Questionnaire-Mental Health (Ox CAP-MH)" and for that of personal coping strategies, Brief COPE questionnaire was used; with slight modifications. The modification included the removal of Question no. 7 and 8a of Ox CAP-MH, before the analysis, as they didn't relate to the research topic.

Ox CAP-MH is an index of 16 statements whereby items are ranked on a scale of 1-5.

The first section consisted of Demographic data, followed by Ox CAP-MH in second and third and finally culminating with Brief COPE in the fourth section. The basic demographic data included Employment Status, Age, Gender, Annual Income, Marital Status, Family structure, Accommodation during the lockdown, and City of residence during the lockdown.

The data has been collected from the general population of India, by sending the google form

link through LinkedIn, WhatsApp and email using the method of convenience sampling. The survey comprised 351 respondents, aged between 18 years and 67 year [12].

2.1 Objectives of the Study

- To analyze the factors affecting "psychological well-being" of individuals, during the lockdown of COVID-19 pandemic.
- To analyse the factors affecting personal coping strategies adopted by individuals, during the lockdown of COVID-19 pandemic.
- To find out the factors affecting psychological well-being, during the lockdown of COVID-19 pandemic.
- To find out the attitude of female and male towards the factors affecting personal coping strategies, during the lockdown of "COVID-19 pandemic".

2.2 Hypotheses

For further study the following hypotheses have been developed:

- H01: In the shutdown of the COVID-19 pandemic what terms of the elements that impact psychological wellbeing?
- H11: "The attitude of women and men is significantly different" in the context of psychological variables during the COVID-19 latch.
- H02: "No significant difference in female and male attitudes" in the lockdown of the COVID-19 epidemic regarding the personal coping techniques. H02:
- H12: "The attitude of men and women differs significantly"

3. RESULTS AND DISCUSSION

The data gathered from a total of 351 respondents, which includes 168 females and 183 males are depicted from Tables.

Table 1 and Table 2 show the reliability statistics which refers to a respondent's tendency to respond to an identical or near-identical statement or question in the same or similar manner, in almost similar circumstances [13]. Here, the Cronbach's alpha, which is a mean reliability coefficient, has a satisfactory value of 0.758 for Ox CAP-MH, and for that of Brief COPE it is 0.851, which is quite good.

Table 1. Reliability statistics for Ox CAP-MH

"Reliability Statistics"						
Cronbach's Alpha	No of Items					
0.758	15					

Table 2. Reliability statistics for brief cope

"Reliability Statistics"					
Cronbach's Alpha	N of Items				
.851	28				

Table 3 and Table 4 represent the list of complete statements or questions for which the short names are used in the analysis tables.

The Descriptive statistics reflect the summary statistics for data measures and scale variables. Here, the mean values for the variables of Ox CAP-MH, range from 2.71 to 3.85, and for that of the Brief COPE variables, the mean statistics range from 1.78 to 2.94, as shown by Table 5 And Table 6.

Table 5 show the statistics for figures indicate the proportion of variance as the common variance, for different variables used in the analysis. This can also be stated as the common variance that is attributed to the underlying factors. A strong value of this metric (from 0.5 to 1) suggests the suitability of the "factor analysis" with the data at hand, while a small statistical is inappropriate. Here, the KMO statistic for Ox CAP-MH is computed as 0.797 (Table 7), which is in the middling range, and for that of Brief COPE, it is 0.808 (Table 8), which is in the meritorious range, which shows the adequacy of the sample.

The hypothesis as to whether the matrix for population correlation is the one for identity matrix (Business Research Methods, Pg. 640). Here, the statistic for chi-square approximate is 1923.855 (Table 7) and 5742.743 (Table 8), with 105 (Table 7) and 378 (Table 8) degrees of freedom, respectively, for Ox CAP-MH ((Table 6) and Brief COPE (Table 8) shows relationship among variables chosen for factor analysis". Hence, "factor analysis" is deemed a good methodology for further data analysis.

Table 9 show the Rotated Component Matrix for Ox CAP-MH and Brief Cope, respectively. The columns in this figure show the component-wise distribution of post-rotation factor loading for different variables, for the factor concerned. The Varimax procedure has been used for the

purpose of rotation and a cut-off point of 0.5 has been decided, to interpret the results. Therefore, all the variables having a correlation of 0.5 and above have been included and others with lower correlation have been excluded. It can be observed that- Ox CAP-MH Variable 1 and Ox CAP-MH Variable 2 have high loadings on Factor 1. Ox CAP-MH Variable 9a, Ox CAP-MH Variable 9e, Ox CAP-MH Variable 9f, and Ox CAP-MH Variable 9g have high loadings on Factor 2. Similarly, Ox CAP-MH Variable 4, Ox CAP-MH Variable 8, and Ox CAP-MH Variable 9h have high loadings on Factor 3. Ox CAP-MH Variable 5 and Ox CAP-MH is Variable 9c.

As depicted from Tables that- Variable Brief COPE 1, Variable Brief COPE 7, Variable Brief COPE 10, Variable Brief COPE 12, and Variable Brief COPE 20 have high loadings on Factor 1. Variable Brief COPE 6, Variable Brief COPE 8, Variable Brief COPE 9, Variable Brief COPE 13, and Variable Brief COPE 26 have high loadings on Factor 2. Variable Brief COPE 5, Variable Brief COPE 14, Variable Brief COPE 15, and Variable Brief COPE 25 have high loadings on Factor 3. Variable Brief COPE 11, Variable Brief COPE 21, and Variable Brief COPE 28 have high loadings on Factor 4. Variable Brief COPE 22, and Variable Brief COPE 27 have high loadings on Factor 5. Variable Brief COPE 2, and Variable Brief COPE 16 have high loadings on Factor 6. Variable Brief COPE 23 has high loading on Factor7 [14].

In table 10, the variables obtained from the Rotated Component Matrix are listed under each of their respective derived components, and the Factors are labelled depending on the variables within each component. Therefore, the factors affecting the Lockdown of are Similarly, the factors affecting the Personal Coping Strategies, during the Lockdown of COVID-19 Pandemic are (Table 11)- 1)Positive Reframing and Active Coping, 2)Defence Mechanisms and self-doubt, 3)Use of Emotional Support and Planning, 4)Substance Use and Humour, 5)Spirituality, 6)Persistence Threshold, 7)Using Social Support System.

Table 12 represent the statistics for "independent sample t-Test" for 2 separate groups of gender viz. female and male.

As shown in Table 12, the Sig. for some of the variables. Therefore, we can conclude that there is a significant difference in the attitude of female and male towards COVID-19 pandemic, with respect to the following variables-

Table 3. Ox CAP-MH statements with their short names

Question	Name given during analysis
9b) "I am free to express my views, including political and religious views". (DURING LOCK-DOWN)	9b) Ox CAP-MH Variable 9b
9c) "I am able to appreciate and value plants, animals and the world of nature". (DURING LOCK-DOWN)	9c) Ox CAP-MH Variable 9c
9d) "I will respect value and appreciate people around me". (DURING LOCK-DOWN)	9d) Ox CAP-MH Variable 9d
9e) "I find it easy to enjoy the love, care and support of my family and/or friends". (DURING LOCK-DOWN)	9e) Ox CAP-MH Variable 9e
9f) "I am free to decide for myself how to live my life". (DURING LOCK-DOWN)	9f) Ox CAP-MH Variable 9f
9g) "I am able to use my imagination and to express myself creatively (e.g. through art, literature, music, etc.)". (DURING LOCK-DOWN)	9g)Ox CAP-MH Variable 9g
9h) "I have access to interesting forms of activity (or employment)". (DURING LOCK-DOWN)	9h)Ox CAP-MH Variable 9h

Table 4. Brief COPE statements with their short names

Question	Name given during analysis
1. "I have been shifting my thoughts away from problems to work or other pursuits."	Brief COPE 1
2. "I've focused on the scenario in which I am doing things."	Brief COPE 2
3. "I said It's not real to me".	Brief COPE 3
4. "To make me feel better, I was taking booze or other medications."	Brief COPE 4
5. "I have received other people's emotional support."	Brief COPE 5
6. "I gave up trying to handle it."	Brief COPE 6
7. "I took steps to try to improve the issue."	Brief COPE 7
8. "I refused to accept it happened."	Brief COPE 8
9. "I spoke things that would allow my uncomfortable emotions to run out."	Brief COPE 9
10. "I've received other people's aid and guidance."	Brief COPE 10
11. "I used booze or other substances to assist me in getting through it."	Brief COPE 11
12. "I tried to perceive things in another light, to make it look more positive."	Brief COPE 12
13. "I criticised myself."	Brief COPE 13
14. "I tried to develop a strategy on what to do."	Brief COPE 14
15. "I was getting somebody's comfort and understanding."	Brief COPE 15
16. "I gave up trying to cope."	Brief COPE 16
17. "In what's occurring, I was seeking for anything positive."	Brief COPE 17
18. "I made jokes on it."	Brief COPE 18
19. "I did less to think of it, such watching movies, TV, reading, fantasising, sleeping or shopping."	Brief COPE 19
20. "I accepted the truth of the happening."	Brief COPE 20
21. "My unfavourable sentiments have been expressed."	Brief COPE 21
22. "In my religion or spiritual faiths I tried to find consolation."	Brief COPE 22
23. "I tried to obtain some other people's opinion or assistance on what to do."	Brief COPE 23
24. "To live with it I have been learning."	Brief COPE 24
25. "What steps I was pondering really hard."	Brief COPE 25
26. "For things that transpired, I was blaming myself."	Brief COPE 26
27. "I prayed or meditated."	Brief COPE 27
28. "The scenario I made fun of."	Brief COPE 28

Table 5. Descriptive statistics for Ox CAP-MH

"Descriptive Statistics"								
	N	Minimum	Maximum	Mean	Std. Deviation	Skewness		
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Erro	
1) Ox CAP-MH Variable 1	351	1	5	3.27	1.297	-0.184	0.13	
2) Ox CAP-MH Variable 2	351	1	5	2.71	1.303	0.256	0.13	
3) Ox CAP-MH Variable 3	351	1	5	3.26	1.141	0.064	0.13	
i) Ox CAP-MH Variable 4	351	1	5	2.99	1.089	0.082	0.13	
5) Ox CAP-MH Variable 5	351	1	5	3.82	1.114	-0.882	0.13	
Ox CAP-MH Variable 6	351	1	5	3.44	1.122	-0.355	0.13	
Ox CAP-MH Variable 8	351	1	5	3.33	1.163	-0.092	0.13	
a) Ox CAP-MH Variable 9a	351	1	5	3.03	1.112	-0.15	0.13	
b) Ox CAP-MH Variable 9b	351	1	5	3.39	1.143	-0.299	0.13	
c) Ox CAP-MH Variable 9c	351	1	5	3.81	1.116	-0.572	0.13	
d) Ox CAP-MH Variable 9d	351	1	5	3.85	1.09	-0.615	0.13	
e) Ox CAP-MH Variable 9e	351	1	5	3.79	1.101	-0.478	0.13	
f) Ox CAP-MH Variable 9f	351	1	5	3.54	1.094	-0.232	0.13	
g)Ox CAP-MH Variable 9g	351	1	5	3.54	1.092	-0.225	0.13	
Ph)Ox CAP-MH Variable 9h	351	1	5	3.41	1.107	-0.191	0.13	
/alid N (list wise)	351							

Table 6. Descriptive statistics for Brief COPE

	"Descriptive Statistics"						
Brief COPE	N	Minimum	Maximum	Mean	Std. Deviation	Skewness	
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error
1	351	1	5	2.83	1.043	114	.130
2	351	1	5	2.77	1.031	004	.130
3	351	1	5	2.22	1.056	.613	.130
4	351	1	5	1.78	1.026	1.313	.130
5	351	1	5	2.61	1.033	.118	.130
6	351	1	5	2.21	1.030	.606	.130
7	351	1	5	2.84	1.042	113	.130
8	351	1	5	2.04	1.042	.812	.130
9	351	1	5	2.41	1.032	.391	.130
10	351	1	5	2.58	1.011	.193	.130
11	351	1	5	1.78	1.017	1.303	.130
12	351	1	5	2.74	1.042	.008	.130
13	351	1	5	2.23	1.044	.592	.130

"Descriptive Statistics"							
Brief COPE	N	Minimum	Maximum	Mean	Std. Deviation	Skewness	
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error
14	351	1	5	2.77	1.068	079	.130
15	351	1	5	2.68	1.021	.134	.130
16	351	1	5	2.15	1.049	.696	.130
17	351	1	5	2.96	.951	427	.130
18	351	1	5	2.35	1.023	.458	.130
19	351	1	5	2.64	1.027	.141	.130
20	351	1	5	2.94	1.053	279	.130
21	351	1	5	2.38	1.043	.256	.130
22	351	1	5	2.45	1.078	.288	.130
23	351	1	5	2.58	1.005	.184	.130
24	351	1	5	2.91	1.005	201	.130
25	351	1	5	2.69	.984	.077	.130
26	351	1	5	1.99	1.035	.934	.130
27	351	1	5	2.54	1.081	.214	.130
28	351	1	5	2.12	1.046	.723	.130
Valid N (list wise)	351						

Table 7. "KMO and Bartlett's" statistics for Brief COPE

KMO and Bartlett's Test		
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.808
Bartlett's Test of Sphericity	Approx. Chi-Square	5742.743
	df	378
	Sig.	.000

Table 8. "Rotated component matrix" for Ox CAP-MH

		Component						
	1	2	3	4	5			
1) Ox CAP-MH Variable 1	.770	.085	.088	.140	.265			
2) Ox CAP-MH Variable 2	832	.016	.095	194	069			
3) Ox CAP-MH Variable 3	.124	.126	027	.219	.867			
4) Ox CAP-MH Variable 4	201	.052	.691	.097	.029			
5) Ox CAP-MH Variable 5	030	011	.284	.768	.164			
6) Ox CAP-MH Variable 6	.438	.127	.285	248	.497			
8) Ox CAP-MH Variable 8	.303	325	.604	.021	.351			
9a) Ox CAP-MH Variable 9a	263	.761	012	.001	.016			
9b) Ox CAP-MH Variable 9b	.421	.427	.499	319	076			
9c) Ox CAP-MH Variable 9c	.334	.281	.028	.709	.018			
9d) Ox CAP-MH Variable 9d	.448	.380	.379	.496	221			
9e) Ox CAP-MH Variable 9e	.293	.595	.073	.440	.289			
9f) Ox CAP-MH Variable 9f	.265	.632	.451	.083	.073			
9g)Ox CAP-MH Variable 9g	.349	.640	028	.371	.143			
9h)Ox CAP-MH Variable 9h	.089	.160	.728	.318	039			

"Extraction Method: Principal Component Analysis; Rotation Method: Varimax with Kaiser Normalization;a. Rotation converged in 17 iterations."

Table 9. "Rotated component matrix" for Brief COPE

	"Rotated Component Matrix ^a "						
Brief COPE		Component					
	1	2	3	4	5	6	7
1	.573	046	.406	033	059	244	161
2	.315	.001	.363	018	.319	.563	077
3	.275	.413	092	.329	.348	431	.091
4	307	.371	.004	.476	.309	158	.456
5	.128	.049	.743	127	.029	.039	.142
6	.065	.795	006	093	.055	093	228
7	.796	043	.150	052	.127	.011	035
8	094	.787	.154	032	.012	166	.161
9	.364	.692	093	.038	.178	065	002
10	.568	.277	.235	127	.201	.265	.147
11	229	.311	215	.698	.251	099	.034
12	.770	091	.176	.133	.150	138	119
13	201	.672	.037	.303	.042	.438	147
14	.485	.217	.610	173	126	.129	006
15	.308	180	.714	.137	.160	188	.034
16	.100	.479	.136	.281	.043	633	156

"Rotated Component Matrix ^a "								
Brief COPE		Component						
	1	2	3	4	5	6	7	
17	.435	324	.492	.096	.294	031	.362	
8	.494	.189	149	.473	319	160	.259	
9	.294	.109	.486	.037	.380	.286	.299	
20	.785	.074	.199	152	.004	.245	.001	
21	.031	169	.281	.627	.102	044	043	
2	.227	.311	030	078	.756	.017	.024	
23	.449	.143	007	.364	.298	157	529	
24	.455	308	.283	.090	.413	.450	.037	
25	.055	021	.795	.100	.065	.209	278	
26	064	.801	125	.127	.079	.002	.137	
27	.003	.047	.170	.114	.819	.061	046	
Brief COPE 28	.000	.045	066	.852	136	.028	056	

"Extraction Method: Principal Component Analysis; Rotation Method: Varimax with Kaiser Normalization; a. Rotation converged in 9 iterations."

Table 10. Factors for personal coping strategies

Factor	Variables Included	Name of the Factor
1	"I've been turning to work or other activities to take my mind off things."	Positive Reframing and Active Coping
	7. "I've been taking action to try to make the situation better."	
	10. "I've been getting help and advice from other people."	
	12. "I've been trying to see it in a different light, to make it seem more positive."	
	20. "I've been accepting the reality of the fact that it has happened."	
2	6. "I've been giving up trying to deal with it."	Defence Mechanisms and self-doubt
	8. "I've been refusing to believe that it has happened."	
	9. "I've been saying things to let my unpleasant feeling escape."	
	13. "I've been criticizing myself."	
	26. "I've been blaming myself for things that happened."	
3	5. "I've been getting emotional support from others."	Use of Emotional Support and Planning
-	14. "I've been trying to come up with a strategy about what to do."	ээээ = ээгрүү э
	15. "I've been getting comfort and understanding from someone."	
	25. "I've been thinking hard about what steps to take."	
4	11. "I've been using alcohol or other drugs to help me get through it."	Substance Use and Humour
•	21. "I've been expressing my negative feelings."	
	28. "I've been making fun of the situation."	
5	22. "I've been trying to find comfort in my religion or spiritual beliefs."	Spirituality
•	27. "I've been praying or meditating."	Spirituality
6	2. "I've been concentrating my efforts on doing something about the situation I'm in."	Persistence Threshold
U	16. "I've been giving up the attempt to cope."	1 dialotation illimitation
7	23. "I've been trying to get advice or help from other people about what to do."	Using Social Support System

Table 11. Independent Sample T-Test for Ox CAP-MH

"Independent Samples Test"										
Equal Variar	nces	Levene's Test for Equality of Variances		t-test for	Equality of M	leans				
		F	Sig.	t	df Si	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
									Lower	Upper
1) Ox CAP-MH Variable 1	assumed	23.293	.000	-9.161	349	.000	-1.142	.125	-1.387	897
	not assumed			-9.051	307.948	.000	-1.142	.126	-1.390	893
2) Ox CAP-MH Variable 2	assumed	57.041	.000	6.291	349	.000	.831	.132	.571	1.091
	not assumed			6.191	289.552	.000	.831	.134	.567	1.096
B) Ox CAP-MH Variable 3	assumed	16.232	.000	-5.992	349	.000	697	.116	926	468
	not assumed			-6.049	342.857	.000	697	.115	923	470
l) Ox CAP-MH Variable 4	assumed	4.005	.046	943	349	.347	110	.116	339	.119
	not assumed			944	347.662	.346	110	.116	338	.119
5) Ox CAP-MH Variable 5	assumed	43.808	.000	.540	349	.590	.064	.119	170	.299
•	not assumed			.551	301.606	.582	.064	.117	165	.294
Ox CAP-MH Variable 6	assumed	3.955	.048	-5.955	349	.000	681	.114	906	456
,	not assumed			-6.004	345.104	.000	681	.113	904	458
Ox CAP-MH Variable 8	assumed	7.234	.007	-3.456	349	.001	423	.122	664	182
,	not assumed			-3.474	348.616	.001	423	.122	662	183
a) Ox CAP-MH Variable 9a	assumed	7.126	.008	602	349	.548	072	.119	305	.162
	not assumed			605	348.572	.546	072	.118	304	.161
9b) Ox CAP-MH Variable 9b	assumed	.022	.882	-3.966	349	.000	475	.120	710	239
5, 5x 5, rands 65	not assumed		.002	-3.956	341.783	.000	475	.120	711	239
c) Ox CAP-MH Variable 9c	assumed	.111	.739	855	349	.393	102	.119	337	.133
	not assumed			856	348.360	.393	102	.119	336	.132
d) Ox CAP-MH Variable 9d	assumed	.106	.745	-3.444	349	.001	395	.115	620	169
a) ex ex a mil valiable ea	not assumed	. 100	10	-3.469	346.420	.001	395	.114	619	171
e) Ox CAP-MH Variable 9e	assumed	3.201	.074	-3.713	349	.000	429	.116	656	202
o, ox or i will valiable be	not assumed	3.201	.017	-3.757	336.108	.000	429	.114	654	204
f) Ox CAP-MH Variable 9f	assumed	2.057	.152	822	349	.412	096	.117	326	.134
1) Ox Oxi -ivii i valiable 91	not assumed	2.001	.102	823	347.897	.411	096	.117	326	.134
g)Ox CAP-MH Variable 9g	assumed	1.462	.227	-3.321	349	.001	382	.115	608	156
by CA CAI -IVII I Valiable by	not assumed	1.402	.441	-3.321	347.883	.001	382	.115	608	156
h)Ox CAP-MH Variable 9h	assumed	18.066	.000	-3.325 .586	347.003 349	.558	.069	.118	006 163	.302
SII)OX CAF-IVID VAIIADIE 911		10.000	.000	.500 .592		.556 .554		.110		.302
	not assumed			.592	342.240	.554	.069	.117	161	.300

Table 12. Independent Sample t-Test for Brief COPE.

	"Independent Samples Test"									
Brief C	OPE Equal variances	Levene's Test for Equality of Variances		t-test fo	r Equality of N	leans				
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Confidence Lower	Interval of the Difference Upper
1	assumed	.034	.854	-1.721	349	.086	191	.111	410	.027
	not assumed			-1.726	348.822	.085	191	.111	409	.027
2	assumed	.055	.814	-2.476	349	.014	271	.109	486	056
	not assumed			-2.482	348.634	.014	271	.109	485	056
3	assumed	35.936	.000	337	349	.737	038	.113	260	.184
	not assumed			341	331.640	.733	038	.112	257	.181
4	assumed	57.974	.000	-1.162	349	.246	127	.110	343	.088
-	not assumed			-1.186	298.690	.236	127	.107	338	.084
5	assumed	14.438	.000	-3.513	349	.001	382	.109	595	168
_	not assumed			-3.561	330.986	.000	382	.107	592	171
6	assumed	70.146	.000	-1.399	349	.163	154	.110	370	.062
_	not assumed			-1.423	314.466	.156	154	.108	366	.059
7	assumed	6.151	.014	-2.450	349	.015	271	.111	488	053
	not assumed	0		-2.478	337.608	.014	271	.109	486	056
3	assumed	87.985	.000	-3.025	349	.003	333	.110	550	117
	not assumed	01.000		-3.085	305.777	.002	333	.108	546	121
9	assumed	29.119	.000	558	349	.577	062	.110	279	.156
•	not assumed			566	333.462	.572	062	.109	276	.153
10	assumed	6.723	.010	-2.198	349	.029	236	.107	447	025
. •	not assumed	020		-2.218	343.259	.027	236	.106	446	027
11	assumed	.188	.665	2.310	349	.021	.250	.108	.037	.462
• •	not assumed	.100	.000	2.293	327.342	.022	.250	.109	.035	.464
12	assumed	8.313	.004	.618	349	.537	.069	.111	150	.288
	not assumed	0.010	.001	.623	347.017	.534	.069	.111	149	.287
13	assumed	7.104	.008	643	349	.521	072	.112	291	.148
. •	not assumed			644	347.672	.520	072	.112	291	.148
14	assumed	4.152	.042	-5.543	349	.000	607	.110	823	392
	not assumed	02	.0.12	-5.598	341.599	.000	607	.108	821	394
15	assumed	3.887	.049	-2.577	349	.010	279	.108	492	066
. •	not assumed	0.00.	.0.10	-2.598	345.217	.010	279	.107	490	068
16	assumed	16.668	.000	852	349	.395	096	.112	316	.125
	not assumed	10.000	.000	855	348.861	.393	096	.112	315	.124
17	assumed	12.570	.000	-1.778	349	.076	180	.101	379	.019
	not assumed	12.070	.000	-1.805	326.516	.072	180	.100	377	.016

"Independent Samples Test"										
Brief COPE	Equal variances	Levene's Test for Equality of Variances		t-test for Equality of Means						
		F	Sig.	t	df	Sig. (2-	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
						tailed)			Lower	Upper
18 as	sumed	38.355	.000	-4.320	349	.000	461	.107	670	251
no	ot assumed			-4.378	331.383	.000	461	.105	668	254
19 as	sumed	14.898	.000	-1.851	349	.065	202	.109	418	.013
no	ot assumed			-1.872	338.263	.062	202	.108	415	.010
20 as	sumed	5.195	.023	-3.183	349	.002	353	.111	572	135
no	ot assumed			-3.217	339.073	.001	353	.110	569	137
21 assu	sumed	2.071	.151	5.245	349	.000	.564	.107	.352	.775
no	ot assumed			5.261	348.919	.000	.564	.107	.353	.775
22 as	sumed	15.438	.000	-1.704	349	.089	196	.115	422	.030
no	ot assumed			-1.720	343.033	.086	196	.114	420	.028
23 as	sumed	.256	.613	068	349	.946	007	.108	219	.204
no	ot assumed			068	343.180	.946	007	.108	219	.205
24 as	sumed	.635	.426	-1.990	349	.047	213	.107	423	003
no	ot assumed			-1.999	348.960	.046	213	.106	422	003
25 as	sumed	18.161	.000	-3.283	349	.001	341	.104	545	137
no	ot assumed			-3.340	315.370	.001	341	.102	541	140
26 Ec	qual variances assumed	65.874	.000	-1.298	349	.195	143	.110	361	.074
	ot assumed			-1.323	309.307	.187	143	.108	357	.070
27 as	sumed	18.408	.000	788	349	.431	091	.116	319	.136
	ot assumed			797	338.939	.426	091	.114	316	.134
28 as	ssumed	4.148	.042	.194	349	.847	.022	.112	198	.242
	ot assumed			.193	344.330	.847	.022	.112	199	.242

(1) "Don't limit your health in any manner as compared to most of your age"

Ox CAP-MH Variable 1 "You can socially meet friends or relatives (DURING LOCK-DOWN), with p value=0.000; Ox CAP-MH variable 2 i.e., 2)" with p value=0.000; variable Ox CAP-MH 3 i.e., 3) (DURING LOCK-DOWN), p value=0.000; variable 6, i.e., 6), p value=0.000; OXCAP-MH variable 8 i.e., 8) "(DURING LOCK-DOWN) [15].

Similarly in Table 12 the Sig. for some of the variables. Hence, attitude of female and male towards the factors affecting personal coping strategies, during the lockdown of COVID-19 pandemic, variables stated below in Table 4.

4. CONCLUSION

An in-depth expertise is very important to analyse, define and tailor effective approaches for treatments related to psychological health and mental wellbeing. The current research has been undertaken with the objective to analyse the factors influencing individuals' psychological wellbeing, and the different personal coping strategies and mechanisms that have been adopted by them in lockdown.

In this study, we not only revealed factors but also towards the variables included in the factors affecting psychological well-being (i.e. activity levels & social involvement; endogenous & exogenous sense of influence: leisure, bias & self worth; adaptability & mindfulness; and mental stress & sleep), and the factors affecting personal. With the pandemic's virtually ubiquitous existence, modern understanding, together with that of personal coping strategies and mechanisms, would not only help us tackle the present pandemic successfully, by devising therapeutic strategies; it will also improve our capacity to cope efficiently with potential disasters in the future. The Varimax procedure has been used for the purpose of rotation and a cut-off point of 0.5 has been decided, to interpret the results. Therefore, all the variables having a correlation of 0.5 and above have been included and others with lower correlation have been excluded.

FUTURE SCOPE

In the future, studies must be undertaken specifically keeping the underprivileged sections in mind, as they are the ones who are more prone to sufferings, during the times of crisis.

The correlation between age and other well-being and coping strategies can be found. The difference in the attitudes of residents living in metro and non-metro cities, towards these factors can also be identified.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

CONSENT

As per international standard or university standard, respondents' written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

Not applicable.

REFERENCES

- Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, Zumla A. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases. 2020;91:264-266.
- John Hopkins University. COVID-19 Dashboard;2020. Available:https://coronavirus.jhu.edu/map.ht
- Conway III LG, Woodard SR, Zubrod A. Social psychological measurements of COVID-19: Coronavirus perceived threat, government response, impacts, and experiences questionnaires; 2020.
- Bajpai N. Business Research Methods (1st ed.). Pearson;2011.
- Tee ML, Tee CA, Anlacan JP, Aligam KJG, Reyes PWC, Kuruchittham V, Ho R C. Psychological impact of COVID-19 pandemic in the Philippines. Journal of affective disorders. 2020;277:379-391.
- Burns R. Psychosocial well-being. Encyclopedia of Geropsychology. 2016;1-8.
- 7. Diener E, Seligman M E. Very happy people. Psychological science. 2002;13 (1):81-84.
- 8. Dunn EW, Aknin LB, Norton MI. Spending money on others promotes happiness. Science. 2008; 319(5870):1687-1688.
- Godinic D, Obrenovic B, Khudaykulov A. Effects of economic uncertainty on mental

- health in the COVID-19 pandemic context: Social identity disturbance, Job Uncertainty and Psychological Well-Being Model. International Journal of Innovation and Economic Development. 2020;6(1): 61–74. Available:https://doi.org/10.18775/ijied.1849-7551-7020.2015.61.2005
- Griffiths MD, Mamun MA. COVID-19 suicidal behavior among couples and suicide pacts: Case study evidence from press reports. Psychiatry Research. 2020.
- Harper CA, Satchell LP, Fido D, Latzman R D. Functional fear predicts public health compliance in the COVID-19 pandemic. International journal of mental health and addiction;2020.
- 12. Hawryluck L, Gold WL, Robinson S, Pogorski S, Galea S, Styra R. SARS control and psychological effects of quarantine,

- Toronto, Canada. Emerging infectious diseases. 2004; 10(7):1206–1212. Available:https://doi.org/10.3201/eid1007.03 0703
- Holmes EA, O'Connor RC, Perry VH, Tracey I, Wessely S, Arseneault L, Ford T. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. The Lancet Psychiatry;2020.
- Kahneman D, Deaton A. Proceedings of the National Academy of Sciences. High income improves evaluation of life but not emotional well-being. 2010;107:16489-16493.
- World Health Organization. About COVID-19;2020.
 Available: http://www.emro.who.int/healthtopics/corona-virus/about-covid-19.html

© 2021 Bajpai and Vispute; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/72788