Hindawi

Advances in Mathematical Physics
Volume 2021, Article ID 6669287, 20 pages
https://doi.org/10.1155/2021/6669287

Review Article

Hindawi

An Efficient Explicit Decoupled Group Method for Solving Two-
Dimensional Fractional Burgers’ Equation and Its

Convergence Analysis

N. Abdi,' H. Aminikhah ©,"? A. H. Refahi Sheikhani®,> J. Alavi,' and M. Taghipour1

'Department of Applied Mathematics and Computer Science, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 1914,

Rasht 41938, Iran

2Center of Excellence for Mathematical Modelling, Optimization and Combinational Computing (MMOCC), University of Guilan,

P.O. Box 1914, Rasht 41938, Iran

’Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Correspondence should be addressed to H. Aminikhah; aminikhah@guilan.ac.ir

Received 17 November 2020; Revised 10 December 2020; Accepted 22 February 2021; Published 16 March 2021

Academic Editor: Manuel De Le6n

Copyright © 2021 N. Abdi et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the Crank-Nicolson (CN) and rotated four-point fractional explicit decoupled group (EDG) methods are introduced
to solve the two-dimensional time-fractional Burgers’ equation. The EDG method is derived by the Taylor expansion and 45°
rotation of the Crank-Nicolson method around the x and y axes. The local truncation error of CN and EDG is presented. Also,
the stability and convergence of the proposed methods are proved. Some numerical experiments are performed to show the

efficiency of the presented methods in terms of accuracy and CPU time.

1. Introduction

Fractional calculus is a generalization of the integration and
derivation of integer order operators to fractional order that
allows us to describe a real system more accurately than inte-
gers. Although the fractional order of a real system may be
low, it is yet considered as a fractional system. An important
feature of fractional calculus is its nonlocality. The fractional
derivative (and integrals) of a function is given by a definite
integral, thus, it depends on the value of the function over
the entire interval [1]. Researchers confirm the existence of
interesting phenomena in nature, which cannot be modeled
by classical differential equations. To cope with this problem,
the nonlocality property of fractional derivative could be a
beneficial tool to study our considered system. Fractional cal-
culus has recently been used in various scientific and engi-
neering fields [2-4]. Some fractional calculus applications
in modeling and design of control systems are introduced
in [5]. The most recent developments and trends in the use

of fractional calculus in biomedicine and biology are pre-
sented by Ionescu et al. [6]. Based on the fractional calculate,
Tang et al. [7] proposed a new four-element creep model; this
model accords well with the experimental data of Changshan
rock salt. Fractional calculus has an extraordinary potential
in signal denoising [8]. Gong et al. discussed the generation
conditions of chaotic behavior and proposed the adaptive
synchronization control method for a class of fractional-
order financial system [9]. Numerous definitions of frac-
tional derivative have been introduced in the literature,
amongst are Riemann-Liouville, Caputo, and Caputo-Fabri-
zio [10]. The Caputo-Fabrizio fractional derivative on the
contrary of other derivatives has a nonsingular kernel.
Hence, it has been considered by many researchers [11-15].
Since to obtain the exact solution of fractional differential
equations is very difficult and sometimes impossible, it is
usually approximated by a numerical method such as finite
difference method [16-18], finite volume methods [19], and
spectral method [20].
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Burgers’ equation as a nonlinear partial differential equa-
tion is widely used in various areas such as fluid mechanics,
gas dynamics, and traffic flow which combine nonlinear
propagation effects with diffusive one.

In this paper, we consider the following two dimensional
time-fractional Burgers’ equation:

8“u+u 8u+8u _, 82u+62u oyt
o e T ay) e T D

(x,y)€Q,0<t<T,
with the initial condition
Uy, 0) =g (%, ), (% y) € 2, (2)
and the boundary condition
u(x,y,1)=0,(x,y) €0Q2,0<t<T, (3)
where v =1/Re, Re is Reynolds number characterizing
the strength of viscosity, Q=(0,1)x%(0,1), 0<a <1, and

the term 0"u/0t* denotes the «a order Caputo-Fabrizio frac-
tional derivative of the function u(x, y, t) defined as:
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where M(a) is a normalization function such that M(0)
=M(1)=1.

We apply the finite difference method to solve Equations
(1)-(3). In finite difference, to find the value corresponding
to each grid point, it is used natural ordering (indexing the
grid of point from left to right and bottom to top by point
to point) or group to group. There are several different
methods to order the interior mesh point such as natural
ordering, diagonal ordering, and alternating diagonal order-
ing [21]. Different linear systems would be produced by dif-
ferent arrangements of the grid points.

We propose two finite difference schemes. The first
scheme is given by the Crank-Nicolson difference method
(by natural ordering). In this scheme, to obtain a more accu-
rate numerical solution, we should use a smaller mesh size,
which requires more storage space and computing time. In
order to fix this problem and accelerate the convergence,
we use the explicit decoupled group (EDG) method intro-
duced by Abdullah in 1990 [22]. Many studies have been
done in reference to the EDG method for examples [23-
26]. The EDG method is based on rotating the Crank-Nicol-
son difference scheme and group ordering of grid points.
Applying the EDG method to the Crank-Nicolson difference
scheme result in a new scheme in which the dimension of the
system is half of the dimension of the system generated by the
Crank-Nicolson difference scheme. On this account, half of
the grid points are obtained and the rest can be calculated
directly. Consequently, the EDG method can be favourably
used to reduce the computational cost. In addition, it is worth
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to notice that we can take advantage of parallel computers to
run it.

The rest of the paper is organized as follows. In Section 2,
the Crank-Nicolson difference scheme will be applied to
Equations (1)-(3), and also, we give the truncation error. In
Section 3, we describe the formulation of the EDG method.
The stability of these schemes is discussed in Section 4. In
Section 5, we analyze the convergence of these schemes.
Numerical examples are carried out to verify the high effi-
ciency of our method in Section 6. Finally, the paper ends
with a brief conclusion in Section 7.

2. UThe Crank—Nicolson Difference Scheme

For the numerical solution of Equations (1)-(3), we intro-
duce a uniform grid of mesh points (x;,y;, t,,) with x; = iAx,
i=0,1-1, y;=jAy, j=0,1,--+,], and t, =nAt, n=0, 1,
.., N.

Using the Crank-Nicolson approximation to Equations
(1)-(3), we have

n+1 n
@ n+1/2 N (uux)l";rl + (uux)?J . (uu),)l_’j + (uuy)i‘j
o), 2

(t)if + (u (”yy):;l + (”yy):j
+

+f2}-1/2 .

(5)

We use the following linearization technique for nonlin-
ear term (uu,)"™"" and (uuy)”+1 [27]

n+l _  n+l n n,n+tl _ _n, n

(uu, )™ =u" u +u'ul u"uy, ©
ntl __  n+l n non+l _ n_n

(uuy) ="+ My - uu

Substituting the above approximation into Equation (5),
we yield

n n+l
u el . ”znfl(”x)?] + ”7](”;:)?71 Ui (u}’)i,j + U (u}’)i,j
ot 2 2

1
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n
(”xx)i,j +

A discrete approximation to the {¥D%u(x, y, t) at (x;, y i
t,.12) can be obtained by the following approximation
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where ¢, € (t;_;, ;). Then,
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t T%a )y
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Therefore, we have
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By setting
wy = e TRk DA _ gra(ke)an (13)
finally, we obtain
aa”(xi,)/j’ tn+1/2> 1 0 "i k
= — | ~wt ) (W gy ~ W, )Yy
ot« aAt e e
wyufy+ (w7 =) (17l )At)]

+ O(At).
(14)

Besides, utilizing the Taylor expansion, we have

azu(xi,yj, tn+l/2> 1 ;= 2uit . = 2ul Ul
0x? 2 (Ax)? (Ax)?
+0(AF + Ax),
(15)
2
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+0(AF + Ay?),

(16)
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Using the Equations (14)-(18), we derive the following
difference scheme which is accurate of the order O(At + Ax?
+4y%),

k
~w,UY, + z Wy gy~ W, ) UL+ w0, U, + (U;fj“ - U;fj)DO

0(
_ U:":llj - 2Un+1 U:”llj U1n+1] 2U” + Uln 1,j
2 (A’f)2 (AX)2
v Ul —2unt + U;*]“1 Ul —2U8 + UL
2 (4y)* (4y)*

1
- m [Ut <Uzn++llj U:l+11]> Un+l <U1n+lj Uzn 1])}
- 15 [V (Vi - Ut + U (U - 03
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(19)

where D, = (1 - e (@/1=9)(112)41) and U}, represents the

approximate solution of Equation (1).
After simplification, we obtain

adt n adt " aldtv  aAtv
(Do A% (Ux+1] Ui 1]) a4y <U1]+1 U[,jfl) + W + W ij

aAtv alt aAtv aAt
_ _yr 2=y - + U Ul
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"+ — U+ —UY
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Ay ()

altv altv =
+——— U+ —— Ul +w,UY - Z(wn,kﬂ -

w, )UK + (aAt fl%.
2<A}/)2 ij+1 Z(Ay)z ij—1 ni, & nk) ij ( )fl,]

(20)

3. Fractional Explicit Decoupled Group Method

Another approximate formula for Equation (1) is obtained
by Taylor’s expansion and rotating Equation (20), 45°
degrees clockwise around the x — y axis. The Crank-Nicolson
rotation formula for Equation (1) is as follows
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U
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(21)

where h=Ax=Ay. Similarly, the above-rotated differ-
ence scheme is accurate of order O(At + Ax? + Ay?). On sim-
plification with r, = aAt/4h and r,, = aAtv/2h?, the following
equation is obtained

n n n+l xx n+l
(Do + "x(Ui+1j+1 - Ui—l,j—l) + erx) Ui; - U1+1] 1
r
xx n+1 XX n n+l n n+l
5 Uitijs (7 -r.Uj )U1+1J+1 (7 +r,Uj ) Uitij
_ n o Tax pm Tex 1yn Txx pyn
- (DO =27~ wl) Ui,j Ul+1] 1 Ul 1]+1 UH—l J+1
n—1
xx n 0 k n+1/2
Uz L tw, Uy = Z(wn—kﬂ —w, )Uj; + (adt)f i
k=1
(22)

Utilizing Equation (22) to any group of four points on the
solution domain gives a (4 x 4) system as follows

Un+1

a;; B Y 0 b rhs;,
n+l1
~dis1j1 i O 0 Uirjn rhsz+1]+1
= bl
- — n+l1
0 0 az+1,} b U1+1] rhSHl]
0 0 -ba, n+l rhs, .
o Uz]+1 b+l
(23)
where
— n n n
a;; =D, + rx(UMj+1 - UHJ;I) + 27 5 Cj= 2 -7 Ul], d;;
r n
=5 enUipb= 5
(24)
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FiGure 1: Grid point on x — y plane. Computational molecule of Equation (27) (a) and computational molecule of Equation (28) (b).
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i+1,j+ _
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ij+1
n+l n+1 n
(bUz 1,j+2 + Cz]+1 Uz+1 2 + dz]+ i— 1,j> + (DO - zrxx -w ) i+1,j + b( i+1,j Ui—l 2 + Uz+1]+2 + Uz 1]) i,j+1 |
(25)
and and
r n—-1 T a: 1 —b []nJr1 T’hS- :
k + +1, i+1 +1,
wy, U?j - Z(wnfkﬂ - wnfk)Ui,j + (“At) Z] " J = " . (28)
=t =baga | | UG rhs; .1
Ti,j n-1 k 41
. w, U?+1,j+1 - Z(wn—kﬂ - wn—k) U1+1]+1 + (“At)fl+1]+1
i+1,j+1 k=1
B = . The computational molecule of Equations (27) and (28)
i+1,j k . . .
w Ux+1] - Z( n—k+1 wnfk) Ui+1] (aAt)le] 18 Shown ln. Flgure 1 . . .
Tijl k=1 From Figure 1(a), it can be seen that Equation (27) is exe-
, = . " cuted only by considering the green dots. On the contrary,
WUijr = (@i = W) U + (@805 Equation (28) only runs with red dots. Therefore, the imple-
L k=1

(26)

Equation (23) leads to a decoupled system of 2 x 2 equa-
tions in explicit form

n+1
a;; —Cij U; ; rhsi,j
X = , (27)
—_ n+
divije1 Fivrjer Uik rhsis1,jn

mentation of these two equations is independent of each
other, which makes the solution of Equation (1) consume less
time.

In the EDG method, the grid points are divided into sev-
eral groups. Each group consists of only two points of the
grid (shown in Figure 2). We apply one of the Equation
(27) or Equation (28) for each group in Figure 2. Therefore,
half of the grid points (green dots) are calculated by the
rotated finite-difference Equation (22). Before going to the
next time level, we obtain other points of the grid (red dots)
directly once by taking the Equation (20).



6
® .9,  @® -0
-7 v 7 /
7 7 7 7/
/ ’ 4 ’
/ s / .
1 s 1 7z
(0.7 @ (0.7 @
LIPS SIS Y
d / ad /
7 e 7 7
’ s 4 s,
/0 s /o s
[ P L@ . ..
\_.,/ ® N 1
F1GURE 2: Group ordering for EDG method for N = 5.
4. Stability Analysis

In this section, the stability of the finite difference method is
investigated with the Von-Neumann analysis. We first give a
lemma about w;, which will be used in the stability analysis.

Lemma 1 (see [28]). The coefficients wj in Equation (13) sat-
isfy the following properties.

0<w; < CAt, (29)

and

0<w; - wj,; < CAtw;. (30)

To investigate the stability of the difference scheme, the
nonlinear term u(u, + u,) in Equations (1)~(3) has been line-

arized by making the quantity u to a local constant. Thus, the
nonlinear term in Equation (1) converts into tl(u, + u,,), and

Equation (1) becomes:

a“u+ au+au 82u+82u i f , (31)
o T \ax Tay) TV e T a2 ) TS

i} = . . .
LetU;; and Uzj be the approximate solutions of Equations
(20) and (22), respectively, and define

n

pii=Ui—Uip (32)

¢r,=U, - U, 1<i<L1<j<],1<n<N. (33)

Then, by substituting Equation (32) into Equation (20),
we have
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vaAt vocAt ot 1 altu  vaAt \ L
T Sz | Pl
(axy " 4 2(ax)? )T

. aAti P aAtu vadt |\
4Ax Z(Ax 1 I] 4Ay (Ay)z i,j+1
. alti  vadt o] _valt  vaAt +D. | o
— = - —w A
4A}/ Z(Ay 1] 1~ 2 (A)/)Z 1 0 px,]
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ocAtﬁ wat ocAtu vaAt N
_ w,
4Ay pt]+1 Z(Ay) pz} 1 pz]
n-1
k
- ( n—k+1 wn—k)Pi,j'
k=1

(34)

Also by putting Equation (33) in Equation (22), we get

1T 1 1 r P 1
(DO "'ZT’xx)gsz'+ - % (gb?:l,j—l - ¢?—+1,j+1) - (? - urx) ¢1"1:1,j+1

Ty
—(7+ur )¢1111 (Do_w1+2rxx)¢:,lj

r r
XX n n XX -~ n
5 (¢i+1,j—1 * ¢i—1,j+1) * (7 - Wx) Bt jer

n-1
rxx - n
+ (7 + W’x) biigjr wn¢gj - I;(wn—ku - wn—k)ﬁbij-
(35)
The Fourier series for p"(x,y) and ¢"(x, y) is
[ee) o0
YD Eulmpmyerimen,
m,=—00 M, =—00
(36)

) 00
Z Z T’In(ml, m )e’zn{mlxﬂ’nzy},

mM,=—00 m;=—00

where 1 = /=1 and the amplication factors &, and n, are
defined by

1 rl
§n(my, m;) =J J e Zmlmimimas} ot (7 e)drde, (37)
0Jo
11
1, (1, my) =J J e ImimmaEl gt (7 e)drde. (38)
0J0

Introducing the following norm

J-11-1 A 101 B 112
HPnHZ = < AXA)/ pzj > = (J J pZ] de8> 5
]:1 i=1 0J0
J1I-] A\ 11 5 12
"1, = Axty|gl, ) - (J J o ) |
j=1i=1I 0Jo
(39)
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By applying the Parseval’s equality

ml,mz 5

”m(n arde= Y Yk

mMy=—00 m;=—00

(40)
[[Jorcoraae= 5 5 memr
we obtain
"5 = Z Y (mymy)[
m,=—00 m;=—00 (41)
I9"15="Y D [n.(mpmy)

mM,=—00 m;=—00

According to the above analysis, we can suppose that the
solution of Equations (34) and (35) has the following form

p”' =£ et(a iAx+o ]Ay)
ij n

(42)
¢1n — nneL(axiAx+ayjAy))

where 0, =2m 1,0, = 2m,m.

Lemma 2. If w; < D, in Equation (20) and « € (0, 1), then we
have

8al <[8olsn=1,2,--- N, (43)
where &, is defined in Equation (37).

Proof. Substituting pl"] = Ene'(gxiAerijAy) into Equation (34),
we have
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aAtu  vaAt i i
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+ ( Ax W) En+le< g )
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4Ay 24y
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N _(XAta+ VOCAtZ fnel( (z+1)Ax+aJAJ’)
4Ax  2(Ax)

+ aAtt + vaAt 3 et(ox(i—l)AeroyjAy)
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s aAti L vedt £ ¢oitero,(i-1)ay)
4Ay 2(Ay)2 !
+ wngo ez(a,iAxﬂryjAy)
n-1 . .
- Z (wnfkﬂ - wn—k)gkel(aXle+ayjAy)’
k=1
(44)

after simplifications, we can get

& 1 |:—V06At (— ! — 1 + €os (O’xAx) N Ccos ((TyAy))
n+ (Ax)z (A)/)z (Ax)z (Ay)z
+ Dy + locAtﬁ (sin (0,Ax) . sin (ayAy)>
Ax Ay

1 cos (0,Ax)

A
=&, |vadt| - ! o S+ — + cos (Gyzy)
(40" (&) (4x) (4)
Dy —w, - locAtﬁ sin (0,Ax) . sin (0,4y)
2 Ax Ay

n-1
+ wnEO - Z(wn—kﬂ - wn—k)gk‘
k=1
(45)
First, letting n = 0 in Equation (45), we obtain

1811 = 1v[1Eol; (46)
where

_ vaAtA + Dy — 1(aAtu/2)B
"~ —vaAtA + D, + i(aAt/2)B

R cos (0,Ax)
(M) (4" (M)

_ sin (0,Ax) . sin (0,4y)

- Ax Ay

cos (0,4y)
(4y)°

(47)

In the above expression, it is clear that the real part of the
numerator is smaller than the real part of the denominator.
Thus, the magnitude of the numerator is smaller than the
denominator. So we have

£l <&l (48)

Now, suppose that we have proved that |€,| < |§,|,n=1,

2, cee M.



We should prove this for n = m + 1. Using Equation (45),

we get

vaAtA + D, - 1(aAtu/2)
—vaAtA + Dy + t(ocAtu/Z

Wy, — Zl_l(wm k+1 — )

—vaAtA + D, + t((xAtu/Z)
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e
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1Sl

Using Lemma 1, we have

[vaAtA + Dy — w, — i(aAti/2)B| + w,

<
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1Sol-

Consider the following two cases:

Case 3. If vaAtA + Dy — w, > 0, then, we have

vaAtA + D
Emat] < (WAJFD:) 180l < 18ol- (51)

Case 4. If vaAtA + D, — w, <0, then, we have

2w
£l < ( g

Therefore,

- vaAtA - D, £
vaAtA + D, [Sol-

2w, —vaAtA - D,
-vaAtA + D,

That is, w, <Dy, or €., [ <&, .
By mathematical induction, we finish the proof.

Theorem 5. For a € (0, 1), the finite difference scheme Equa-
tion (20) is stable if w; <D

Proof. Let w; < Dy, using Lemma 2 and Parseval’s equality,
we get

J-11-1 5 J-11-1
9", = 3.3 ayax|ph| = ayax Y 3 [e, et
j=1i=1 j=11i=1
J-11-1 J-11-1
=dyax Y Y16 S <ayaxy Y 6
j=li=1 j=1i=1
J-11-1
=AyAx ‘E et(a iAx+0, jAy ‘ _ HP ||2

(54)

So the difference scheme Equation (20) is conditionally
stable.
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Lemma 6. Ifw, < D, in Equation (22) and « € (0, 1), then, we
have

|I’]n‘S|110‘,n=1,2,'-',N, (55)

where 1, is defined in Equation (38).

Proof. Substituting ¢, = o (0,idx+a,jAy)

we have

into Equation (35),

(DO + zrxx)r]nﬂez(axiAx-v-uyjAy) _ %’hﬂ t(cxx(i+1)Ax+ay(j—1)Ay)

 Txx (au(=1)axro, (j+1)4)
7 n+1

_ (% _ ﬁ”x) },Inﬂet(ox(i+1)Ax+ay(j+1)Ay)
_ (% + ﬁrx) ’/IHHel(ax(i—l)Ax#—ay(j—l)Ay)

_ (Do _ t(oXiAx+ayjAy) rﬁ

wl_zrxx)nne + 7 n

+ rﬁﬂ et(ax(i—l)Ax+ay(j+l)Ay) + (rx_x —ar )’7 ez(ax(i+1)Ax+ay(j+l)Ay)
2" 2 "
T | = L(ox(i—l)Aeray(j—l)Ay) t(inAxﬂTyjAy)
+ > +ur, |n,e +w,n,e
n—1

(0, (i+1) Axto, (j-1)4y)

(wn—kﬂ - wn—k)nke’(UXiAXHTyjAy) >

1

o~
Il

(56)

by simple computation and noticing that e + ¢f =2
cos (B) and e — e = 2usin(B), we can get

o1 (DO + rxx(2 - A) + Zlﬁpr) = ’7n(Do —w; - rxx(z _A) - zmpr)
n-1
+w,t, + Z(w - wn—k+1)’7k’
k=1
(57)
where
A= cos (0,Ax —0,Ay) +cos (0,Ax +0,4y), 58)

B=sin (0,Ax +0,4y).
First, setting n = 0 in Equation (57), we obtain

Dy-r(2-A)-2mr B
Dy +r (2~ A)+2mrB|°|

(59)
_ \/(Do — (2= A))* + (2unr,B)?

(Dy + 1 (2— A)) + (2u/\rx3)2|'7°| ol-

|171|=‘

Now, assume that we have proved that |y, | < |y,|,n=1,
2, cee M.
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We should prove this for n=m + 1. Utilizing Equation
(57), we obtain

Dy-w,-r,(2-A)-2ar.B
| < |05

Dy + 1. (2-A) +2iur, B
2

DO + rxx(

(Wt = Wypg1)
A) +2ur B

["o]-

According to Lemma 1, we have

|Dy —w, —r

XX(

|D0 + rxx(z

2-A) - 2iur, B| + w,
—A) + 2ir B| ol-

s | < (61)

Consider the following two cases:

Case 7. 1f Dy —w; —1,,(2 = A) > 0, then, we have

N et LIE T

Case 8. If Dy — w, — r,,.(2 - A) <0, then, we have

2w, =Dy + 1, (2-A)
< . 63
|7Im+1| ( DO + rxx(z —A) |7IO| ( )

So that,

2w, =Dy +r,(2-A)
Dy+r.,(2-A)

<1, (64)

This means w; <Dy, or |, | <|#, 1.
By mathematical induction, the proof is complete.

Theorem 9. For a € (0, 1), the finite difference scheme Equa-
tion (22) is stable if w; < D,,.

Proof. Suppose w, < Dy, from Lemma 6 and Parseval’s equal-
ity, we get

J-11-1

1971, = ). X AyAx|¢;

ij
j=1i=1

J-11-1
- AyAx nne’ 0 iAx+o,, ]Ay)‘
22
J-11-1
> I <y Y. Y i’
j=1li=

1

\4
,_‘
~
._.

= AyAx

— -

—_ =
IR

—_

ZA}/AX "70 L(a iAx+o ]Ay ‘ _ H¢ H2
j=1i=

~

—

(65)

So the difference scheme Equation (22) is conditionally
stable.

5. Convergence Analysis

We first introduce some notations and lemmas which will be
used in the convergence analysis.

n Y
62 no_ vi+1] 2V + Vz 1,j 82 no_ i,j+1 2V + Vz] 1
x z] ij =
(Ax) (Ay)
n ph n
A0 — Vierj ~ l L,j AO no_ Vil T Vi

>

Vi T T ) Ax i T T ony

J-11-1 J-11-1 , 12
AxAyz viiwg, [|[V] = leAyZ (vi) ] ,
j=11i=1 j=11i=1
Cy = max u(x,y,t)|, X, 9, t X5V, .
: W)e[O)L]X[O)W{| (o o 0[S s}
(66)
It is straightforward to show

|A2v,v’ = v|=0. (67)

Notice that in this section we suppose C stands for a pos-
itive constant independent of At, Ax, Ay, i, j, and n, which
may take different values at different places.

Lemma 10. (Discrete Gronwall’s inequality [29]).

Suppose d be a nonnegetive constant, {z,} and {f,} are
nonnegative sequences. Let

z,<d+ Y fiz,n20, (68)

0<k<n

then

Sdexp(Zf]),nZO. (69)

0<j<n
Theorem 11. The Crank-Nicolson scheme Equation (20) is
convergent and the order of convergence is O(At + Ax* + Ay?).

Proof. Let ¢, be the error at (x;,;,1,,) as defined below

no_ _rm
ei’j—u(xi,yj,tn> Uij (70)

:u;jj—U;jj,lsjs],lsisl,lsnsN.

Substituting Equation (70) in Equation (19), we get the
following error equations
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TaBLE 1: Absolute errors of Example 13 at T =1 for Re =10, At =0.01, =0.1, and & = 0.3.

N a=0.1 a=0.3
CN Time EDG Time CN Time EDG Time
9 4.2593e - 03 0.75 6.1387¢ - 03 0.74 3.9001e - 03 0.22 6.0143e - 03 0.11
19 9.8379% — 04 0.93 1.6263e - 03 0.69 9.0356e — 04 1.01 1.6124e - 03 0.51
49 1.9672e — 04 9.82 2.6073e — 04 4.69 1.8465¢ — 04 10.61 2.6040e — 04 473
99 9.1297e - 05 123.15 9.7575e — 05 39.87 8.8260e — 05 118.02 9.3869¢ — 05 42.01
TaBLE 2: Absolute errors of Example 13 at T =1 for Re =10, At =0.01, «=0.7, and & = 0.9.
N a=0.7 a=0.9
CN Time EDG Time CN Time EDG Time
9 2.7474e - 03 0.16 5.6163e - 03 0.12 1.8409¢ - 03 0.17 5.2940e - 03 0.12
19 6.6801e — 04 0.84 1.5736e - 03 0.60 4.8985e — 04 0.86 1.5707e - 03 0.59
49 1.5163e — 04 10.26 2.5934e - 04 5.68 1.4882¢ — 04 10.38 2.5869¢ — 04 5.35
99 8.2965e — 05 119.25 8.6473e — 05 41.44 1.0295e — 04 121.48 1.0451e - 04 42.37
B N Z - (e oD It is clear that |[8%(e"! +e"),e™! +¢"| <0 and \8)2,(6”“
w,ej Wyt =~ W)yt Wie + (€5 — € ) Do +e"), e +e" <0, so we have
vocAt
8% (e ( nl oy ) + 62 (e’»“»'l + e“)) 2
2 ( i PANLY bj DoHe””H <(Dy —wy)|le" || +w He"+1 e”||
ocAt
0, +0:)+aAtR’ 7, nl
( 4 5) i,j + Z(wn—k _ wn—k+1>ek’ ML ot
. . = (74
I1<j<]J-1L1<i<I-1,1<n<N, alt +1
+ THa4+05,e" +e"||
ef.=el.=0,1<n<N,0<j<],
0,j Lj ] J 4 OCAt‘RW'%, en+1 +e"
ep=e;=0,1<n<N,0<i<],
e?- —0,0<j<J 1<i<I, (71) . Now, we.estlmate the? third, fourth, aI.ld fifth terms of the
] right-hand side of Equation (74), respectively
where
n—1
k n+l n
n+ Z(wn—k wn—k+1)e > € +e
R;;? —O(At+Ax + 4%, =
=" A0t 4yt A0t n+1AO n+l A0 1 , n-1 n-1
0y = ez] x 1] z; X 1; X 1J+u x ’J = (wn—k n—k+1)‘ek 6”“ + (wn—k n7k+1)‘e € ’
0 n+1 0 n+1 n+l A0 n n+l 0 n k=1 k=1
05 = elJA)’ + “uAy ij T Ay ij T Ui Ay i

(72)

Multiplying Equation (71) by AxAy (e} g el ) and sum-
ming up for i from 1 to I -1 and j from 1 to J- 1 we obtain

woki1 — Wy )€ +wie’ + (" =)Dy, " + €
V(XAf 2 ( n+l 7 n+1 7 2/ n+l n n+1 n
== (’6x(e +e),e +e |+‘8y(e +e ),e +e )
At
_Z —— |0y + 05" + €|+ ant|R™, &

(75)

Using Young inequality ab < ea® + (1/4¢)b*, a, b € R, and
Lemma 1, we have

k n+l
Z wn—k+1)e > €

k=1

+ CAt<||e"||2 + e ).

For the fourth term, utilizing Young inequality and Equa-
tion (67), we obtain
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0.6

0.5

0.4 9000

x

— u(x,0.5,0.5) —  u(x,0.5,0.8)

o Uy (%0505) o Uy (x0.5,0.8)
© Upp(0505) + Uy (60508)
—  u(x,0.5,0.6) —  1u(x,0.5,0.9)

o UCN(x,0.5,0.6) o UCN(x,0.5,0.9)
+ UEDG(x,O.5,O.6) + UEDG(x,0.5,O.9)
—  u(x,0.5,0.7) —  u(x0.5,1)

o UCN(x,0.5,0.7) o UCN(x,O,S,l)
+ UEDG(x,O.5,O.7) + UEDG(x,O.S,l)

x1074

|t (x,0,1)-Ugy (x,,1)]

(b)

F1GURE 3: The exact, Crank-Nicolson, and EDG solutions in different values of t and y = 0.5 (a) and the absolute error of Crank-Nicolson
method at T =1 (b) of Example 13 for At =0.01, Re=100, N =49, and a = 0.5.
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0.6 - i i . R ey
DO, o S, )
@D \hlb\@\ o)
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0.1 ’
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0 0.2 0.4 0.6 0.8 1
X
— u (x,0.5,0.5) u (x,0.5,0.8)
o UCN(x,O.S,O.S) o UCN (x,0.5,0.8)
U (%,0.5,0.5) + Uy (60.5,0.8)
—  u(x,0.5,0.6) u (x,0.5,0.9)
o UCN (x,0.5,0.6) o UCN (x,0.5,0.9)
Uy (%,0.5,0.6) b Uy (%0509
—  u(x,0.5,0.7) —  u(x,0.5,1)
o UCN(X’0'5’0'7) UCN(x,O.S,l)
b Upp (%0.5,0.7) + Uy (60.51)
(a)
x1074

[u (x,,1)-Ucy (%,951)]

(b)

FIGURE 4: The exact, Crank-Nicolson and EDG solutions in different values of t and y = 0.5 (a) and the absolute error of Crank-Nicolson
method at T =1 (b) of Example 14 for At =0.01, Re=50, N =49, and «=0.5.
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TaBLE 3: Absolute errors of Example 14 at T =1 for Re =100, At =0.01, =0.1, and & = 0.3.
N a=0.1 a=0.3
CN Time EDG Time CN Time EDG Time
9 4.1318¢ - 03 0.40 1.0556e — 02 0.26 3.7717e¢ - 03 0.53 9.8104e - 03 0.28
19 8.8813e - 04 1.04 2.6531e-03 0.73 8.1156e — 04 1.17 2.5458e - 03 0.73
49 1.3364e — 04 12.14 4.1507¢ — 04 4.81 1.2247e — 04 15.24 4.0109¢ — 04 4.86
929 3.4588e — 05 122.31 1.0389¢ - 04 40.55 3.1779e¢ - 05 130.36 1.0045e — 04 40.71
TaBLE 4: Absolute errors of Example 14 at T =1 for Re =100, At =0.01, =0.7, and &= 0.9.
N a=0.7 a=0.9
CN Time EDG Time CN Time EDG Time
9 2.9459¢ - 03 0.57 8.2550e — 03 0.34 2.4730e - 03 0.96 7.5148e — 03 0.26
19 6.3611e— 04 1.39 2.3322e-03 0.84 5.4346e — 04 1.56 2.2536e - 03 0.84
49 9.7981e — 05 15.19 3.7198e — 04 5.69 8.6200e — 05 17.26 3.5924¢ - 04 5.32
99 2.5774e - 05 126.65 9.3273e - 05 44.77 2.4146e - 05 136.80 9.1092e - 05 43.01
TaBLE 5: Absolute errors of Example 15 at T =1 for Re=5, At =0.01, «=0.1, and & = 0.3.
N a=0.1 a=0.3
CN Time EDG Time CN Time EDG Time
9 2.1509 - 03 0.51 7.1351e - 03 0.24 2.0937¢ - 03 0.19 6.9914¢ - 03 0.12
19 4.8726e — 04 1.09 1.7356e — 03 0.59 4.7437e — 04 091 1.7078e — 03 0.56
49 7.3239¢ - 05 11.88 2.6457¢ — 04 4.86 7.1213e - 05 11.80 2.6032e — 04 5.04
99 1.7989%¢ — 05 121.06 6.4817e — 05 40.01 1.7399¢ - 05 120.95 6.3688e — 05 40.27
TaBLE 6: Absolute errors of Example 15 at T =1 for Re=5, At =0.01, «=0.7, and o = 0.9.
N a=0.7 a=0.9
CN Time EDG Time CN Time EDG Time
9 1.9317e-03 0.21 6.5894¢ - 03 0.12 1.8282¢ - 03 0.23 6.3412¢ - 03 0.13
19 4.3742e — 04 0.97 1.6292¢ - 03 0.60 4.1260e — 04 1.01 1.5796e — 03 0.61
49 6.4857¢ — 05 12.21 2.4776e — 04 5.29 5.9238e - 05 12.58 2.3834e - 04 5.35
99 1.5095e — 05 123.57 5.9878e — 05 41.38 1.2086e — 05 124.23 5.5847e - 05 41.61
2
|<04’ My e”>f <co(l+e +6+65+6,+ es)Henﬂ H Also for the fifth term, we have
o1+ ! + ! + ! + ! + ! lle"[1? 1 1
C —_— —_— o o o e . n+; n+l n+ n+1
i "1 e e R et o] (e g ) [ el e
(77) (79)
Similarly, we get For the second term on the right-hand side of Equation
(74), we get

(05, ¢""

1 1 1 1
+e(l+—+—+—+— Ile ||
4e,  4e,  deg 4 480

+e")| <c 1+86+87+€8+89+810 ||e”“||2

(78) using Lemma 1, we obtain

2 1
w||e", e[| <w, (813”6"“” e |en||2>.

(80)

Combining Equations (76)-(80) in Equation (74) and
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0 0.2 0.4 0.6 0.8 1
x

— u (x,0.5,0.5) —  u(x,0.5,0.8)
o UCN (x,0.5,0.5) o UCN (x,0.5,0.8)
© Uppg (60.5,0.5) + Uy, (60.50.8)

— 1 (x,0.5,0.6) —  u(x,0.5,0.9)
o UCN (x,0.5,0.6) o UCN (x,0.5,0.9)
o Uy (60.5,0.6) + Upp (605,0.9)

—  u(x,0.5,0.7) —  u(x0.5,1)
o Ugy (60.50.7) o Uy (605.0)
+ Uy (60.5,0.7) b Uy (6051)

(a)
x107*
5

[u (x,3,1)-Uey (x,,1)]

()

FiGurek 5: The exact, Crank-Nicolson and EDG solutions in different values of t and y = 0.5 (a) and the absolute error of Crank-Nicolson
method at T =1 (b) of Example 15 for At =0.01, Re=20, N =49, and a =0.5.
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TaBLE 7: Absolute errors of Example 16 at T =1 for Re=2, At=0.01, #=0.2, and o = 0.4.
N a=0.2 a=0.4

CN Time EDG Time CN Time EDG Time

9 2.5900e - 03 0.21 2.1227e - 02 0.19 2.5752e - 03 0.20 2.1177e - 02 0.18
19 5.9920e — 04 0.83 5.3687e¢ - 03 0.44 5.9600e — 04 0.84 5.3597e - 03 0.59
49 9.3436e - 05 9.41 8.2492¢ — 04 5.19 9.2993e - 05 9.70 8.2383e — 04 5.12
99 2.5225e - 05 117.52 2.0397e - 04 39.94 2.5145e - 05 119.21 2.0376e — 04 39.86

TaBLE 8: Absolute errors of Example 16 at T =1 for Re=2, At =0.01, =0.6, and o = 0.8.
N a=0.6 a=0.8

CN Time EDG Time CN Time EDG Time
9 2.5546e - 03 0.22 2.1112e-02 0.20 2.5253e - 03 0.24 2.1039¢ - 02 0.22
19 5.9150e - 04 0.84 5.3476e - 03 0.60 5.8469¢ — 04 0.88 5.3318¢ - 03 0.62
49 9.2340e - 05 9.88 8.2234e - 04 5.05 9.0870e — 05 10.19 8.2010e — 04 5.51
99 2.5001e - 05 119.14 2.0348e — 04 41.28 2.4238e — 05 123.96 2.0280e — 04 41.67
n-l 2 ) 5 Using Lemma 10 and nAt = T, we get
Dylle"*! P < Car Y ||et]|"+ at (4, ]|+ sl ?)
= 1 [e™!||* < C||R™2||* < O(At + Ax* + A%), 1< n <N,
2
+aAt| &, + — | |[|R™V?]|", 1<n <N,
R =
(81) and this completes the proof.

where

ac
/\1=7(2+81+82+83+84+85+86+87+88+89+810)
+ag, +Cepz + G,
ac 1 1 1 1 1 1 1
A=— 24—+ —+ —+ —+ —+ — + —
2 4e,  4de, ey 4e,  4de;  4deg  4gy
1 1 1 C o
+—+—+— |+ —+—+2C.
4eg  dey 4 4e,;  4ey

(82)

Therefore, we get
n-1 2
(C-A)|le P <cary HekH + A"
k=1
+0c(sll + L) [R*2|P,1<n<N.
4ey,

(83)

In the definition of A, we choose epsilons which C - A,
be positive, so we have

n-1
e < car S [+ cleri? v acRr 2 1 <
k=1

(84)

Theorem 12. The EDG method Equation (22) is convergent
and the order of convergence is O(At + Ax? + Ay?).

Proof. The proof is similar to Theorem 11.

6. Numerical Results

In this section, some numerical examples are considered to
demonstrate the efliciency and accuracy of the proposed
methods.

In numerical examples, we suppose that u(x, t), Uqy(%,
t), and Ugpg(x,t) denote the exact, Crank-Nicolson, and
the EDG solution, respectively. Also in all Tables, the CN is
an abbreviation for Crank-Nicolson Method.

The results obtained in this study show that the suggested
methods have excellent stability, and they have verified the
validity and effectiveness of the presented methods. Notably,
we perform all of the computations by MATLAB R2019a
software on a 64-bit PC with 2.30 GHz processor and 8 GB
memory.

Example 13. Consider Equation (1) with the exact solution
u(ey )= (1-22)°(1-2)%0<xp.t<1. (86)

In Tables 1 and 2, the maximum of absolute errors and
CPU Times for Crank-Nicolson and EDG methods for a =
0.1, 0.3, and «=0.7, 0.9 with T =1, At=0.01, Re=10, and
different values of N are tabulated, respectively. These results
confirm the convergent results. In Figure 3(a), the exact,
Crank-Nicolson, and EDG solutions for y =0.5, Re =100,
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o Ugy (%05,0.5) o Uy (%05,0.8)
+ Uy (%05,05) + Uy (60.50.8)
—  u(x,0.5,0.6) — 1 (x,0.5,0.9)
o Ugy (%0.5,0.6) o Ugy (%0509)
L Uppe (60.5,0.6) b Upp (60.5,0.9)
—  u(x0.5,0.7) —  u(x,0.5,1)
o Uy (%05,0.7) o Ugy (60.51)
+ UEDG(x,0.5,0.7) + UEDG (x,0.5,1)
()
x107

[ (x,9,1)-Ugp (x,3,1))

(b)

F1GURE 6: The exact, Crank-Nicolson, and EDG solutions in different values of ¢ (a) and the absolute error of Crank-Nicolson method at
T =1 (b) of Example 16 for At =0.01, Re =10, N =49, and a = 0.5.
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— u (x,0.5,0.5) u (x,0.5,0.8)
o Ugy (10.50.5) o Uy (60508)
UEDG (x,0.5,0.5) + UEDG (x,0.5,0.8)
—  u(x,0.5,0.6) u (x,0.5,0.9)
o UCN (x,0.5,0.6) o UCN (x,0.5,0.9)
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[t (x,,1)-Ugp (x,,1)]

(b)

F1GURE 7: The exact, Crank—Nicolson and EDG solutions in different values of t (a) and the absolute error of Crank—Nicolson method at T =1
(b) of Example 16 for At =0.01, Re =60, N =49, and « =0.5.
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TaBLE 9: Absolute errors of Example 17 at T =1 for Re =100, At =0.01, =0.2, and o = 0.4.
N a=0.2 a=0.4
CN Time EDG Time CN Time EDG Time
9 2.3544e - 05 0.37 1.2078e — 04 0.15 2.0308e — 05 0.32 1.1028e — 04 0.14
19 5.308%¢ — 06 0.89 3.7501e - 05 0.55 4.5547e — 06 0.90 3.5462e - 05 0.73
49 7.8572e — 07 9.70 6.1862¢ — 06 4.84 6.5077¢ — 07 9.72 5.9056¢e — 06 5.23
99 1.9520e - 07 117.73 1.5238e - 06 39.65 1.9513e - 07 118.38 1.4377e - 06 40.22
TaBLE 10: Absolute errors of Example 17 at T =1 for Re = 100, At =0.01, « =0.6, and « = 0.8.
N a=0.6 a=0.8
CN Time EDG Time CN Time EDG Time
9 1.6919¢ - 05 0.32 9.8582¢ — 05 0.26 1.3331e-05 0.37 8.5506e — 05 0.27
19 3.7515e - 06 0.89 3.3183e - 05 0.82 2.8606e — 06 0.94 3.0637e - 05 0.79
49 4.9131e - 07 991 5.5845e - 06 5.41 2.7513e - 07 10.06 5.1849¢ — 06 5.50
99 1.9501e - 07 118.22 1.3268¢e — 06 41.16 1.9462¢ — 07 119 1.1529¢ - 06 4191

N =49, and At =0.01 in different values of ¢ are illustrated.
Furthermore in Figure 3(b), the absolute error at T'=1 for
Re =100, N =49, At =0.01, and a = 0.5 is portrayed. Accord-
ing to the Figures, we can see that our numerical solutions
correspond to the exact solutions.

Example 14. In this example, we assume that the exact solu-
tion of Equation (1) is

u(x, y, t) :xzyz sin (7x) sin (my) sin (£),0<x, p,t < 1.
(87)

The values of initial and boundary conditions and f can
be achieved using the exact solution. The exact, Crank-Nic-
olson, and EDG solutions for y =0.5, Re =50, N =49, and
At =0.01 in different values of ¢ are shown in Figure 4(a)
and in Figure 4(b), the absolute error of Crank-Nicolson
method at T =1 for Re =50, N=49, At=0.01, and «=0.5
is depicted. Based on the Figures, we can see that the numer-
ical solutions are a good approximation of the exact solu-
tions. In Tables 3 and 4, the maximum of absolute errors
and CPU Times for Crank-Nicolson and EDG methods for
a=0.1,0.3,and «=0.7, 0.9 with T =1, At =0.01, Re = 100,
and different values of N are tabulated, respectively. The
EDG method generates the numerical solution with almost
the same accuracy as the Crank-Nicolson method, but uses
less time-consuming in comparison to the Crank-Nicolson
method.

Example 15. Assume that the exact solution of Equation (1) is
as follows:

u(x,y, t) = £x*(1 —x)3 sin (my) exp (x+»),0<x,p,t < 1.
(88)
The maximum of absolute errors and CPU Times for

Crank-Nicolson and EDG methods for « =0.1, 0.3, 0.7, 0.9
with T =1, At =0.01, Re =5, and different values of N are

shown in Tables 5 and 6, respectively. In Figure 5(a), the
exact, Crank-Nicolson, and EDG solutions for y =0.5, Re
=20, N =49, and At =0.01 in different values of ¢ are illus-
trated. Also, the absolute error of Crank-Nicolson method
at T=1 for Re=20, N=49, At=0.01, and a=0.5 is por-
trayed in Figure 5(b). The numerical experiments verified
our theoretical results once again.

Example 16. Consider Equation (1) with the exact solution
u(x,y,t) =t* cos (mx) cos (my),0<x,y,t < 1. (89)

This example does not apply to the initial and boundary
conditions of the article, but the results of this example are
as good as other examples.

In Tables 7 and 8, the maximum of absolute errors and
the CPU time consumed by our proposed methods for o =
0.2,04, and 0.6, 0.8 at T =1, At = 0.01, Re = 2 with different
mesh sizes are presented, respectively. Similar to other exam-
ples, the EDG method is faster than the Crank-Nicolson
method. The exact, Crank-Nicolson, and EDG solutions for
y=0.5, Re=10, N=49, a=0.5, and Ar=0.01 in different
values of t are displayed in Figure 6(a). In addition, the abso-
lute error of the Crank-Nicolson method at T'=1, « =0.5,
Re =10, N =49, and At =0.01 is displayed in Figure 6(b).

Example 17. In this example, we assume that the exact solu-
tion of Equation (1) is

u(x, y, t)=tz(x—xz)z(y—yz)z,ogx,y,ts1. (90)

In Figure 7(a), the exact, Crank-Nicolson, and EDG solu-
tions for y =0.5, Re =60, N =49, and At =0.01 in different
values of t are shown. Besides, the absolute error of Crank-
Nicolson is demonstrated in Figure 7(b). Obviously, our
schemes are very accurate and quickly converge to the exact
solution. The maximum of absolute errors and CPU Times
for Crank-Nicolson and EDG methods for « =0.2, 0.4, and
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0.6, 0.8 at T=1, At =0.01, and Re = 100 with various mesh
sizes are expressed in Tables 9 and 10, respectively.

7. Conclusion

In this paper, we introduced the Crank-Nicolson method
and the EDG method which derived from 45° rotation of
the Crank-Nicolson approximation point and Taylor expan-
sion to solve the 2D time-fractional Burgers’ equation with
Caputo-Fabrizio derivative. The error analysis and local
truncation error of these methods gave in detail. The stability
of the proposed numerical methods is analyzed by the
Von-Neumann method. The convergence analysis of the
CN and EDG methods proved. Some test problems chose
to investigate the applicability and practical efficiency. From
Tables 1-10, the results showed a good agreement with the
exact solution, and the EDG method was faster than the
CN method. Numerical experiments showed the efficiency
of the proposed methods in terms of CPU time and accuracy.

Data Availability

All results have been obtained by conducting the numerical
procedure and the ideas can be shared for the researchers.
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