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Abstract

Researches on artificial neural network models have shown that the method used to initialize and
estimate weights and bias always determines the rate at which the network will converge and
how efficient the model will perform. Although there are several methods that can be used to
initialize and estimate network weights and bias, Bayesian approach is widely considered as a
more efficient method for modelling artificial neural networks because it can easily compute the
inverses of covariance matrices with high dimension that otherwise are computationally expensive.
This study has developed a new filter, the First order Extended Ensemble Filter(FoEEF),that
applies numerical solution in solving the inverses of high dimensional covariance matrices from
It̂o

′
s stochastic state-space dynamical models. The research applies the new FoEEF Filter to

initializes and estimates the weights and bias of artificial neural network. Comparison on the
performance of FoEEF filter in estimating weights and bias are done against the performance of
EKF on function estimations by using two different functions, sin(x)+Q function and 3sin(x)3−
3sin(x)2 − sin(x) + 1 function, within 18 and 22 epochs. Emphasis of the performance is placed
on the rate at which the models converge. This study gauges the performance by determining
the minimum value of the mean square error produced from each epoch and average mean square
error minimum value.The outcome from the study showed that FoEEF filter had the lowest value
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of mean square error and average mean square error which was achieved with the least number
of epochs compared to EKF filter. This study concluded that the new FoEEF performed better
than EKF and is a more suitable filter for that can be used for initialization and estimation of
weights and bias in artificial neural network.

Keywords: Bayesian technique; filtering; estimation; state space dynamical system; extended
ensemble kalman filter.

2020 Mathematics Subject Classification: 62F15; 62F40; 62M05.

1 Introduction

Complex interaction of multiple factors simultaneously with non linear dynamics and computer
science has allowed for the creation of intelligent agents like artificial neural network.[1] which can
be used, among other things, to estimate mathematical functions.

Artificial neural network model is a model that is used to handle non linear data and approximate
functions or other mathematical operators [1, 2, 3, 4].

Initialization and weight estimation in artificial neural network can be done by using different
methods such as random process, maximum likelihood method, Bayesian technique, Cauchy initiali-
zation method etc. The major problem encountered when using any of this methods is computing
the inverse of matrices. when such matrices are high dimensional, their computation becomes
inefficient and expensive, i.e. the computation of their inverse takes a lot of time. To overcome this
problem, this study developed FoEEF filter that uses empirical estimate to compute the inverse of
high dimension matrix. From the study, it can be seen that FoEEF method initializes and estimates
the weights and bias in a more efficient and way.

The central theme in artificial neural network models is analogy borrowed from the structure and
function of human nervous system cells.

The building blocks and functionality of human nervous system is a combination of millions of
neurons that are interconnected with each neuron having three parts which are

• Dendrite: This is the input part. Dendrite receive information as signals from other neurons
or the surroundings.

• Cell body: The information processing part. It processes all information it receives from
dendrite.

• Axon: This is the output terminal. Axon link neuron to each other by sending signals from
soma to other neurons.

Fig. (1.1) shows three part structural components of a neuron in the human nervous system.[5]

Similar to human nervous system, artificial neural network is a combination of several neurons.
Each neuron has three parts as shown in figure(1.2). These three parts can be described as

• Input node: The node receives input data xi which are mathematical variables for xi|i=1,2.....n.
Each xi is assigned weight wji|i=1,2.....n,j=1,2,....m according to its importance.

• Activation and Transfer function: The product of xi and wi are summed to form a function
f(x) =

∑n
i=1 xiwji + bj where bj is a bias. The function f(x) is then transformed by the

transfer function φ(f(x)) to obtain output.

• Output: The value yj |j=1,2.....m such that has yj = φ(f(x))|∀j .

62



Robert et al.; AJPAS, 17(2): 61-85, 2022; Article no.AJPAS.86132

Fig. 1.1. Biological Neural Network Components

Fig. 1.2. Simple Artificial Neural Network

The representation in Fig. (1.2) is of a simple artificial neural network which can be referred to as a
single layer perceptron composed of input nodes and output nodes only(no hidden layer). Artificial
neural network generally are multi-layered with several complex layers in their architecture. Such
networks are called multiple-layers perceptron.

Complex architecture in artificial neural network from input neuron, hidden neuron to the output
neuron is represented in Fig. (1.3). This is based on a feed forward MLP where xi is the input
variable, wji represent the weight, the function f(x) represents summation of all the products of
variable and the weight, φ represents the transfer function that act on f(x) and hj is the output
value.

Several neurons are arranged in layers which are always three, input layer, hidden layer and output
layer. The columns of neurons in this layers are called nodes or units and each node or unit in a
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layer is connected to every node or unit in the next layer. For easier understanding of multiple layer
Perceptron, an architecture with input layer having two nodes, hidden layer with two nodes, output
layer with two nodes and assumed bias of zero value to each node is represented by Fig. (1.3).

Fig. 1.3. Simple three layered perceptron

Where npk represents the pth neuron in the kth layer, w
(k)
ji represents the weight from the ith node

in the kth layer to the jth node in the (k + 1)th layer.

Neuron n11 and neuron n21 form the input layer, neuron n12 and neuron n22 form the hidden layer
and neuron n13 and neuron n23 form the output layer.

x1 and x2 are input variables to neuron n11 and neuron n21 respectively.

There are two output from neuron n11. These are φ(x1w
(1)
11 ) and φ(x1w

(1)
21 ) that are the value for

neuron n12 and neuron n22 respectively.

Similarly, the two output values from neuron n21 are φ(x2w
(1)
12 ) that is the value for neuron n12 and

φ(x2w
(1)
22 ) that is the value of neuron n22.

If we take v
(1)
1 and v

(1)
2 as the weighted sums at the hidden layer given by

v
(1)
1 = w

(1)
11 x1 + w

(1)
12 x2 (1.1)

and

v
(1)
2 = w

(1)
21 x1 + w

(1)
22 x2 (1.2)

Then[
v
(1)
1

v
(1)
2

]
=

[
w

(1)
11 w

(1)
12

w
(1)
21 ww

(1)
22

] [
x1

x2

]

1.1 First Order Extended Ensemble Filter

The estimation of weight wi and bias bi can be done using different methods with different results.
the best method is one which will make the neural network model to converge faster with a higher
level of efficiency. In this research, a new method is developed, the FoEEF filter that estimates the
weights and bias in a more efficient way.
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The prediction state, kalman gain and innovation processes of the filter are

Prediction

f(wi
t)dt+ g(wi

t)q
1
2 (t)dw∗i

t (1.3)

Gain

phw(w
i
i)r

−1(t) (1.4)

Innovation

(dzt − 0.5(h(wi
t) + h(ŵt))dt) (1.5)

Diffusion error

w∗
t ≈ (0, Qt) (1.6)

Observation error

v∗t ≈ (0, Rt) (1.7)

is applied to estimate weights and bias as a Bayesian method

f(wi
t)dt+ g(wi

t)q
1
2 (t)dw∗i

t (1.8)

Gain

phw(w
i
i)r

−1(t) (1.9)

Innovation

(dzt − 0.5(h(wi
t) + h(ŵt))dt) (1.10)

Diffusion error

w∗
t ≈ (0, Qt) (1.11)

Observation error

v∗t ≈ (0, Rt) (1.12)

is applied to estimate weights and bias as a Bayesian method

1.2 Literature Review

Different methods can be used to initialize feed forward back propagation algorithms [6]. However,
these methods tend to have a slower rate of convergence to the global minimum. To improve on the
rate of convergence, several techniques have been applied since it is known that the rate at which
the network convergences is highly sensitive to initial values assigned to weights and bias since the
point at which weight estimation starts should be as close as possible to the desired outcome[6] [7]
[8]. It is known that small values of initial weights leads to local minimum while large values end
up with saturated neurons.

The most common initialization method is random initialization in which weights are generated
from a small interval of between [−ϵ,+ϵ].

Random initialization method has some disadvantages. First, it is difficult to pick the correct initial
values of weights using this method. Secondly, for high value initial weights, the transfer function
maps the high values of weights close to 1 and low values of weights close to zero, a complexity that
greatly reduces rate of convergence in ANN training and makes the gradient decent to vanish[9].
Most importantly, solving the inverse of high dimensional matrices, which is an exact solution, is
extremely difficult and limits the performance of neural network.

Back propagation algorithm with training input n = |X|, L number of layers in which K represents
the kth layer, (K = 1, 2, ....L), N(i) number of neurons in a layer K and activation function in layer
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K and input x represented by a
(K,x)
i can be developed from equation(2.1)

a
(K,x)
i = σ(

N∑
j=1

(NK)wjia
(K−1,x)
j ) (1.13)

Algorithm 1.1. General Back-propagation training algorithm [1] Data: L number of layers N(k)

number of neurons in layer k, for k = 1,...,L w
(k)
ij initial weights, for i = 1,...,N(k), j = 1,...,N(k-1),

k = 2,...,L. X set of training inputs, n = |X| y(x) desired output for all training inputs x ∈ X

η learning rate Result: w
(k)
ij final weights, for i = 1,...,N(k), j = 1,...,N(k-1), k = 2,...,L, such

that a(L,x)y(x),∀x ∈ X begin while ∃x ∈ X : a(L,x) ̸= y(x) do for x ∈ X do (for each training
input) a(1,x) = σ(x) for k=2,...,L do z(k,x) = w(k)a(k−1,x), a(k,x) = σ(z(k,x)) d(L,x) = (a(L,x) −
y(x)).σ′(z(L,x)), ((.) component wise) product for k=L-1,...,2 do d(k,x) = ((w(k+1))T d(k+1,x)).σ′(z(k,x))
(right superscript T stands for transpose operator) for k=L,...,2 do w(k) = w(k)− η

n
Σx∈Xd(k,x)(a(k−1,x))T

In this back-propagation random initialization method, although solutions of inverse matrix are
optimal, accumulation of covariance matrices, particularly high dimensional matrices, significantly
slows down the process making it to be computationally expensive.

Drago et al[11] applied statistically controlled activation weight initialization (SCAWI) method to
determine initial weights of their model. Their research used sigmoid function as transfer function
and uses paralysed neuron percentage (PNP) to test how many times a neuron is in paralysed state.
A paralysed state of a neuron is when it is saturated, a situation in which the magnitude of at least
one of its output is greater than or equal to a predefined threshold value. The predefined value
controls the need of a very large value of weights that makes back propagation impossible.

The main draw back to this model is that it does not operate outside adaptive momentum back
propagation(AMBP) algorithm which is a modified version of Back Propagation algorithm and also
PNP are computationally expensive.

Lehtokangas et al [12] used forward selection initialization(FSI) method to determine initial weight
of their model in which the aim is to find the set of network weights that minimizes a performance
function. The method uses a large pool of randomly initialised hidden units to select the best from
the pool using the objective function used in the hidden unit training. The selected best is trained
in a normal way. Their study used Cascade-Correlated (CC) algorithm that starts its learning with
minimal network then adds hidden units one by one at each separate hidden layer thereby avoiding
prior assumptions that need to be made on the initial size and structure of the neural network. The
method has the advantage of learning very fast, determines its own size and topology and requires
no back propagation.

Other methods applied in weight initialization includes partial least square method by Liu et al
[13], the method of evolutionary algorithm by Huskan et al [14] used to initialise from a set of
solutions, (OIVS) model which by Shimodaira [8] which is based on the equations that represent
the characteristics of a node’s information transformation mechanism.

Thangairulappan [6] proposed a single layer neural network that applies Cauchy inequality method
based on sensitivity analysis to initialise weights. This method ensures that the output of hidden
neurons are contained within the active region so that only relevant computations of covariance
matrices are performed.

Their model was simulated on iris data set, breast cancer, two spiral and modelling function
approximation.
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In the iris data set, the minimum mean square error(MSE) was 0.000353 in a span of 0.1 seconds.
This was a faster rate of convergence with less number of epochs as compared with random
initialization method which had MSE of 0.000358 and 0.000356 within 0.2 and 0.4 seconds respectively.
In the spiral dataset, they used neural net with three different architecture, that is 3-8-1, 3-10-1 and
3-11-1. the MSE obtained for the three were 0.078954, 0.078961 and 0.078950 respectively within
2.2, 3.0 and 2.5 seconds against random initialization methods with MSE of 0.078982, 0.078833 and
0.078929 within 1.7, 2.6 and 2.4 seconds.

For the case of three input non linear function, they used 4-8-1, 4-10-1 and 4-11-1 network structure.
The MSE for the 4 structures were 0.000136, 0.000138 and 0.000137 respectively. The corresponding
time span 0.9, 0.6 and 0.8 seconds. As much as the rate of convergence is improved and the number
of epochs are reduced, major limitation of this Cauchy initialization method is that it is applicable
only on a single layer neural network hence it cannot be applied in machine learning, deep learning
or Artificial Intelligence neural networks.

D’Errico et al [15] developed a new form of Bayesian filter, the customised Kalman Filter which
was later applied by Nadir et al [7] to initialize and estimate weights and bias of Artificial Neural
Network. Customised filter uses circulant matrix to solve matrix inverse which reduces the computational
cost and thus increases the efficiency of the network as compared to random initialization method.
Their research simulated data on the field of character recognition, and then compared the rate of
convergence using their customised filter method and random method.
Taking the dynamic of the process as

wt+1 = Atwt +Btut +Pt (1.14)

w as weight, A,B are process matrix relating the state from t+ 1 to tth process state where P is a
white noise matrix and u is optional.
The measurements is given by

mt = wt + rt (1.15)

where r representing measurement uncertainty.

The estimated Kalman filter is represented by

ŵt = w−
t +Kt(mt −w−

t ) (1.16)

where K is kalman gain matrix and

w−
t = At−1ŵt−1 +Bt−1ut−1 (1.17)

for some given prior estimate w−
0 of w0.

The back propagation algorithm for classical Kalman filter [7].

D’Errico et al [15] and Murru et al [7] used Bayesian method in developing a simple Kalman
gain matrix to minimize the error of measurement by considering each state of wt as mutually
independent normal random variable.

The approach used in Nadir et al [7] research on neural network introduced a correlation among
wt treating the weights as a random sampling process. Taking wt and Mt as multi-variant random
variable with

From Kalman filter equations

w−
0 = ŵ−1 = ŵexpt (1.18)
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ŵt = w− +Kt(zt −Htw
−
t ) (1.19)

w−
t = At−1ŵt−1 +Bt−1Ut−1 (1.20)

Where

• Kt is the Kalman gain matrix

• ŵt−1 is a pre-process estimate from judgement of expert.

kalman gain assigns suitable weights to zt and w−
t using a minimum root mean square error MSE

by the minimization of E(eTt et) with et = |ŵt − wt| and T is a transposition operator.

Kalman filter implements Bayesian estimation method [7] by customizing Kalman equations (1.1),
(1.2) and (1.3)into a Bayesian form. Taking w and Z as the stochastic component of w−

t and
zt respectively, and ft as a probability density function at step t, then equations (1.1), (1.2) and
(1.3)can be expressed in Bayesian form as

f(w/z) =
f(z/w)f(w)∫ +∞

−∞ f(z/w)f(w)dw
(1.21)

where f(w/z) is the posterior density, f(w) is a normally distributed prior density with mean w−
t

and co-variance Qt i.e. f(w) ∼ N(w−
t , Qt), f(z/w) is normally distributed likelihood function with

mean zt and covariance Rt i.e. f(z/w) ∼ N(zt, Rt) and the denominator
∫ +∞
−∞ f(z/w)f(w)dw as a

normalization factor.

From equation (1.4) it follows that

f(w/z) ∝ f(z/w)f(w)

= f(w/z) ∝ N(w−
t , Qt)N(zt, Rt)

= N(ŵ, Pt)

= N
(

Rtw
−
t +Qtzt

Rt+Qt
, ( 1

Rt
+ 1

Qt
)−1

)
(1.22)

From the equations (1.2), (1.3) and (1.4), the posterior probability density function is Gaussian
with either f(w/z) = N(ŵt, Qt) where

ŵt =
Rtw

−
t +Qtzt

Rt +Qt
(1.23)

Equation (1.6) is a metro logical form of of Kalman filter equation (1.2) and the recursion for the
final estimate ŵ should stop at fT , 0 ≤ t ≤ T .

The equation (1.6) can be expressed in the form

ŵt = (Q−1
t +R−1

t )−1(Q−1
t w−

t +R−1
t zt) (1.24)

Pt = (Q−1
t +R−1

t )−1 (1.25)

Their numerical result concluded that the rate of convergence was faster with application of Extended
Kalman Filter at the weight initialization stage using the algorithm.

Algorithm 1.2. Weights initialization algorithm based on Customised Kalman filter [1] Data: L
number of layers N(k) number of neurons in layer k, for k = 1,...,L X set of training inputs, n
= —X— y(x) desired output for all training inputs x ∈ X Q0(k), for k=2,...,L w−

0 prior estimate

of ŵ(k), for k=2,....,L m0(k)measurementsofŵ(k) for k=2,....,L R0(k), for k=2,....,L Result ŵ
(k)
2
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optimized initial weights for back-propagation algorithm for k=2,....,L begin for k=2,....,L do for
t =0,1,2 do ŵt(k) = (Q−1

t (k) + R−1
t (k))−1(Q−1

t (k)w−
t (k) + R−1

t (k)mt(k)) Qt+1(k) = (Q−1
t (k) +

R−1
t (k))−1 w−

t+1(k) = ŵt(k) mt+1(k) = Rnd(−h, h) random sample in the interval (-h,h) (Rt+1(k))ii

= 1
N(k)N(k−1)

Σx∈X ||d(k,x)||2, ∀i (Rt+1(k))lm = o.7, ∀lm

The research used randomly sampled data between the interval (−h, h) for the measurement mt(k).
The co-variance matrix value from the main diagonal and chosen from sensitivity analysis was set to
0.7 involving Pearson coefficient. Diagonal of co-variance matrices (Rt(k)) were used as uncertainty
of the measurement with high value of reflecting less accuracy of mt(k).

Their results determined that that their algorithm converged faster than random initialization and
involved less number of iteration process.

The result from their research showed that the estimated weight ŵt of the weight wt depends on
the balancing between prior estimation and measurements of wt which is constructed to minimize
the error E((ŵt −wt)(ŵt −wt)

T ). It also established that it is efficient to apply of Kalman filter as
an optimal estimation method, just like the Least Square Estimation method or Minimum Mean
Square Error estimation methods.

Estimation of weights and bias of Artificial neural network models depends on initialization that
should make the initial values as close as possible to the target value. Initialization algorithms
involves computation of matrix products and determination of their inverses. In such process the
rate of learning is hampered by the process of computing the products and inverses of the matrices
particularly when the dimensions of these matrices are very large which significantly reduces the
time it takes to train the model or for the model to converge. Solutions to this problem have
been proposed by several researchers using different approaches as mentioned in the literature
review above. The current research done by Nadir and Miuru used Bayesian technique based on
customised kalman filter with an algorithm that applies cyclic matrix. Cyclic matrices has less
number of operations (matrix multiplications) than usual Kalman filter and in determining the
inverses, cyclic matrix performs in a fast way since each row is a cyclic shift of the row above it.
They can be diagonalized by using the Discrete Fourier Transform. The Customised filter is still
significantly slower that the new First order Extended Ensemble Filter that avoids computation
of matrices in its algorithm by using empirical estimates method to determine their products and
inverses.

1.3 Training and Testing of Artificial Neural Network

This study trains and tests the First order Extended Ensemble Kalman Filter on artificial neural
network model is performed on two functions,sin(x) +Q and sin(x).3 + sin(x).2 + sin(x) +Q with
emphasis on efficiency and rate of convergence of the model.

In the training and testing process, data is split into two sets. 70% for the data is used to train the
neural network and the remaining 30% of the data is used for testing.

The two processes are guided by Algorithm (5.1.1).

Algorithm 1.3. Algorithm of First order Extended Ensemble Filter(FoEEF) [1] L is the set of
layers in the neural network N(k) the number of neurons in G for k = 1, 2, 3, 4......L η is the learning
rate y(w) Target output z0 Initial observations/measurement R0 for k = 1......L ([w1

1, w
1
2, .....w

1
M ], ......

wN
1 ,

wN
2 , ...wN

M

) Generate weights w randomly ŵ0 = E(w0).
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= 1
M

∑M
i=1 wi .

Initialize the filter object with initial values of the state. P0 = E(w0 − ŵ0)(w0 − ŵ0)
T

= 1
1−M

∑M
i=1(w0 − ŵ0)(w0 − ŵ0)

T

Initialize with empirical estimate of state covariance matrix P.

while S(G) = 2 to S∗ do for t = 0, 1, 2 do zt+1 = random.sample Random numbers sampling (-h,h)

hw = ∂h
∂w

given ŵt The Jacobian of hw wi
t+1 = wi

t + phw(w
i
t)r

−1(t)(dzt − 0.5(h(wi
t) + h(ŵt))dt)

State propagation for each ensemble i. ŵt+1 = E(wt+1).

= 1
M

∑M
i=1 wji.

Pt+1 = E(wt − ŵt)(wt − ŵt)
T

= 1
1−M

∑
(wt+1 − ŵt+1)(wt+1 − ŵt+1)

T

(Rt+1(G))ii =
1

N(G)N(G−1)

∑
w ||d(G,w)||2 (Rt+1(K))lm = 0.7

2 Simulation, Analysis and conclusion

2.1 Introduction

Training and testing of artificial neural network models is a process that first involves first assigning
to the network initial values of weights and bias. This process is called initialisation. The second
part is to estimate the value of weights and bias using a back propagation method by updating those
weights and bias upto the point at which the neural network is capable of functioning independently.
This weights and bias are updated by minimising the difference between the output from the network
and the target.

The neural network is then tested to determine the level at which it has learned enough in terms
of the speed of convergences and efficiency.

One of the major applications of artificial neural network are facial recognition, character recognition,
classification and mathematical function estimation .

Experimentation in this research is based on function estimation.

A function estimation can be described in this case as an underlying mathematical function or
mapping function that maps any set of input data to a set of output data with consistency, efficiency
and without bias. The neural network tries to best approximate this mapping function. Basically
artificial neural network are function approximation algorithm.

This study uses simulated data based on algorithm (5.1.1) to train the new FoEEF filter. In the
research experiment, two functions are estimated,

• sin(x) +Q

• 3sin(x)3 − 3sin(x)2 − sin(x) + 1

The experiments are simulated using Matlab software.

In the experimentation, two epochs, that is 18 and 22 epochs, are used. The two epochs are run in
two different neural network structures, the 1-4-1 and 2-4-1 structures. The performance from the
experiment generates by FoEEF filter is then compared with results generated by using EKF filter
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with special emphasis on the rate of converge and efficiency. The aim of the experiment is to gauge
which between the two filters convergence faster and is more efficient.

The research performs and analyses the experiment in three parts.

1. Part one involves analysis of observation made from graphical output after training and
testing the neural network.

In the output analysis for figures four, five, six,seven eight, nine, ten, eleven, twelve, thirteen
and fourteen, the blue lines represent the target values and red lines represent the outputs
from the filters.
Analysis in this part is done after the filters are trained and tested by observing the extend
at which the output values from the filters(red line) is mapped into target values(blue lines)
and the level at which the training and testing output deviates away from their targets. An
efficient filter is one whose output line is perfectly mapped into the target line with small
deviation.

2. In the second part, the study tabulates the output values for analysis. A table with the
number of epochs, convergence points and computed mean square error is constructed. The
experiment aims to compare which of the two filters have minimum value of the convergence,
the filter with the smallest least square error and the average mean square error. In the
analysis, the filter that gives the smallest value for both convergence and mean square error
is the one that is more efficient.

3. In the third part, convergence values (x-axis) is plotted against computed mean square
error(y-axis) to determine which of the two filters has low distribution of mean square error.

2.2 Training and testing FoEEF and EKF on 1-4-1 network using
sin(x)+Q function with 18 epoch

In this first experiment, sin(x)+Q function is used to train FoEEF and EKF on a 1-4-1 neural
network structure using 18 epochs.

Fig. (4) and Fig. (5) represents training and testing of FoEEF and EKF within 18 epochs.

The blue lines represent the target values assigned for training and testing while the red lines
represent output values from neural network after the training and testing. the results from the
first experiment are represented in Figs. (5) and (6) below Training and testing of FoEEF filter.

2.2.1 Training and testing of EKF filter

Graphical Analysis: From Fig. (4) that represent training and testing of FoEEF algorithm and
Fig. (5) that represents training and testing of EKF algorithm, it can be observed that FoEEF has
captured the training and testing data set in a much faster way than EKF. This is indicated by the
fact that in the training data set, there is one single red line that is well matched with the blue line
with little or no significant deviation of red lines (output values) from the blue lines (target values)
when compared to the training data set in figure (5) which has three red lines with two of the lines
significantly deviating away from the target values.

Fig. (4) also has output from FoEEF test data set which can be said to be more efficient than
than the EKF test data set. This is because the two lines(red and blue) from FoEEF test result in
Fig. (4) are closely marched when compared to EKF test result in Fig.(5) which has some small
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Fig. 4. Experimentation on FoEEF filter within 18 epoch

Fig. 5. Experimentation on EKF within 18 epoch

deviations at the two tips of the graph

Conclusion: Initialisation of weights and bias of artificial neural network takes place in the very
early stages of the training process. Different models initialise neural networks with different values
giving different outcomes. Observations that are made from the figures by comparing performances
of FoEEF and EKF shows that FoEEF performs better than EKF and therefore it is more efficient
filter than EKF in initialising and estimating the weights and bias of artificial neural network.

Table of output: Table (1) represent results from simulated data. The table has the eighteen
number of epoch for FoEEF and EKF, the convergence value for each epoch and the corresponding
mean square error measurement.
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Table 1. Result from FoEEF and EKF on sin(x)+Q for 18 epochs

Epoch EKF MSE(EKF) FoEEKF MSE(FoEEF)

1 3.3945 0.41949 -0.8508 0.2861
2 2.9451 0.0393 0.6685 0.96914
3 3.9115 1.35649 -0.5747 0.06698
4 0.2775 6.09750 -0.8553 0.29096
5 4.6630 3.67177 0.25361 0.3243
6 5.9955 10.55396 0.9713 1.65685
7 6.3740 13.1564 -0.8796 0.3177
8 0.1157 6.9227 0.1044 0.17664
9 2.1579 0.3468 -0.2657 0.00251
10 -0.8320 12.8079 -0.8707 0.3078
11 1.6702 1.15909 -0.7729 0.20885
12 1.5647 1.39739 -0.8719 0.30914
13 5.6730 8.56256 0.2716 0.3451
14 -0.3333 9.48709 -0.7147 0.1590
15 -0.7894 12.5019 -0.8773 0.31518
16 -0.2454 8.95094 -0.8584 0.2943
17 3.4936 0.55769 -0.8391 0.27374
18 -0.3536 9.61256 0.7208 1.07472

2.2.2 Analysis from the table

Observation made from table (1) shows that the minimum value of mean square error(MSE) for
FoEEF is 0.002519036. This minimum value occurs at the 9th epoch for FoEEF. Comparatively, a
run of EKF gives the minimum value of mean square error(MSE) of 0.039317. This values occurs
at the 2nd epoch.

The average mean square error for FoEEF is 0.409945 while the average mean square error for EKF
is 5.97785833. From the table, it can be observed that EKF has a high value of average mean square
error when compared to the value of the mean square error of FoEEF.

The comparison are relayed on the array below.

Algorithm network Epoch MinMSE AverageMSE

FoEEF 1− 4− 1 9 0.00251 0.409945
EKF 2 0.0393 5.97785833

Conclusion from the table: The minimum value of mean square error for EKF is fifteen times
numerically larger than the minimum value of mean square error for FoEEF filter. This is a
significant difference in efficiency measurement between the two filters.

The average values for the mean square error for the two filters shows that EKF filter has a fourteen
times numerically larger average mean square error than FoEEF filter .

This research concludes that FoEEF filter convergence faster than EKF filter because of its very
lower mean square error of 0.00251 when compared to a much higher mean square error for EKF
filter of 0.0393.
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The research also concludes that FoEEF filter is more efficient than EKF filter given that the the
average mean square error for FoEEf filter of 0.409945 is far much lower than the mean square error
for EKF filter of 5.97785833.

Analysis from the graph on the distribution: A analysis on distribution of the mean square
error of FoEEF filter and the mean square error of EKF filter is shown on Fig. (6) below. The
figure represent a plot of mean square error(MSE) from the output measurement of FoEEF (blue
lines) filter and the mean square error from output measurement of EKF(red lines) filter.

Fig. 6. Training and Testing using sin(x)+Q in 1-4-1 Architecture for 18 epoch

The trajectory observed from figure(6) shows the distribution of mean square error of FoEEF filter
to be lower than the distribution of mean square error of EKF.

Conclusion: FoEEF filter is more efficient than EKF filter in initialising the weights and bias.
This is indicated by figure (6) in which it can be observed that the trend of the distribution of mean
square error of FoEEF filter is much lower than the trend of the distribution of mean square error
of EKF filter.

2.3 Training and testing of FoEEF and EKF on 1-4-1 network using
sin(x)+Q function with 22 epoch

Second experiment on training and testing is done on FoEEF and EKF filters using the same
functional estimation sin(x)+Q function on the same 1-4-1 network structure but within 22 epochs.
The aim of this experiment is to gauge the performance of the two FoEEF filter and EKF filters
when the number of epochs are different.
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The Figs. (7) and (8) are outputs after training and testing FoEEF filter and EKF filter on 22
epochs respectively

Training and testing FoEEF: Fig. (7) shows the graphical output from training and testing of
FoEEF filter on 22 epochs.

Fig. 7. Estimation with 22 epoch for FoEEF

Training and testing of EKF filter on 22 epochs: Fig. (8) shows the graphical representation
of the output from training and testing of EKF filter on 22 epochs.

Analysis from the graph of figures 7 and 8: The observation made from training and testing
of FoEEF filter in figure (7) shows that the output values (red lines) from FoEEF filter is more
closely mapped to the target values (blue lines). Deviations of output from the target is therefore
noticeably small when compared to deviations from EKF filter in figure(8). This is because in
figure(8), EKF training data results shows some two red lines that are significant deviating from
the target value(blue lines). This large deviation shows that FoEEF filter has captured the training
data faster than EKF filter.

Conclusion: FoEEF converges faster that EKF filter hence it is a better filter than EKF filter and
therefore initialise weights and bias in artificial neural network in a faster and more efficient way
than EKF filter. This shows that FoEEF filter has a faster rate of convergence.

Analysis from the table: Table (2) represents output values for each of the 22 epochs, the values
at which the network convergences, computed mean square error(MSE) for both FoEEF and EKF
filters, average MSE for for both FoEEF and EKF.
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Fig. 8. Estimation with 22 epoch for EKF

From Table(2), it is be observed that the minimummean square error value for our new filter(FoEEF)
is 0.008114226. This value occurs at the very first epoch in the 22 epoch training. The minimum
mean square error value for EKF filter is 1.00538 which occurs at the second epoch. It is observed
that the EKF filter mean square error value is one hundred and twenty four times lager than
the mean square error of FoEEF filter. This difference can be considered as highly significant.

The table also shows the values obtained from EKF filter to be generally lager than values from
FoEEF filter. The average mean square error for FoEEF filter is 0.53299 while that for EKF filter
is 8.24229. The value from EKF filter is fifteen times lager than the value for FoEEF filter.

The results form the table are summarised below

Algorithm network Epoch MinMSE averageMSE

FoEEF 1− 4− 1 1 0.008114226 0.53299
EKF 2 1.00538 8.24229

Conclusion: The difference between the minimum mean square error for FoEEF filter(0.00811)
and and that of EKF filter(1.00538) is major. EKF gives one hundred and twenty four times
numerically larger values of mean square error than FoEEF filter.

The research computed the average mean square errors for both filters. The average mean square
error from EKF filter output(8.24229) is fifteen times numerically larger when compared to the
mean square error from FoEEF filter output(0.53299)

The analysis from the experiment shows how our new FoEEF filter converges faster than EKF filter.
It also shows that the efficiency exhibited by our new FoEEF filter is better than EKF filter.
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Table 2. Result from FoEEF and EKF on sin(x)+Q for 22 epochs

Epoch EFK MSE(EKF) TIME(S) EEFK MSE(FoEEF)

1 0.02224 7.42327 0.0032 -0.22581 0.00811
2 1.74412 1.00538 0.0025 0.56729 0.78001
3 -1.09165 14.73380 0.0019 -0.523918 0.04327
4 -1.14944 15.18078 0.0019 -0.59115 0.07577
5 0.11160 6.94430 0.0019 0.50770 0.67830
6 0.70720 4.16000 0.0017 0.77863 1.19797
7 0.90889 3.37794 0.0017 -0.65613 0.11576
8 -0.92212 13.46112 0.0017 -0.65416 0.11443
9 -0.82698 12.77205 0.0018 0.73897 1.11273
10 0.54916 4.82965 0.0019 -0.11160 0.20239
11 -0.68750 11.79454 0.0018 -0.55788 0.058562
12 0.70103 4.1852 0.0019 -0.36431 0.00234
13 0.11190 6.94273 0.0019 0.73301 1.10020
14 0.83977 3.63680 0.0019 -0.64186 0.28214
15 0.59241 4.64142 0.0016 0.85714 1.37601
16 -0.95617 13.71213 0.0018 0.96247 1.63422
17 0.02536 7.40626 0.0019 0.78799 1.21855
18 0.07577 7.13444 0.0017 -0.58947 0.074848
19 -0.9251 13.48361 0.0017 -0.67951 0.13222
20 -0.76719 12.34828 0.0017 -0.68205 0.13407
21 0.74899 3.99126 0.0017 0.59137 0.82312
22 -0.11072 8.16549 0.0019 0.4330 0.56086

The results analysed from Table(2) proves that FoEEF filter is more suitable at weight and bias
initialisation and estimation in artificial neural network than EKF.

Distribution Analysis: A graphical analysis is done by plotting the values of MSE for each epoch.

Observation from Fig.(9), a plot of the distribution of mean square error from FoEEF and EKF
filters for each epoch shows that generally, the new FoEEF filter has lower distribution of mean
square error for each number of epoch than EKF filter. This implies that our new FoEEF filter is
much more efficient in most stages of epochs than the EKF filter.

3 Estimating FoEEF and EKFmodels using the function
y=3sin(x)3−3sin(x)2−sin(x)+1 in 2-4-1 Neural Network
with 18 and 22 Epochs

In the third experiment, the study performed a further investigation of FoEEF and EKF filters on a
more complex trigonometric function using a 2-4-1 neural network structure which was run on two
epochs. The first experiment was done using 18 epochs and the second was done using 22 epochs.

Training and testing of FoEEF filter using 18 epochs: Fig.(10) below represent training and
testing of FoEEF within 18 epochs on y=3sin(x)3 − 3sin(x)2 − sin(x) + 1 function.

Training and testing of EKF filter using 18 epochs: Fig.(10) represent training and testing
of EKF within 18 epochs on y=3sin(x)3 − 3sin(x)2 − sin(x) + 1 function.
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Fig. 9. Distribution of MSE on 22 epoch

Fig. 10. Estimation of FoEEF with 18 epoch

Graphical Analysis and conclusion: As the function to be estimated becomes more complex, it
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Fig. 11. Estimation of EKF with 18 epoch

can be observed that EKF filter represented by Fig. (11) looses track and becomes less efficient in
the training process. This is indicated by the red lines (output values) from the neural network in
Fig. (11) which has five very large deviations away from the blue lines (target values). Comparing
deviation of training data set in figure (11) with deviations of the same training data set in Fig.(10)
that represent output of FoEEF filter, it can be seen that there are only two small deviation of red
lines in figure (10) from the target(blue line).

At the validation stage, EKF filter performance(red lines) represented by figure(11) is even less
efficient since it can not estimate the target function(blue line) well. Output from EKF filter gives
a near straight line that does not match the target Values at all. When this is compared with
output from FoEEF filter, it can be seen that FoEEF filter curves and matches the target values in
a in a better way than EKF filter.

Analysis from Table: Table (3) below represents output from simulation done the on the function
y=3sin(x)3−3sin(x)2−sin(x)+1 that is run within 18 epochs. The table contains epochs numbers,
the convergence value for each epoch and computed mean square error for each epoch.

Analysis and Conclusion: From the table(3) it can be seen that the minimum mean square
error for the new filter(FoEEF) is 0.005711518 which occurs at the 5th epoch. comparatively, the
minimum value of mean square error for EKF filter is 6.01600 which occurs at the 8th epoch.

79



Robert et al.; AJPAS, 17(2): 61-85, 2022; Article no.AJPAS.86132

Table 3. Result from FoEEF and EKF for 18 epochs

Epoch EKF MSE(EKF) FoEEF MSE(FoEEF)

1 1.03893 2.91685 -5.52982 27.18506
2 -3.69554 41.50398 5.30047 31.54359
3 0.24000 6.28408 0.57006 0.78491
4 6.2074 11.97623 -0.79780 0.23224
5 -0.04161 7.77533 -0.24031 0.00571
6 0.05272 7.25809 -1.36830 1.10757
7 -0.14537 8.36473 0.20387 0.27015
8 0.2940 6.01600 0.17390 0.23989
9 -1.34882 16.77429 0.35022 0.4437
10 0.27221 6.12362 0.24281 0.31215
11 -0.00124 7.55184 0.13221 0.20079
12 -0.47969 10.41035 0.32776 0.41429
13 -0.37608 9.75250 -1.43684 1.25653
14 -1.76350 20.34296 -0.02634 0.08383
15 -1.62469 19.1101 0.36190 0.45940
16 -0.08141 7.99885 0.31150 0.39362
17 0.19908 6.49091 0.12774 0.19680
18 0.26072 6.18064 0.03616 0.12394

This difference is major and significant since it shows that the mean square error for EKF filter is
three times lager than that of FoEEF filter. In terms of efficiency, the new FoEEF filter is more
efficient than EKF filter when functions become complex since the experiment shows that FoEEF
filter has a smaller convergence and average mean square error than EKF filter.

The array below shows values of MSE square error and MSE.

Algorithm network Epoch MinMSE averageMSE

FoEEF 2− 4− 1 5 0.005711518 3.6252
EKF 8 6.01600 11.629

Distribution Analysis: Fig.(12) is a plot of the mean square error(y-axis) vs the epoch in a 18
epoch simulation. the figure show the distribution of FoEEF filter(blue line) and EKF filter(red
line). The aim of the graph in Fig. (12) is to determine which of the two filter has a lower
distribution of the mean square error from the experimentation.

From Fig. (12), it be seen that the distribution of the mean square error of FoEEF filter is lower
than than of EKF filter. Most of the values for the new filter as observed from Fig. (12) lies on the
lower part of the axis just next to the x-axis that has a zero value.
The study concludes that FoEEF filter is more efficient than EKF filter when estimating complex
function.

3.1 Training FoEEF and EKF using 22 epochs

Fig. (13) below represent training and testing of FoEEF with 22 epochs on y=3sin(x)3−3sin(x)2−
sin(x) + 1 function.

80



Robert et al.; AJPAS, 17(2): 61-85, 2022; Article no.AJPAS.86132

Fig. 12. Distribution of MSE for 18 epoch

3.1.1 Training and testing of FoEEF filter using 22 epochs

Training and testing EKF filter using 22

Graphical Analysis: Figs.(13) and (14) shows the training and testing of the new FoEEF filter
and EKF filter respectively. It can be seen from the two figures that the output from the new
FoEEF filter represented by red lines in figure (13) is closely matched to the target values that is
represented by the blue lines for both training and testing process. This study compared the output
from figure(13) with that of figure(14). Training and testing of FoEEF in figure(13) matched the
target values than output from EKF filter in figure(14) which can be seen to have three lines(red)
that significantly deviates away from the target line(blue).

Conclusion: When the results from the two graphs of figure (13) and figure (14) are compared,
this study concludes that the new FoEEF filter initialises and estimates the weights and bias of the
training data in a more efficient and faster way than EKF filter. This is shown by how much the
outputs represented by graphs from figure(13) and (14) matches with the lines that represent the
values of the target. Output lines(red) from figure(13) matched the target value in a more efficient
way than the graph in figure (14) and therefore FoEEF filter is a better filter than EKF filter and
is more suitable for use in initialising and estimating weights and bias of artificial neural network.

This study did tabulated the result from simulation on FoEEF and EKF filters for the number
of epochs, the convergence value for each epoch, the mean square error for each filter at each epoch
and the average mean square error for each filter.
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Fig. 13. Estimation of FoEEF with 22 epoch

Fig. 14. Estimation of EKF with 22 epoch

The main aim is to determine which filter has the smallest convergence value, mean square error
and average mean square error which is are measures of efficiency of the filters. The results for the
experiment are represented in Table(4).
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Table 4. FoEEF with 22 epochs

Epoch FoEEF MSE(FoEEF) EKF MSE(EKF)

1 0.9736 0.965 15.1323 1.1970
2 0.5432 0.251 17.95141 13.252
3 0.9984 0.0387 1.5642 0.08711
4 -0.4093 0.47 0.9690 39.22
5 -0.6336 0.0008 -2.0727 0.00181
6 0.5359 0.263 -0.2952 0.01163
7 0.1549 0.703 0.4780 0.0081
8 -1.1825 0.054 0.6004 0.1219
9 -1.0108 1.791 -1.4501 1.6735
10 0.2109 0.248 -0.8224 0.1071
11 0.6503 0.804 -0.1132 0.0029
12 -0.3222 1.883 0.6436 0.1802
13 0.2102 0.043 0.2525 0.1029
14 0.2453 0.086 0.5311 2.9184
15 -0.8497 1.275 0.3889 2.3624
16 0.0075 1.0053 0.9860 0.0068
17 -0.026 0.093 -1.56835 0.06463
18 0.09418 1.990 0.43938 0.09977
19 -0.4749 0.067 -0.6328 4.71
20 -1.3722 0.356 0.30358 1.52
21 -1.432 0.108 0.33715 1.44
22 0.399 0.7494 0.64559 0.799

Analysis from the table: Observations from tables (4) shows that the minimum mean square
error(MSE) for FoEEF filter has a value of 0.0008 and occurs at the 5th epoch. The minimum mean
square error value for EKF filter is 0.0068 and occurs at the 16th epoch.
The study computed the ratio of mean square error of FoEEF and EKF filters. The mean square
error of EKF filter is eight times numerically larger than the mean square error of FoEEF filter.

The average mean square error of EKF filter was found to be 3.1767 while the average mean square
error for FoEEF filter is 0.602. The study also computed the ratio of the average mean square error
of EKF and FoEEF filters. The average mean square error for EKF filter is five times numerically
larger than the average mean square error for FoEEF filter.

The array below represents the number of epochs, minimum mean square error for FoEEF filter
and EKF filter and the corresponding average mean square error for both filter.

Algorithm Network Epoch MinMSE AverageMSE

FoEEF 2− 4− 1 5 0.0008 0.602
EKF 16 0.0068 3.1767

Conclusion: Values from the table shows that the mean square error of EKF filter is eight times
lager than that of FoEEF filter. The average mean square error for both FoEEF and EKF filters was
computed and the value for EKF filter was five times numerically larger than that of of FoEEF filter.
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This result from the experiment shows that the new FoEEF filter is more efficient that EKF filter
hence the new FoEEF filter is more suitable for initialising and estimating weights and bias of
artificial neural network model.

4 Conclusion

This study proposes a new method of initialising and estimating weights and bias in artificial neural
network(ANN) by using First order Extended Ensemble Filter(FoEEF). the new proposed method
uses numerical estimate to compute covariances of high dimensional matrices. The results from the
performance of the proposed (FoEEF) was compared with the performance of Extended Kalman
Filter(EKF) to gauge the eficiency of the new filter using back propagation algorithm. The study
showed that the new (FoEEF) method performed better than (EKF) in terms of rate of convergence,
time, epoch and mean square error. This could be seen from the graphical.
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