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Abstract 
 

Generalized distributions have become increasingly popular in applications. They are highly flexible in data 

analysis, especially with skewed data, which are common in many applications. The Generalized Logistic 

Distribution (GLD) and its special cases have recently received a lot of interest in the literature. We derived 

estimators of the unknown parameters of type II Generalized Logistic Distribution (Type II GLD) based on 

progressively type II censored data. A variety of point estimation methods is employed. We considered the 

best linear unbiased estimator (BLUE) and the best (affine) linear equivariant estimator (BLEE). In addition, 

we considered Bayesian estimation. Simulation approaches were used to study the estimators and compare 

them with the maximum likelihood estimator (MLE) in a range of progressive censoring schemes. The mean 

squared error (MSE) and bias were employed as comparison criteria. An example based on real data is 

presented. 

 

 
Keywords: Point estimation; best linear unbiased estimation; best linear equivariant estimation; type II 

generalized logistic distribution, progressive censoring. 

 

1 Introduction 
 

Considerable attention has been paid in the literature to inference in parametric distributions based on 

progressively censored data. Balakrishnan and Sandhu [1] considered progressive Type II censored sample to 
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find the best linear unbiased estimators to estimate the parameters of the exponential distributions. In addition, 

they found the maximum likelihood estimators (MLE’s) and found that they are equal to the BLUE’s of the two-

parameter exponential distribution. Also, they drew the attention to the fact that the accuracy of the estimators of 

the location and scale parameters (BLUE) depends on r, n and m but not the progressive censoring scheme R. 

The generalized exponential distribution was studied by Kundu and Pradhan (2009). They considered Bayesian 

inference of the parameters of based on the progressively censored data assuming independent gamma priors for 

the scale and shape parameters. Bayes estimates are approximated using Lindley's approximation as well as 

importance sampling using Markov chain Monte Carlo techniques. The authors noted that the Bayes estimates 

have strong advantages over the MLEs, if suitable prior information is available. The generalized Rayleigh 

distribution was considered by Maiti and Kayal (2019) where they considered estimation of parameters and 

reliability characteristics a under progressive type-II censored sample. The MLEs and Bayes estimates of the 

parameters were obtained under various loss functions. Salah [2] considered estimating the unknown parameters 

of  -power exponential distribution under progressively Type II censored data using the MLEs. He found the 

approximate best linear unbiased estimators (ABLUE’s) as an initial guess of the MLEs. The author discovered 

that ABLUEs and MLEs are closely related in the case of the exponential distribution with two parameters. This 

closeness provides good initial estimates of MLEs. Aly and Bleed (2013) considered Bayesian                      

estimation of the generalized logistic distribution based on progressively censored data under accelerated 

testing.  

 

In this paper, we shall consider the type II generalized logistic distribution whose probability density function is 

given by: 

 

                    
  

     
       

    

 
           

    

 
  ,         ;        .                   (1) 

 

Nassar and Elmasri [3]; Azizpour and Asgharzadeh [4] and Aljarrah et al. [5] studied MLEs for the Generalized 

Logistic Distribution and other distributions under progressive censoring. Balakrishnan and Hossain [6] found 

that the approximate maximum likelihood estimators (AMLEs) and the MLEs have similar performance in 

terms of bias and variance. Moreover, Rimawi and Baklizi [7] investigated the type II Generalized Logistic 

Distribution estimators based on type II progressive censoring data. They analyzed the MLE and the Lindley’s 

approximation to the Bayes estimator.   

 

In this work, we will derive approximate linear estimators of the parameters of the type II generalized logistic 

distribution using type II progressively censored data. Progressive censoring is a type of censoring where we 

have n units that are placed simultaneously on the life-testing experiment. Immediately following the first 

failure,    surviving units are randomly chosen and removed from the experiment. Immediately after the second 

failure,    items are withdrawn and so on. The procedure is continued until all    remaining units are removed 

after the     failure. Note that the    ’s are fixed prior to study. If    =    = … =    = 0, then n = m which 

corresponds to the complete sample, while when   =    = … =      = 0, we have    = n − m which corresponds 

to the conventional Type II right-censoring scheme. 

 

2 Approximate Best Linear Unbiased Estimators 
 

Linear statistics have an easy and accurate structure. Researchers have been interested in using linear inference 

for parametric distributions with ordered data in a variety of applications because of their ease and accuracy. 

Suppose we have (                  )` be a random vector of progressively Type-II censored order 

statistics from a distribution with location parameter   and scale parameter . Let Y = (                )` be 

such that: 
 

       = 
         

 
 , j = 1, ….,m.  (2) 

 

Let W = (Y – E(Y)), b = E(Y),          and B = [  , b]. It follows that X can be presented as a linear 

equation: 
 

                    E(Y) + W = [  , b] 

  + W = B                                                        (3) 

 

Let    be the covariance matrix cov(Y),  assuming   is regular, and non-singular covariance matrix, then: 
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                                                                       (4) 
 

The best linear unbiased estimator (BLUE) for the parameters under study depends on the evaluation of the 

variance covariance matrix of the order statistics from the progressively censored data. This matrix is very 

complicated and can not be obtained in closed form. An approximate best linear unbiased estimator is available. 

It is derived in Balakrishnan and Cramer [8]. We will apply this approximation to the location and scale 

parameters of our model as follows: 
 

Suppose we have m     and n =         
    , the BLUE estimators of  and   are given by: 

 

       
 

 
                      -                                                                                              (5) 

 

       
 

 
                      -                     ,                                                                         (6) 

 

where                                   
 
 > 0.    

 

In order to find the approximate covariance matrix, we calculate the following quantities; 
 

                 ,        
 
           ,             

           ,  

           
                

  

  
              

  

  
        ,  

                   ,                                       .  
 

The last quantity         gives the approximate covariance matrix    . Now Calculate the diagonal matrix   

with diagonal elements  
 

          
   

 

          
  where: 

 

     
 
   

    
  

    
  

    
  

 

     and           
 
  

    
  

   
  

    
  

 

 

 . We obtain the required covariance matrix,   

       . 
 

The best linear equivariant estimators (BLEE) are approximated in a similar manner. Using the same notation 

used for the BLUEs, and let                     we obtain: 
 

  
  

  
 

  
                        -                                                                                     (7) 

 

put sigma-hat-LE here, similar to equation 6. 
 

  
 

  
                      -                                                                                                      (8) 

 

3 Bayesian Estimation of Location and Scale Parameters 
 

Bayesian statistical methods begin with established 'prior' beliefs and update them with data to generate 

'posterior' beliefs that can be used to make inferences. Based on this technique, we will derive Bayes estimators 

for the parameters of the type II generalized logistic distribution (GLD) location and scale parameters ( and ) 

with type II progressively censored data. 
 

To facilitate comparison with the classical estimators, we will assume non-informative prior distributions for the 

location and scale parameters, that is,   ) = 1 and    ) = 1/  . The likelihood function is given by: 
 

                      
 

  
         
 
                 

                                                                        (9) 

 

Therefore, the joint posterior density of,         given the data, is given by: 
 

            
 

 
                                                                                                (10) 
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The Bayes estimator of a function of the parameters, say    (    ) under the squared error loss function is 

given by its posterior expectation: 
 

                          
 

  

 

 
                                                                                                 (11)  

 

This integral is difficult to obtain analytically and therefore we can approximate it using either importance 

sampling procedures or the Lindley approximation. 
 

Importance Sampling can be explained as a weighted average of random samples taken from another 

distribution   (x) "importance sampling" density function to estimate an expectation with respect to the target 

density function   (x). The prior distribution of   and   are non-informative priors for the location and scale 

parameters (µ and ): 
 

                                                                                                                                    (12) 
 

     
 

 
                                                                                                                                      (13) 

 

The joint prior distribution is  
 

      = 
 

 
                                                                                                                  (14) 

 

It follows that the posterior distribution is given by: 
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We can rewrite the posterior function as:    

 

                                                                                                                                   (16) 

 

where         

 
 

 
 

 

 
    
   

    
    
    

 

 
 

 

, this is the logistic distribution with parameters    
   
 
   

 
 and    .        

  
    

      
 
 

 
 
 

      , which is the inverse gamma distribution's pdf with parameters     and m, and  

 

        
    

        
  

    

   
 
 
 

  
 
             

    
  

    
  

    
  

 

         
  

                                                           (17) 

 

To find the estimate of the GLD parameters we do the following steps: 

 

Algorithm 1: 

 

Step 1: Generate   from inverse gamma distribution with parameters     and m. 

Step 2: Generate   from the logistic distribution with parameters    
   
 
   

 
 and    , where   is generated 

from Step 1. 

Step 3: Repeat steps 1 and 2 to obtain (  
 
                 

 
     . 

Step 4: Calculate the Bayes estimate as      
 
             

 
    /      
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4 Simulation Study 
 

A Monte Carlo simulation study is conducted to investigate and compare the performance of the estimators 

under various experimental situations. We considered various progressive censoring schemes as explained in 

Tables 1 – 6 below, corresponding to sample sizes of 50, 70 and 90. The location and scale parameters were set 

to zero and one respectively. The parameter   is taken to be 0.5, 1 and 1.5 to cover the various shapes of the 

distribution. We used the algorithm proposed by Balakrishnan and Sandhu [9] to generate progressive Type II 

censored samples from Type II GLD. The findings are presented in Tables 1 and 6. We used 5000 replications 

in all our simulation runs.   
 

The results include the biases and mean squared errors for the estimators developed in this paper in addition to 

the Lindley’s approximation of the Bayes estimators and the maximum likelihood estimators developed and 

studied in Balakrishnan and Hossain [6] and Rimawi and Baklizi [7]. 
 

Table 1. Results of simulation for parameter μ with GLD (α =1.5,   = 0,    =1) 

 

N m Scheme MLE Lindley        I.S BLUE BLEE 

50 30 (0*29,20)      

  Bias -0.0316 -0.0411 -1.7436 0.0295 0.0101 

  MSE 0.0010 0.0017 3.0400 0.0660 0.0648 

 30 (0*10,2*10,0*10)      

  Bias -0.0293 -0.0466 -1.3551 2.2187 2.1775 

  MSE 0.0009 0.0022 1.8362 4.9878 0.0648 

 30 (20,0*29)      

  Bias -0.0092 -0.0929 -0.8390 2.6077 2.5681 

  MSE 0.0001 0.0086 0.7040 6.8653 0.0648 

50 40 (0*39,10)      

  Bias -0.0160 -0.0226 -1.2661 0.0172 0.0094 

  MSE 0.0003 0.0005 1.6030 0.0497 0.0493 

 40 (0*15,1*10,0*15)      

  Bias -0.0137 -0.0421 -1.0062 0.9233 0.9108 

  MSE 0.0002 0.0018 1.0125 0.9019 0.0493 

 40 (10,0*39)      

  Bias -0.0067 -0.0586 -0.7654 1.1288 1.1166 

  MSE 0.0000 0.0034 0.5858 1.3237 0.0493 

70 40 (0*39,30)      

  Bias -0.0246 -0.0294 -1.7559 0.0285 0.0129 

  MSE 0.0006 0.0009 3.0832 0.0506 0.0495 

 40 (0*10,2*15,0*15)      

  Bias -0.0246 -0.0366 -1.2942 2.6859 2.6498 

  MSE 0.0006 0.0013 1.6750 7.2640 0.0495 

70 50 (0*49,20)      

  Bias -0.0147 -0.0224 -1.4289 0.0164 0.0085 

  MSE 0.0002 0.0005 2.0419 0.0389 0.0385 

 50 (0*20,2*10,0*20)      

  Bias -0.0166 -0.0557 -1.0992 1.5217 1.5064 

  MSE 0.0003 0.0031 1.2083 2.3542 0.0385 

 50 (20,0*49)      

  Bias -0.0101 -0.0557 -0.7403 1.8189 1.8040 

  MSE 0.0001 0.0031 0.5481 3.3470 0.0385 

90 50 (0*49,40)      

  Bias -0.0248 -0.0259 -1.7668 0.0183 0.0053 

  MSE 0.0006 0.0007 3.1217 0.0406 0.0401 

 50 (0*15,2*20,0*15)      

  Bias -0.0153 -0.0312 -1.3673 2.8937 2.8620 

  MSE 0.0002 0.0010 1.8696 8.4135 0.0401 



 

 
 

 

Rimawi and Baklizi; AJPAS, 17(3): 11-23, 2022; Article no.AJPAS.86540 
 

 

 
16 

 

N m Scheme MLE Lindley        I.S BLUE BLEE 

90 60 (0*59,30)      

  Bias -0.0076 -0.0180 -1.5100 0.0143 0.0067 

  MSE 0.0001 0.0003 2.2800 0.0323 0.0321 

 60 (0*20,2*15,0*25)      

  Bias -0.0067 -0.0252 -1.1241 2.0089 1.9925 

  MSE 0.0000 0.0006 1.2636 4.0679 0.0321 

 60 (30,0*59)      

  Bias -0.0029 -0.0420 -0.7201 2.2792 2.2635 

  MSE 0.0000 0.0018 0.5185 5.2268 0.0321 

 

Table 2. Results of Simulation for parameter μ with GLD (α =1.0,   = 0,    =1) 
 

N m Scheme MLE  Lindley I.S BLUE BLEE 

50 30 (0*29,20)      

  Bias -0.0145 -0.0260 -1.2894 0.0078 -0.0010 

  MSE 0.0002 0.0007 1.6625 0.0649 0.0648 

 30 (0*10,2*10,0*10)      

  Bias -0.0223 -0.0400 -0.8053 1.8900 1.8698 

  MSE 0.0005 0.0016 0.6485 3.6369 0.0648 

 30 (20,0*29)      

  Bias -0.0030 -0.0845 -0.2378 2.4078 2.3881 

  MSE 0.0000 0.0071 0.0565 5.8622 0.0648 

50 40 (0*39,10)      

  Bias -0.0044 -0.0148 -0.7395 -0.0040 -0.0056 

  MSE 0.0000 0.0002 0.5468 0.0584 0.0584 

 40 (0*15,1*10,0*15)      

  Bias -0.0108 -0.0322 -0.4200 0.6519 0.6492 

  MSE 0.0001 0.0010 0.1764 0.4834 0.0584 

 40 (10,0*39)      

  Bias 0.0044 -0.0779 -0.1488 0.9265 0.9239 

  MSE 0.0000 0.0061 0.0221 0.9169 0.0584 

70 40 (0*39,30)      

  Bias -0.0140 -0.0206 -1.3127 0.0046 -0.0028 

  MSE 0.0002 0.0004 1.7231 0.0482 0.0482 

 40 (0*10,2*15,0*15)      

  Bias -0.0094 -0.0276 -0.7473 2.3503 2.3314 

  MSE 0.0001 0.0008 0.5585 5.5720 0.0482 

 40 (30,0*39)      

  Bias -0.0027 -0.0730 -0.1854 2.8241 2.8059 

  MSE 0.0000 0.0053 0.0344 8.0237 0.0482 

70 50 (0*49,20)      

  Bias -0.0020 -0.0148 -0.9359 -0.0020 -0.0045 

  MSE 0.0000 0.0002 0.8759 0.0432 0.0432 

 50 (0*20,2*10,0*20)      

  Bias -0.0093 -0.0213 -0.5268 1.1800 1.1749 

  MSE 0.0001 0.0005 0.2775 1.4356 0.0432 

 50 (20,0*49)      

  Bias -0.0081 -0.0561 -0.1273 1.5672 1.5622 

  MSE 0.0001 0.0032 0.0162 2.4993 0.0432 

90 50 (0*49,40)      

  Bias -0.0120 -0.0179 -1.3227 0.0062 -0.0002 

  MSE 0.0001 0.0003 1.7496 0.0385 0.0384 

 50 (0*15,2*20,0*15)      

  Bias -0.0150 -0.0156 -0.8236 2.5062 2.4892 

  MSE 0.0002 0.0002 0.6784 6.3193 0.0384 

90 60 (0*59,30)      
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N m Scheme MLE  Lindley I.S BLUE BLEE 

  Bias -0.0057 -0.0175 -1.0327 0.0018 -0.0010 

  MSE 0.0000 0.0003 1.0664 0.0346 0.0346 

 60 (0*20,2*15,0*25)      

  Bias -0.0045 -0.0221 -0.5478 1.6323 1.6258 

  MSE 0.0000 0.0005 0.3001 2.6990 0.0346 

 60 (30,0*59)      

  Bias 0.0012 -0.0510 -0.1158 2.0324 2.0260 

  MSE 0.0000 0.0026 0.0134 4.1650 0.0346 
 

Table 3. Results of Simulation for parameter μ with GLD (α =0.5,   = 0,    =1) 
 

N m Scheme MLE Bayesian 

Lindley’s 

Importance 

Sampling 

BLUE BLEE 

50 30 (0*29,20)      

  Bias 0.0155 -0.0507 -0.3528 -0.0283 -0.0219 

  MSE 0.0002 0.0026 0.1245 0.0997 0.0989 

 30 (0*10,2*10,0*10)      

  Bias -0.0015 -0.0836 0.3704 0.8626 0.8792 

  MSE 0.0000 0.0070 0.1372 0.8430 0.0989 

 30 (20,0*29)      

  Bias 0.0007 -0.2832 1.1404 1.6587 1.6758 

  MSE 0.0000 0.0802 1.3005 2.8502 0.0989 

50 40 (0*39,10)      

  Bias 0.0140 -0.0257 0.3215 -0.0389 -0.0319 

  MSE 0.0002 0.0007 0.1033 0.1003 0.0987 

 40 (0*15,1*10,0*15)      

  Bias 0.0081 -0.1002 0.8464 0.0444 0.0564 

  MSE 0.0001 0.0100 0.7164 0.1007 0.0987 

 40 (10,0*39)      

  Bias 0.0062 -0.2277 1.2132 0.4070 0.4193 

  MSE 0.0000 0.0519 1.4719 0.2644 0.0987 

70 40 (0*39,30)      

  Bias 0.0072 -0.0312 -0.4076 -0.0225 -0.0183 

  MSE 0.0001 0.0010 0.1661 0.0720 0.0715 

 40 (0*10,2*15,0*15)      

  Bias -0.0026 -0.0649 0.4517 1.2506 1.2631 

  MSE 0.0000 0.0042 0.2040 1.6354 0.0715 

 40 (30,0*39)      

  Bias 0.0013 -0.2201 1.1894 2.0300 2.0426 

  MSE 0.0000 0.0484 1.4147 4.1924 0.0715 

70 50 (0*49,20)      

  Bias 0.0022 -0.0221 0.0621 -0.0313 -0.0263 

  MSE 0.0000 0.0005 0.0039 0.0723 0.0713 

 50 (0*20,2*10,0*20)      

  Bias 0.0092 -0.0650 0.7188 0.3066 0.3177 

  MSE 0.0001 0.0042 0.5167 0.1653 0.0713 

 50 (20,0*49)      

  Bias 0.0082 -0.1819 1.2491 0.8419 0.8532 

  MSE 0.0001 0.0331 1.5603 0.7801 0.0713 

90 50 (0*49,40)      

  Bias 0.0094 -0.0294 -0.4368 -0.0169 -0.0138 

  MSE 0.0001 0.0009 0.1908 0.0563 0.0560 

 50 (0*15,2*20,0*15)      

  Bias 0.0023 -0.0443 0.3366 1.3371 1.3468 

  MSE 0.0000 0.0020 0.1133 1.8439 0.0560 

 50 (40,0*49)      
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N m Scheme MLE Bayesian 

Lindley’s 

Importance 

Sampling 

BLUE BLEE 

  Bias 0.0066 -0.1864 1.2254 2.2811 2.2910 

  MSE 0.0000 0.0348 1.5017 5.2593 0.0560 

90 60 (0*59,30)      

  Bias 0.0086 -0.0152 -0.0725 -0.0217 -0.0178 

  MSE 0.0001 0.0002 0.0053 0.0563 0.0558 

 60 (0*20,2*15,0*25)      

  Bias 0.0041 -0.0531 0.6870 0.5890 0.5989 

  MSE 0.0000 0.0028 0.4719 0.4027 0.0558 

 60 (30,0*59)      

  Bias 0.0071 -0.1501 1.2685 1.1942 1.2042 

  MSE 0.0001 0.0225 1.6090 1.4820 0.0558 

 

Table 4. Results of Simulation for parameter   with GLD (α =1.5,   = 0,    =1) 

 

N m Scheme MLE Bayesian 

Lindley’s 

Importance 

Sampling 

BLUE BLEE 

50 30 (0*29,20)      

  Bias -0.0289 -0.0009 0.3606 0.0558 0.0291 

  MSE 0.0008 0.0000 0.1300 0.0290 0.0253 

 30 (0*10,2*10,0*10)      

  Bias -0.0211 -0.0069 0.0971 1.2428 1.1861 

  MSE 0.0004 0.0000 0.0094 1.5704 0.0253 

 30 (20,0*29)      

  Bias -0.0154 0.0060 0.0508 1.1522 1.0979 

  MSE 0.0002 0.0000 0.0026 1.3535 0.0253 

50 40 (0*39,10)      

  Bias -0.0190 0.0063 0.1550 0.0460 0.0278 

  MSE 0.0004 0.0000 0.0240 0.0198 0.0174 

 40 (0*15,1*10,0*15)      

  Bias -0.0152 0.0001 0.0689 0.6908 0.6614 

  MSE 0.0002 0.0000 0.0047 0.4949 0.0174 

 40 (10,0*39)      

  Bias -0.0134 0.0010 0.0526 0.6559 0.6272 

  MSE 0.0002 0.0000 0.0028 0.4479 0.0174 

70 40 (0*39,30)      

  Bias -0.0189 -0.0043 0.3667 0.0448 0.0247 

  MSE 0.0004 0.0000 0.1345 0.0216 0.0192 

 40 (0*10,2*15,0*15)      

  Bias -0.0154 -0.0017 0.0614 1.4195 1.3730 

  MSE 0.0002 0.0000 0.0038 2.0347 0.0192 

70 50 (0*49,20)      

  Bias -0.0153 0.0000 0.2044 0.0359 0.0210 

  MSE 0.0002 0.0000 0.0418 0.0159 0.0144 

 50 (0*20,2*10,0*20)      

  Bias -0.0126 0.0015 0.0639 0.9904 0.9617 

  MSE 0.0002 0.0000 0.0041 0.9955 0.0144 

 50 (20,0*49)      

  Bias -0.0100 0.0015 0.0413 0.9326 0.9047 

  MSE 0.0001 0.0000 0.0017 0.8843 0.0144 

90 50 (0*49,40)      

  Bias -0.0178 -0.0025 0.3658 0.0389 0.0228 

  MSE 0.0003 0.0000 0.1338 0.0173 0.0228 

 50 (0*15,2*20,0*15)      

  Bias -0.0108 -0.0062 0.0843 1.5284 1.4892 

  MSE 0.0001 0.0000 0.0071 2.3518 0.0155 
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N m Scheme MLE Bayesian 

Lindley’s 

Importance 

Sampling 

BLUE BLEE 

90 60 (0*59,30)      

  Bias -0.0115 -0.0008 0.2394 0.0315 0.0188 

  MSE 0.0001 0.0000 0.0573 0.0134 0.0123 

 60 (0*20,2*15,0*25)      

  Bias -0.0092 -0.0006 0.0529 1.2133 1.1860 

  MSE 0.0001 0.0000 0.0028 1.4845 0.0123 

 60 (30,0*59)      

  Bias -0.0121 0.0044 0.0405 1.1111 1.0851 

  MSE 0.0001 0.0000 0.0016 1.2469 0.0123 

 

Table 5. Results of Simulation for parameter   with GLD (α =1.0,   = 0,    =1) 

 

N m Scheme MLE  Lindley I.S BLUE BLEE 

50 30 (0*29,20)      

  Bias -0.0256 0.0105 0.1913 0.0559 0.0298 

  MSE 0.0007 0.0001 0.0366 0.0285 0.0247 

 30 (0*10,2*10,0*10)      

  Bias -0.0189 -0.0015 0.0560 1.4334 1.3733 

  MSE 0.0004 0.0000 0.0031 2.0801 0.0247 

 30 (20,0*29)      

  Bias -0.0144 -0.0049 0.0532 1.3737 1.3151 

  MSE 0.0002 0.0000 0.0028 1.9125 0.0247 

50 40 (0*39,10)      

  Bias -0.0150 0.0064 0.0746 0.0473 0.0292 

  MSE 0.0002 0.0000 0.0056 0.0199 0.0173 

 40 (0*15,1*10,0*15)      

  Bias -0.0160 0.0019 0.0416 0.7485 0.7182 

  MSE 0.0003 0.0000 0.0017 0.5779 0.0173 

 40 (10,0*39)      

  Bias -0.0103 -0.0013 0.0398 0.7399 0.7098 

  MSE 0.0001 0.0000 0.0016 0.5651 0.0173 

70 40 (0*39,30)      

  Bias -0.0173 0.0067 0.1925 0.0424 0.0228 

  MSE 0.0003 0.0000 0.0371 0.0209 0.0188 

 40 (0*10,2*15,0*15)      

  Bias -0.0161 -0.0015 0.0332 1.6443 1.5946 

  MSE 0.0003 0.0000 0.0011 2.7228 0.0188 

 40 (30,0*39)      

  Bias -0.0091 -0.0003 0.0343 1.5484 1.5005 

  MSE 0.0001 0.0000 0.0012 2.4167 0.0188 

70 50 (0*49,20)      

  Bias -0.0130 0.0095 0.0982 0.0349 0.0202 

  MSE 0.0002 0.0001 0.0096 0.0157 0.0142 

 50 (0*20,2*10,0*20)      

  Bias -0.0115 0.0011 0.0292 1.1164 1.0863 

  MSE 0.0001 0.0000 0.0009 1.2608 0.0142 

 50 (20,0*49)      

  Bias -0.0088 -0.0008 0.0325 1.0805 1.0509 

  MSE 0.0001 0.0000 0.0011 1.1820 0.0142 

90 50 (0*49,40)      

  Bias -0.0149 0.0006 0.1943 0.0357 0.0200 

  MSE 0.0002 0.0000 0.0378 0.0167 0.0152 

 50 (0*15,2*20,0*15)      

  Bias -0.0129 0.0017 0.0374 1.7541 1.7123 

  MSE 0.0002 0.0000 0.0014 3.0922 0.0152 
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N m Scheme MLE  Lindley I.S BLUE BLEE 

90 60 (0*59,30)      

  Bias -0.0126 0.0030 0.1154 0.0308 0.0183 

  MSE 0.0002 0.0000 0.0133 0.0132 0.0121 

 60 (0*20,2*15,0*25)      

  Bias -0.0100 -0.0007 0.0269 1.3707 1.3420 

  MSE 0.0001 0.0000 0.0007 1.8909 0.0121 

 60 (30,0*59)      

  Bias -0.0081 0.0004 0.0262 1.3090 1.2812 

  MSE 0.0001 0.0000 0.0007 1.7258 0.0121 

 

Table 6. Results of Simulation for parameter   with GLD (α =0.5,   = 0,    =1) 

 

N M Scheme MLE Bayesian 

Lindley’s 

Importance 

Sampling 

BLUE BLEE 

50 30 (0*29,20)      

  Bias -0.0206 0.0537 0.0684 0.0528 1.0274 

  MSE 0.0004 0.0029 0.0047 0.0275 0.0241 

 30 (0*10,2*10,0*10)      

  Bias -0.0170 -0.0005 0.0779 1.7266 1.6609 

  MSE 0.0003 0.0000 0.0061 3.0060 0.0241 

 30 (20,0*29)      

  Bias -0.0151 -0.0060 0.1052 1.8265 1.7584 

  MSE 0.0002 0.0000 0.0111 3.3607 0.0241 

50 40 (0*39,10)      

  Bias -0.0124 0.0022 0.0422 0.0506 -0.0319 

  MSE 0.0002 0.0000 0.0018 0.0208 0.0179 

 40 (0*15,1*10,0*15)      

  Bias -0.0169 0.0018 0.0696 0.8021 0.7697 

  MSE 0.0003 0.0000 0.0048 0.6616 0.0179 

 40 (10,0*39)      

  Bias -0.0132 -0.0071 0.0963 0.8504 0.8172 

  MSE 0.0002 0.0001 0.0093 0.7414 0.0179 

70 40 (0*39,30)      

  Bias -0.0189 0.0416 0.0590 0.0466 0.0275 

  MSE 0.0004 0.0017 0.0035 0.0207 0.0182 

 40 (0*10,2*15,0*15)      

  Bias -0.0140 -0.0017 0.0670 2.0821 2.0260 

  MSE 0.0002 0.0000 0.0045 4.3539 0.0182 

 40 (30,0*39)      

  Bias -0.0121 -0.0085 0.0948 2.1116 2.0549 

  MSE 0.0001 0.0001 0.0090 4.4772 0.0182 

70 50 (0*49,20)      

  Bias -0.0093 0.0114 0.0332 0.0383 0.0234 

  MSE 0.0001 0.0001 0.0011 0.0160 0.0143 

 50 (0*20,2*10,0*20)      

  Bias -0.0113 0.0030 0.0657 1.2792 1.2465 

  MSE 0.0001 0.0000 0.0043 1.6509 0.0143 

 50 (20,0*49)      

  Bias -0.0106 -0.0089 0.0832 1.3285 1.2951 

  MSE 0.0001 0.0001 0.0069 1.7796 0.0143 

90 50 (0*49,40)      

  Bias -0.0146 0.0334 0.0548 0.0354 0.0202 
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N M Scheme MLE Bayesian 

Lindley’s 

Importance 

Sampling 

BLUE BLEE 

  MSE 0.0002 0.0011 0.0030 0.0161 0.0147 

 50 (0*15,2*20,0*15)      

  Bias -0.0134 -0.0001 0.0459 2.2139 2.1669 

  MSE 0.0002 0.0000 0.0021 4.9164 0.0147 

 50 (40,0*49)      

  Bias -0.0081 -0.0030 0.0860 2.3172 2.2686 

  MSE 0.0001 0.0000 0.0074 5.3844 0.0147 

90 60 (0*59,30)      

  Bias -0.0121 0.0179 0.0277 0.0312 0.0188 

  MSE 0.0001 0.0003 0.0008 0.0131 0.0120 

 60 (0*20,2*15,0*25)      

  Bias -0.0076 -0.0008 0.0602 1.6402 1.6085 

  MSE 0.0001 0.0000 0.0036 2.7023 0.0120 

 60 (30,0*59)      

  Bias -0.0088 -0.0036 0.0773 1.6694 1.6373 

  MSE 0.0001 0.0000 0.0060 2.7990 0.0120 

 

The results given in Tables 1 – 6 Show that the maximum likelihood estimator has the best overall performance 

in terms of bias and mean squared error. It is followed closely by the Lindley’s approximation to the Bayes 

estimator. The importance sampling estimator does not appear to perform well in our simulations. The 

approximate BLUE and BLEE  estimators have similar performance, however, the approximate BLEE appears 

to have slightly better performance than the approximate BLUE. But both of them are dominated by the MLE 

and the Lindley’s approximation of the Bayes estimator.  
 

The parameter α does not appear to have any effect on the relative performance of the estimators for the location 

and scale parameters. However, the biases and MSEs of the estimators tend to decrease for smaller values of  .  
 

5 Real Data Example: Breakdown of an Insulating Fluid 
 

To evaluate and analyze the quality of transformers and their insulating fluids, a variety of tests has been 

devised. To explain this, for example, let's consider the Dielectric Breakdown Test, which assesses an insulating 

liquid's capacity to endure electrical stress up to the point of failure. It displays the voltage at which there will be 

a breakdown. Moisture, dirt, and conductive particle contamination will induce failure at levels below what is 

considered tolerable. Nelson [10] provided a data for the breakdown of an insulating fluid testing experiment. 

This data collection was examined and evaluated by Balakrishnan and Hossain [6] examining Type II 

generalized logistic distribution inference under progressive Type II censoring. Balakrishnan and Hossain 

evaluated and examined the data set that fits the Type II Generalized Logistic Distribution and finding out that 

MLE and Approximate MLE are very close in the inferencing. In this example n= 19 and m=8 with   =1. The 

data and the results are shown in Tables 7 and 8. 
 

Table 7. Insulating Fluid Data 
 

I 1 2 3 4 5 6 7 8 

   -1.6608 -0.2485 -0.0409 0.2700 1.0224 1.5789 1.8718 1.9947 

   0 0 3 0 3 0 0 5 
 

Table 8. Parameter Estimates Based on Insulating Fluid Data 
  

Estimator     
MLE 0.9027 1.8757 

Bayesian – Lindley’s Approach 0.9716 1.8511 

Bayesian – Importance Sampling 

Importance Sampling 

1.4455 -0.2370 

BLUE 1.4211 2.5867 

BLEE 1.2786 2.4809 
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The results show that the MLE and the Bayes estimator based on Lindley’s approximation are close to each 

other and somewhat smaller than the linear estimators. Based on our simulation study, the former estimators are 

more precise and reliable. 

 

6. Summary and Conclusion 
 

In this study, based on progressively type II censored data, we considered point estimation of location and scale 

parameters in type II Generalized Logistic Distribution (Type II GLD). We developed three estimators (ABLUE 

and ABLEE and Importance Sampling Estimator) for the unknown parameters. We also included the maximum 

likelihood estimators (MLE) and Bayes estimators approximated by the Lindley’s Approach for comparison 

purposes.  

 

The results of the simulation study reveal that MLE and Lindley’s approximation to the Bayes estimator 

perform better than the other estimators developed in this paper. They have the smallest bias and MSE values as 

shown during the simulation study. As for the effect of the parameter α value on the location and scale 

estimator’s bias and MSE values, estimators got better results for smaller values of  .  

 

The conclusion of this work is that the MLE has the overall best performance for estimating the parameters of 

the type II generalized logistic distribution. However, for small sample sizes, numerical problems can occur. In 

such situations, the approximate linear estimators like the ABLUE and ABLEE can provide a viable alternative. 

The Bayes estimator performs very well too, especially the approximation based on Lindley’s approach.  
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