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The phase transition of the Einstein-Gauss-Bonnet AdS black hole has the similar property with the van derWaals thermodynamic
system. However, it is determined by the Gauss-Bonnet coefficient α, not only the horizon radius. Furthermore, the phase transition
is not the pure one between a big black hole and a small black hole. With this issue, we introduce a new order parameter to
investigate the critical phenomenon and to give the microstructure explanation of the Einstein-Gauss-Bonnet AdS black hole
phase transition. And the critical exponents are also obtained. At the critical point of the Einstein-Gauss-Bonnet AdS black hole,
we reveal the microstructure of the black hole by investigating the thermodynamic geometry. These results perhaps provide
some certain help to deeply explore the black hole microscopic structure and to build the quantum gravity.

1. Introduction

The investigation of the black hole thermodynamic proper-
ties is always the interesting issue of theoretical physics
workers. In recent years, people mainly pay attention to the
thermodynamic properties of the AdS and dS black holes.
Particularly, the extended first law equation of black hole
thermodynamics was obtained by regarding the cosmological
constant in a AdS black hole as the pressure in an ordinary
thermodynamic system. Compared to the black hole state
parameters with the van der Waals (vdW) equation, the crit-
ical phenomenons of different black holes were explored by
adopting different independent dual parameters. The results
showed that the phase transition of a black hole corresponds
to the liquid-gas one of a vdW liquid system, and they have
the same critical exponents and scalar curvature at the critical
phase transition points [1–43].

Although more and more research show that black holes
have the common thermodynamic properties with ordinary
thermodynamics, the black hole entropy is proportional to
the area of horizon radius rather than to the volume. This
is a special property of black hole thermodynamic systems.

Therefore, the study of the microscopic origin of black hole
entropy becomes a challenge. Among methods of calculating
the black hole microscopic state and explaining the micro-
scopic origin of black hole entropy, the string theory offers
a natural way. Thereafter, Strominger and Vafa obtained
the exact formula of the several supersymmetric black hole
entropy by calculating the weakly coupled D-membrane
states and extrapolating these results to the black hole phase
[44]. This method has been applied to other kinds of black
holes [45, 46]. Despite the great achievements, it is valid in
the supersymmetric and extreme black holes instead of the
Schwarzschild and Kerr black holes. Additionally, the black
hole microscopic state is still unclear while the black hole
entropy can be obtained by different methods.

Since the much consistent for the AdS black hole and the
vdW liquid phase transitions, the authors have proposed that
the microstructure of black holes is similar to the ordinary
thermodynamic system, i.e., black holes are made up of effec-
tive black hole molecules at the microscopic scale [7]. There
are some works on the study of the black hole microstructure
by introducing the density of black hole molecules and con-
sidering the phase transition. Furthermore, the interactions
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of the black hole molecules are analyzed in Refs. [21, 22]. It is
clear that the AdS black hole charge or spin is the necessary
condition for the AdS black hole having a similar phase
transition with a vdW-like system. That is due to the charge
or spin that plays a key role in phase transition, which is sim-
ilar to the effect of magnetization on the phase transition of
ferromagnets. Thus, in this paper, we explore the Gauss-
Bonnet AdS black hole microstructure based on this similar-
ity and the Landau continuous phase transition theory. That
not only is providing an important window to explore
quantum gravity but also is of great significance to perfect
the thermodynamic geometry theory of a black hole.

This work is organized as follows: in Section 2, we
present the thermodynamic parameters of the Einstein-
Gauss-Bonnet AdS black hole. For an ordinary thermody-
namic system, the phase transition points are the state
function of the system and are independent with the adop-
tion of the independent dual parameters. In Section 3, we
discuss the phase transition of the Einstein-Gauss-Bonnet
AdS black hole for different adoptions of the independent
dual parameters by Maxwell’s equal-area law [30, 31]. If
one certain adoption of the independent dual parameters
will lead to a different phase transition point with other
adoptions, the corresponding independent dual parameters
are not regarded as black hole independent dual parame-
ters. Therefore, in this part, we give the condition of adopt-
ing the independent dual parameters to the thermodynamic
property of the Einstein-Gauss-Bonnet AdS black hole.
Next, in Section 4, we give the microstructure explanation
and phase exponents of the phase transition by introducing
a new order parameter ϕ. In Section 5, the thermodynamic
geometry at the critical point is analyzed by the scalar
curvature R. We also explore the role of the Einstein-
Gauss-Bonnet coefficient α in the phase transition. Finally,
a brief summary is given in Section 6.

2. Einstein-Gauss-Bonnet Black Hole in
AdS Spacetime

The action of the higher-dimensional Einstein gravity with
the Gauss-Bonnet term and cosmological constant Λ = −6/
l2 in Refs. [5, 44, 47] reads

I = 1
16π

ð
ddx

ffiffiffiffiffiffi
−g

p
R − 2Λ + �α RμνγδR

μνγδ − 4RμνR
μν + R2

� �h

− 4πFμνF
μν
i
,

ð1Þ

where the Gauss-Bonnet coefficient �α has the dimension
with the square length and can be identified with the inverse
string tension with a positive value. If the theory is incorpo-
rated in string theory, thus we shall consider only the case
�α > 0. Fμν is the Maxwell field strength defined as Fμν = −∂ν
Aμ with the vector potential Aμ. Note that the Gauss-
Bonnet term is a topological one in d = 4 and has no dynam-
ics in this system. Therefore, we will consider the case of d ≥ 5
in the following.

The metric in this system with a static black hole
solution is

ds2 = −f rð Þdt2 + f −1 rð Þdr2 + r2hijdx
idxj, ð2Þ

where hijdx
idxj represents the line of a d − 2 dimensional

maximal symmetric Einstein space with constant curvature
ðd − 2Þðd − 3Þk and volume Σk. Without loss of the gener-
ality, one may take k = 1, 0, −1, which are corresponding to
the spherical, Ricci fiat, and hyperbolic topology of the
black hole horizon, respectively. The metric function f ðrÞ
was given in Refs. [5, 47–49]

f rð Þ = 1 + r2

2�α 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 64π�αM

d − 2ð ÞΣkrd−1
−

64�αP
d − 1ð Þ d − 2ð Þ

s" #
:

ð3Þ

Here, M represents the ADM mass of the black hole,
which is associated with the enthalpy of the system. And
P = −Λ/8π = ððd − 1Þðd − 2ÞÞ/16πl2 with the effective AdS
curvature radius l is the black hole pressure. In addition,
one can use an auxiliary symbol α = ðd − 3Þðd − 4Þ�α in
order to avoid the verboseness. And we will call the
auxiliary symbol α as the Gauss-Bonnet coefficient in the
following.

In the present paper, we will investigate the phase transi-
tion and critical phenomenon for the Einstein-Gauss-Bonnet
AdS black hole in d = 5 dimensions. The position of the black
hole event horizon r+ is determined by a larger root of
f ðr+Þ = 0. Using the “Euclidean trick,” one has given the
black hole temperature, enthalpy, entropy, and volume [22]
as

T = 8πr3+P + 3r+
6π r2+ + 2αð Þ ,

H =M = 3πr2+
8 1 + α

r2+
+ 4πr2+P

3

� �
,

S = π2r3+
2 1 + 6α

r2+

� �
,

V = π2r4+
2 :

ð4Þ

And the equation of state reads

P = 3T
4r+

1 + 2α
r2+

� �
−

3
8πr2+

: ð5Þ

Therefore, the above thermodynamic parameters satisfy
the first law [50] as

dM = TdS + VdP +Ψdα, ð6Þ
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with the conjugate quantity to the Gauss-Bonnet coefficient α

Ψ = ∂M
∂α

� �
S,P

= 3π
8 −

3π2Tr+
4 : ð7Þ

3. Equal-Area Law of Einstein-Gauss-Bonnet
AdS Black Hole in an Extended Phase Space

From equation (5), we know that the equation of state for
the Einstein-Gauss-Bonnet AdS black hole can be trans-
formed to the like-form f ðT , P, V , αÞ = 0, or f ðT , P, v, αÞ
= 0. Note that V = π2r4+/2 and v = 2r+ are the thermody-
namic volume and the specific volume of the Einstein-
Gauss-Bonnet AdS black hole, respectively. In the early
works on the thermodynamic second-order phase transi-
tion of the AdS black holes, the authors usually adopted
P − v as the thermodynamic dual parameters. However, is
this adoption (P-v as the thermodynamic dual parameters)
still valid for the first-order phase transition? Recently,
people have found that the equal area law is invalid in
the pressure-specific volume diagram for the AdS black
hole system [7]. In the following, we will give the condi-
tion of the phase transition with different adoptions of
the independent dual parameters P −V , T − S, α −Ψ, and
P − v.

3.1. Construction of Equal-Area Law in P −V Phase
Diagram. For the Einstein-Gauss-Bonnet AdS black hole
with the fixed Gauss-Bonnet coefficient α and the tempera-
ture T0 ≤ Tc (Tc is the critical temperature), we mark the
horizontal and longitudinal coordinates at the boundary of
the two-phase coexistence area as V1, V2, and P0 in the
P −V phase diagram. From Maxwell’s equal-area law [22,
30, 31, 50, 51] (P0ðV2 −V1Þ =

Ð V2
V1
PdV), we have the follow-

ing expressions for this system:

P0 =
3T0
4r1

1 + 2α
r21

� �
−

3
8πr21

= 3T0
4r2

1 + 2α
r22

� �
−

3
8πr22

,

P0r
3
2 1 + xð Þ 1 + x2

� �
= T0r

2
2 1 + x + x2
� �

+ 6T0α −
3
4π r2 1 + xð Þ,

ð8Þ

with x = r1/r2. From the above equations, we can obtain

r22 =
6α
x
,

T0 =
3 1 + xð Þ

2πr2 1 + 4x + x2ð Þ ,

P0 =
3

4πr22 1 + 4x + x2ð Þ :

ð9Þ

As x = 1 (i.e., at the critical point), the critical parameters
of this system are

r2c = 6α,
Vc = 18π2α2,

Tc =
1

2π
ffiffiffiffiffi
6α

p ,

Pc =
1

48πα ,

Sc = 6π2α
ffiffiffiffiffi
6α

p
:

ð10Þ

For the similarity, by redefining the parameter χ ≡ ðð3ð1
+ xÞ ffiffiffi

x
p Þ/ð1 + 4x + x2ÞÞð0 < χ ≤ 1Þ, the temperature T0 can

be rewritten as

T0 = χTc =
χ

2π
ffiffiffiffiffi
6α

p : ð11Þ

For the given temperature T0 and the Gauss-Bonnet
coefficient α, we can obtain the value of the dimensionless
parameter x. Then, substituting x into equation (9), the
values of r2 (or r1) and the pressure P0 are also known. Based
on the classification of the phase transition by Ehrenfest,
there is the first-order phase transition for this system with
0 < χ ≤ 1. The phase transition curves with the independent
dual parameters P −V are shown in Figure 1.

It is obvious that for the Gauss-Bonnet AdS black hole
with a fixed Gauss-Bonnet coefficient α and temperature T0
, when the volume V (or the horizon radius r+) is small than
V1 (or r1), the phase of Gauss-Bonnet AdS black hole is cor-
responding to the liquid of a van der Waals system, while it is
like the gas of a van der Waals system as V >V2 (or r+ > r2).
And the phase is corresponding to the two-phase coexistent
of a van der Waals system as V1 <V < V2 (or r1 < r+ < r2).

3.2. Construction of Maxwell’s Equal-Area Law in T − S
Phase Diagram. For the Einstein-Gauss-Bonnet black hole
thermodynamic system with a certain cosmological constant
l in the equilibrium state, we mark the entropies at the
boundary of the two-phase coexistence area as S1 and S2,
respectively. And the corresponding temperature reads T0,
which is less than the critical temperature Tc and is deter-
mined by the horizon radius r+. Therefore, from Maxwell’s
equal-area law T0ðS2 − S1Þ =

Ð S2
S1
TdS = Ð r2

r1
ð8πr3+P0 + 3r+Þd

r+, we have

T0 =
8πr31P0 + 3r1
6π r21 + 2α

� � = 8πr32P0 + 3r2
6π r22 + 2α

� � : ð12Þ

Note that the solutions of r2, T0, and P0 in the two-phase
coexistent state are the same with equation (9). In Figure 2,
the T − S phase diagrams are plotted for the different values
of pressure P0 and temperature T0 with α = 0:5,1, 1:5. It is
very clear that the phase transition point with the same
parameter values of α and x = r1/r2 is consistent with that
for the adoption of the independent dual parameters P −V .
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Figure 1: The P −V phase diagrams of the Einstein-Gauss-Bonnet AdS black hole with the parameter x = r1/r2 = 0:7 (i.e., χ = T0/Tc =
0:994631). The parameter is set to α = 0:5 (a), α = 1 (b), and α = 1:5 (c).
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Figure 2: The T − S curves of the Einstein-Gauss-Bonnet AdS black hole phase transition with the parameter x = r1/r2 = 0:7. The parameters
are set to α = 0:5 (a), α = 1 (b), and α = 1:5 (c).
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It is obvious that for the Einstein-Gauss-Bonnet AdS black
hole with a fixed Gauss-Bonnet coefficient α and pressure,
when the entropy S (or the horizon radius r+) is small than
S1 (or r1), the phase of Einstein-Gauss-Bonnet AdS black hole
is corresponding to the liquid of a van derWaals system, while
it is like the gas of a van derWaals system as S > S2 (or r+ > r2).
And the phase is corresponding to the two-phase coexistent of
a van der Waals system as S1 < S < S2 (or r1 < r+ < r2).

3.3. Construction of Maxwell’s Equal-Area Law in α −Ψ
Phase Diagram. For the Einstein-Gauss-Bonnet black hole
thermodynamic system with a certain cosmological constant
l in the equilibrium state, the conjugate quantity Ψ to Gauss-
Bonnet coefficient α at the boundary of the two-phase
coexistence area are Ψ1 and Ψ2, respectively. And the corre-
sponding Gauss-Bonnet coefficient of the system is α0, which
is less than the critical value αc and is determined by the
horizon radius r+. Therefore, from Maxwell’s equal-area
law α0ðΨ2 −Ψ1Þ =

ÐΨ2
Ψ1

αdΨ, we have

α0 =
2P0r

3
2

3T0
+ r2
4πT0

−
r22
2 = 2P0r

3
1

3T0
+ r1
4πT0

−
r21
2 : ð13Þ

From the above equation, we can obtain

r22 =
6α0
x

,

T0 =
3 1 + xð Þ

2πr2 1 + 4x + x2ð Þ ,

P0 =
3

4πr22 1 + 4x + x2ð Þ :

ð14Þ

Note that the solutions of T0 and P0 in the two-phase
coexistent state are the same with equation (9). In Figure 3,
the α −Ψ phase diagrams are plotted for different values of
temperature T0 and pressure P0 with α0 = 0:5,1, 1:5. It is very
clear that the phase transition point with the same parame-
ters α0 and x = r1/r2 is also consistent with that for both the
adoptions of P −V and T − S.

It is obvious that for the Einstein-Gauss-Bonnet AdS black
hole with the fixed pressure and temperature, when the poten-
tial Ψ (or the horizon radius r+) is small than Ψ1 (or r1), the
phase of Einstein-Gauss-Bonnet AdS black hole is corre-
sponding to the liquid of a van der Waals system, while it is
like the gas of a van der Waals system as Ψ >Ψ2 (or r+ > r2).
And the phase is corresponding to the two-phase coexistent
of a van der Waals system as Ψ1 <Ψ <Ψ2 (or r1 < r+ < r2).

3.4. Construction of Equal-Area Law in P − v Phase Diagram.
For the Einstein-Gauss-Bonnet AdS black hole with the
adoption of the dual parameters P − v, the volume v at
the boundary of the two-phase coexistence area is v1
(v1 = ð4/3Þr1) and v2 (v2 = ð4/3Þr2), respectively. And the
corresponding pressure of the system is P0, which is less
than the critical value Pc and is determined by the horizon
radius r+. Therefore, from Maxwell’s equal-area law
P0ðv2 − v1Þ =

Ð v2
v1
Pdv, we have

v22 = −
b
a
,

T0 =
6x 1 + xð Þ

ffiffiffiffiffiffiffiffi
−ab

p

32πα 1 + x + x2ð Þa − 9πb ,

P0 =
3 1 + x2
� �

a

32πα 1 + x + x2ð Þa − 9πb

−
32α 1 + xð Þ 1 + x3

� �
a2

96πα 1 + x + x2ð Þab − 27πb2

+ 1 + x2
� �

a

3πx2b ,

ð15Þ

with the relations of a = 486x5½−2x + ð1 + xÞ ln x + 2� and
b = 144αx3ð1 + xÞð6 + 6x2 − 12xÞ. Note that for the system
under the same condition, the form of r2 with this kind
of adoption of the dual parameters P − v is not the same
with that in other adoptions of dual parameters (P −V ,
T − S, and α −Ψ). It implies that the first-order phase
transition point of the system with the parameter v will
be different from that of the parameter V , while the
second-order phase transition point is the same. Since, in
the system with a certain temperature, the location of
the first-order phase transition has nothing to do with
the adoption of the independent dual parameters, the
independent dual parameters P − v are not regarded as
the state parameters of the Einstein-Gauss-Bonnet AdS
black hole first-order phase transition.

From the above analyzes for the Einstein-Gauss-Bonnet
black hole phase transition from Maxwell’s equal-area law,
we find the following:

(i) From equation (11), the phase transition is related to
the Gauss-Bonnet coefficient α and the horizon
radius ratio x (x = r1/r2), not just only the horizon
radius (r1 or r2)

(ii) For the Einstein-Gauss-Bonnet AdS black hole with a
certain temperature, the independent dual parame-
ters P − v are not regarded as the state parameters
of the first-order phase transition

4. Microcosmic Explanation of the Einstein-
Gauss-Bonnet AdS Black Hole
Phase Transition

From equation (9), we can see that when the Einstein-
Gauss-Bonnet AdS black hole undergoes a phase transi-
tion, the values of radio between

ffiffiffi
α

p
and the horizon

radius at the boundary of the two-phase coexistence area
have a mutation, i.e.,

ϕ1 =
ffiffiffi
α

p
r1

= 1ffiffiffiffiffi
6x

p ,

ϕ2 =
ffiffiffi
α

p
r2

=
ffiffiffi
x
6

r
:

ð16Þ
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Therefore, we introduce the new order parameter ϕðTÞ
as

ϕ Tð Þ ≡ ϕ1 − ϕ2
ϕc

= 1 − xffiffiffi
x

p = Ψ2 −Ψ1
χ Ψc − 3/8πð Þð Þ , ð17Þ

with ϕc = 1/
ffiffiffi
6

p
and χ ≡ ð3ð1 + xÞ√xÞ/ð1 + 4x + x2 Þ. Note

that Ψc is the potential at the critical point, Ψc = ð3π/8Þ
− ðð3π22Tcc rccÞ/4Þ. The plot of the new order parameter
ϕðTÞ with the temperature exponent T/Tc ≤ 1 is given in
Figure 4.

The authors in Refs. [7, 21, 22] pointed out that the phase
transition between a big black hole and a small one is due to
the different black hole molecular number densities. Analyz-
ing the effect of the Gauss-Bonnet coefficient α on the phase
transition, we reconsider the physical mechanism of the
Einstein-Gauss-Bonnet AdS black hole undergoing a phase
transition.

From the Landau continuous phase transition theory, we
know that the symmetry of matter will change with the order
of matter. Since a black hole has the similar property with an
ordinary thermodynamic system, whether it is undergoing a
phase transition also has the similar symmetry change with
the phase transition of a normal thermodynamic system.

With the above analysis, we can see that the symmetry
will change while the Einstein-Gauss-Bonnet AdS black hole
undergoes a phase transition. For the Einstein-Gauss-Bonnet
AdS black hole with T < Tc and ϕ1, the black hole molecules

are strongly affected by α and they have generated a certain
orientation, which indicates they are in the relatively ordered
state and have a lower symmetry. While for the Einstein-
Gauss-Bonnet AdS black hole with the another phase ϕ2
and the same temperature T < Tc, the effect of α on black
hole molecules becomes less powerful. The order of black
hole molecules is relatively decreasing, and the black hole
has a higher symmetry. With the increase of temperature,
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Figure 3: The α −Ψ curves of the Einstein-Gauss-Bonnet AdS black hole phase transition with the same temperature, pressure, and the radio
parameter x = r1/r2 = 0:7.
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Figure 4: The ϕðTÞ − T/Tc curve of the Einstein-Gauss-Bonnet AdS
black hole with T ≤ Tc.
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the intense thermal motion of black hole molecules makes
the order of black hole molecules weaken. Particularly, when
the temperature is more than the critical value Tc, the ther-
mal motion of black hole molecules leads to the order of
black hole molecules to be zero. Note that for the Einstein-
Gauss-Bonnet AdS black hole with the lower temperature T
< Tc, the black hole molecules have a lower symmetry and
higher order, and the order parameter ϕðTÞ is not equal to
zero, while the black hole molecules have a higher symmetry
and lower order, and the order parameter ϕðTÞ is zero for the
Einstein-Gauss-Bonnet AdS black hole with T > Tc.

In the following, we will give the critical exponents. In
Landau’s opinion, the order parameter ϕðTÞ is a small
amount near the critical temperature Tc. And the Gibbs func-
tion GðT , ϕÞ can be expanded as the power of ϕðTÞ near the
critical temperature Tc. Since the phase transition is due to
the order change of black hole molecules, the system is sym-
metric under the transform ϕ⇆ − ϕ. Therefore, the expanded
expression of the Gibbs function GðT , ϕÞ as the perturbation
series of the order parameter ϕ only has the even power terms
of ϕ, no odd power terms of ϕ:

G T , ϕð Þ =G0 Tð Þ + 1
2 a Tð Þϕ2 + 1

4 b Tð Þϕ4+⋯, ð18Þ

where G0ðTÞ is the Gibbs function as ϕðTÞ = 0. The form of
ϕðTÞ can be confirmed by the condition of the Gibbs func-
tion minimum value for the stable equilibrium system with
unchanged temperature and pressure. Note that ϕ in the
function GðT , ϕÞ is not an independent variable. With the
requirement of the Gibbs function GðT , ϕÞ minimum value,
there are three solutions:

ϕ = 0,

ϕ = ±
ffiffiffiffiffiffi
−a
b

r
:

ð19Þ

The solution ϕ = 0 stands for the unordered state, which
is responding to the system with T > Tc and a > 0, while the
nonzero solution represents the ordered state, which is
responding to the system with T < Tc and a < 0. Since the
order parameter ϕ changes continuously from zero to non-
zero, the parameter a should be zero at T = Tc.

For the real order parameter ϕ, we can simply adopt the
parameter a near the critical point as

a = a0
T − Tc

Tc

� �
= a0t, a0 > 0: ð20Þ

Because of the system with T < Tc leading to a < 0, thus
we generally give the limited condition of b > 0. From the
above analysis, we have

ϕ =
0, for t > 0,

± a0
b

� �1/2
−tð Þ1/2, for t < 0,

8<
: ð21Þ

and the critical exponent β equals 1/2.

With the above equation (21), the Gibbs function (18)
can be rewritten as

G T , ϕð Þ =
G0 Tð Þ, forT > Tc,

G0 Tð Þ − a20
4b

T − Tc

Tc

� �2
, forT < Tc:

8><
>: ð22Þ

From the expression of the heat capacity C = −Tð∂2G/∂
T2Þ, we find the heat capacity at the critical point is jumping,
and it has the following form:

C T < Tcð Þ T=Tc
− C T > Tcð Þ		 		

T=Tc
= a20
2bTc

: ð23Þ

Therefore, the jump of the heat capacity at the critical
point exhibits the λ-like shape. That indicates the heat capac-
ity for the ordered phase is bigger than that for the unordered
phase, and the change of heat capacity at the critical point is
limited. The critical exponent satisfies α = α′ = 0.

With an unchanged pressure, the total differentiation of
the Gibbs function GðT , ϕÞ reads

dG = −SdT − αdΨ: ð24Þ

From equation (17), the differentiation of the order
parameter ϕ reads

dϕ = dΨ
χ Ψc − 3/8πð Þ : ð25Þ

Considering the above equation and (18), we have

−
∂ϕ
∂α

� �
T

= χ Ψc − 3/8πð Þ
a + 3bϕ2

=

χ Ψc − 3/8πð Þ
a0t

, for t > 0,

χ Ψc − 3/8πð Þ
−2a0t

, for t < 0:

8>>><
>>>:

ð26Þ

Thus, the critical exponent γ = γ′ = 1. Since the Gauss-
Bonnet coefficient α is proportional to the three powers of
the order parameter ϕ, the critical exponent δ = 3, which is
consistent with the result in Refs. [1, 40, 42, 47]. From the
point of view of entropy, the unordered state of the Gauss-
Bonnet AdS black hole is of S = S0, while the ordered state
is S = S0 + ða20t/2bTcÞ. For the case of t = 0, the entropy of
the ordered state is equal to that of the unordered state. That
indicates the entropy of a black hole is continuous at the
critical point.

With the above analysis, we point out for the Einstein-
Gauss-Bonnet AdS black hole with the temperature
(T < Tc), the phase transition is the order-unorder one,
which is due to the black hole molecules affected by the
Gauss-Bonnet parameter α. These results will further
expand our understanding of the black hole molecules.
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5. Thermodynamic Geometry of the Einstein-
Gauss-Bonnet AdS Black Hole

In the last part, we have given the parameters a and b in equa-
tion (18), which are related to the black hole property. How-
ever, the critical exponents are all independent with a and b,
as well as a normal thermodynamic system. The reason is
that the fluctuation of the order parameter ϕ near the critical
point is neglected when we analyze the continuous phase
transition. In Refs. [52–55], the authors investigated the
phase transition structure of black holes through the singu-
larity of the spacetime scalar curvature. Thus, we can investi-
gate the scalar curvature of the Einstein-Gauss-Bonnet AdS
black hole to reveal the microstructure of the black hole
molecules.

The Ricci scalar based on Ref. [22] reads as

R = −
4

π2r+ r2+ + 2αð Þ 8πr2+P + 3ð Þ : ð27Þ

Since there are two forms of the horizon radius for the
black hole with a given temperature T < Tc, the Ricci scalar
also has two forms (one stands for the order parameter ϕ1,
another is related to ϕ2):

R1 = −
2 1 + 4x + x2
� �

3
ffiffiffi
6

p
α3/2π2 ffiffiffi

x
p 1 + 3xð Þ 1 + 4x + 3x2ð Þ

, ð28Þ

R2 = −
2x3/2 1 + 4x + x2

� �
3

ffiffiffi
6

p
α3/2π2 3 + xð Þ 3 + 4x + x2ð Þ

: ð29Þ

The Ricci scalar plots with different radios of black hole
horizon radiuses are given in Figure 5.

As we have known from Refs. [56, 57], for anyon gas, if
the scalar curvature is positive, the average interaction of par-
ticles is repulsive, whereas the average interaction is attractive
if the Ricci scalar is negative. Particularly, there is no interac-
tion of particles for the case of R = 0. From Figure 5, we can
obtain the relation 0 > R2 > R1, which means the average
interaction of the black hole molecules for the phase with
the order parameter ϕ2 is less than the one with the order
parameter ϕ1.

From the expression of the density of black hole mole-
cules n =N/V = 3/γl2pr+, it is clear that the density for the
phase with the order parameter ϕ2 is less than the one with
the order parameter ϕ1. And from equations (28) and (29),
the values of the Ricci scalar for both two phases are both
increasing with the Gauss-Bonnet coefficient α until R→ 0.
For the fixed temperature and presser, the Gauss-Bonnet
coefficient αwill increase with the increasing of the black hole
horizon radius, while the density and the interaction of black
hole molecules will decrease. Therefore, we hold that the
Gauss-Bonnet coefficient α plays two roles in a phase transi-
tion: one is changing the order of black hole molecules,
another is changing the density of black hole molecules. That
is just the main reason of phase transition for the Einstein-
Gauss-Bonnet AdS black hole.

6. Discussions and Conclusions

Black hole physics, especially the black hole thermodynamic
which is directly involving gravitation, statistics, particle, the
field theory, and so on, have attracted much attention. Partic-
ularly, the black hole thermodynamic plays an important role
[58–63]. Although the precise statistical description of the
corresponding thermodynamic states of black holes is still
unclear, the study of the thermodynamic properties and crit-
ical phenomenon of black holes is always a concerning issue.

In this paper, we adopted different independent dual
parameters to explore the phase transition of the Einstein-
Gauss-Bonnet AdS black hole through Maxwell’s equal-area
law. It has been shown that the phase transition point with
a given temperature T < Tc is the same for the three adop-
tions (P − V , T − S, and α −Ψ), while it is different for the
adoption of P − v. Since the phase transition of a black hole
with the same condition is independent with the concrete
physical process, the parameters P − v are not regarded as
the independent dual parameters of the Einstein-Gauss-
Bonnet AdS black hole. This result will provide the theoreti-
cal basis of adopting independent parameters to explore the
critical phenomenon of different AdS black holes.

Because of the similarity between the phase transition of
the Einstein-Gauss-Bonnet AdS black hole and that of a vdW
system, we have assumed from the microcosmic level, a black
hole is made up of black hole molecules, which are carrying
the message of entropy. The results have shown that the
phase transition with a certain temperature T < Tc is deter-
mined by the ratio between

ffiffiffi
α

p
and the horizon radius is

not only the one from a small black hole to a big one. There-
fore, we introduced a new order parameter ϕðTÞ to investi-
gate the phase transition of the Einstein-Gauss-Bonnet AdS
black hole. Furthermore, the critical exponents have been
given in part 5.

R1
R2

0.2 0.4 0.6 0.8 1.0
x

–5

–4

–3

–2

–1

0
R

Figure 5: The Ricci scalar with different radios of black hole horizon
radiuses for the parameter adoption 3

ffiffiffi
6

p
π2α3/2 = 2.
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Finally, we investigated the microstructure of black hole
molecules by the spacetime scalar curvature. Since the
Schwarzschild AdS black hole is made up of the uncharged
black hole molecules, the Ricci scalar is negative, so is the
Einstein-Gauss-Bonnet AdS black hole (see Figure 5). For
the Einstein-Gauss-Bonnet AdS black hole with the certain
temperature and pressure (T < Tc, P < Pc), the Ricci scalars
at the boundary of the two-phase coexistence area are differ-
ent; that is due to the different values of the order parameter
ϕ at the boundary of the two-phase coexistence area. The
average interaction of black hole molecules of the uncharged
Einstein-Gauss-Bonnet AdS black hole is attractive, and it
will be close to zero when the Einstein-Gauss-Bonnet coeffi-
cient α is increasing.

This work reflected the microstructure of the Einstein-
Gauss-Bonnet AdS black hole that will provide certain help
to explore deeply the microstructure of a black hole, espe-
cially to understand the basic gravity property of a black hole.
In particular, the in-depth study of the black hole micro-
scopic structure will help to understand the basic properties
of black hole gravity, and it will also have very important
value for the establishment of quantum gravity.
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