
agronomy

Article

Field-Scale Soil Moisture Retrieval Using PALSAR-2
Polarimetric Decomposition and Machine Learning

Xiaodong Huang 1,* , Beth Ziniti 1, Michael H. Cosh 2 , Michele Reba 3, Jinfei Wang 4 and Nathan Torbick 1

����������
�������

Citation: Huang, X.; Ziniti, B.; Cosh,

M.H.; Reba, M.; Wang, J.; Torbick, N.

Field-Scale Soil Moisture Retrieval

Using PALSAR-2 Polarimetric

Decomposition and Machine

Learning. Agronomy 2021, 11, 35.

https://dx.doi.org/10.3390/

agronomy11010035

Received: 10 November 2020

Accepted: 24 December 2020

Published: 26 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Applied Geosolutions, Durham, NH 03824, USA; bziniti@appliedgeosolutions.com (B.Z.);
ntorbick@appliedgeosolutions.com (N.T.)

2 Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
Michael.Cosh@usda.gov

3 Agricultural Research Service, United States Department of Agriculture, Jonesboro, AR 72401, USA;
michele.reba@usda.gov

4 Department of Geography, Western University, London, ON N6A 3K7, Canada; jfwang@uwo.ca
* Correspondence: xhuang@appliedgeosolutions.com

Abstract: Soil moisture is a key indicator to assess cropland drought and irrigation status as well as
forecast production. Compared with the optical data which are obscured by the crop canopy cover,
the Synthetic Aperture Radar (SAR) is an efficient tool to detect the surface soil moisture under the
vegetation cover due to its strong penetration capability. This paper studies the soil moisture retrieval
using the L-band polarimetric Phased Array-type L-band SAR 2 (PALSAR-2) data acquired over the
study region in Arkansas in the United States. Both two-component model-based decomposition
(SAR data alone) and machine learning (SAR + optical indices) methods are tested and compared in
this paper. Validation using independent ground measurement shows that the both methods achieved
a Root Mean Square Error (RMSE) of less than 10 (vol.%), while the machine learning methods
outperform the model-based decomposition, achieving an RMSE of 7.70 (vol.%) and R2 of 0.60.

Keywords: soil moisture; PALSAR-2; model-based decomposition; machine learning

1. Introduction

Soil moisture is identified as an essential climatic variable by the Global Observing
System for Climate given its role in energy flux and climate–land feedback [1,2]. Within
the agricultural community, the Group on Earth Observations (GEO) Global Agricultural
Monitoring (GEOGLAM) initiative has further amplified soil moisture as an Essential
Agricultural Variable (EAV) given its role in driving processes such as drought, irrigation,
and crop production. Currently, programs such as NASA’s Soil Moisture Active Passive
(SMAP) and ESA’s Soil Moisture Ocean Salinity (SMOS) missions have advanced science
for land surface monitoring and agricultural decision support tools. These missions have
made tremendous advances in synoptic monitoring and assessment of soil moisture.

Current challenges center on automating field scale soil moisture monitoring and
assessment with robust and more physical or scalable approaches [3–6]. The spatial resolu-
tion of standard SMAP and SMOS products are at the spatial scale of tens of kilometers;
thus, they are too coarse for agricultural decision making at the field scale. Typically,
field scale is the spatial unit of decision making for operational management such as irriga-
tion, crop rotations, tillage, and nutrient applications. Approaches to improve the spatial
resolution of SMAP/SMOS scale products are to use downscaling routines that combine the
spatially coarse resolution SMAP/SMOS information with fine (4 m) or moderate spatial
resolution (30–100m) covariates such as Synthetic Aperture Radar (SAR) imagery or with
process-based land surface models [7,8]. However, the typical product output resolution of
these downscaling approaches is 3 km or 1 km, which is still too coarse [3,9,10] for farm
operations. Further, a theme in these downscaling studies is that as the spatial resolution
increases, the accuracy decreases [3].
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Many research studies have investigated the potential to estimate field-scale soil
moisture using moderate spatial resolution (<30 m) SAR imagery and these applications
are historically empirical approaches often tied to a specific study region or temporal
period [11–13]. Scaling these approaches towards higher Application Readiness Levels
(ARLs) for wider deployment and fusion techniques, blending moderate resolution SAR
and optical observations are critical next steps for the community. Radiation Transfer
(RT) modeling is extensively employed [14–16] for physically retrieving soil moisture
from SAR signals and is an option for driving decision support tools. However, rigorous
first order RT modeling, such as Michigan Microwave Canopy Scattering (MIMICS) [17],
requires extensive parameterization of phenological and surface attributes for thorough
descriptions of surface structure, which limits operational execution and transferability.
As a result, simplified RT models have been developed that generalize the vegetative
structural components or ignore some scattering components such as double-bounce
and multiple scatterings. One of the extensively used and less complex RT models has
been the Water Cloud Model (WCM) [14], which simply treats the vegetation canopy as
a water cloud layer given that the dielectric constant of water in the target vegetation is
much higher than that of the dry vegetative matter. Numerous research applications have
estimated soil moisture across a range of conditions using the WCM [18–24]. Generally,
retrieval accuracy is largely influenced by the choice of the surface scattering model and
vegetation descriptors [25]. Therefore, this approach tends to be scene- or image-based
and the transferability of this approach or enhancing the ARL of field-scale retrieval has
remained a challenge.

Without the assistance of the external optical data, quad polarized SAR data have
shown potential for retrieving soil moisture using model-based decomposition. The model-
based decomposition was first proposed by Freeman and Durden [26] and its application
for soil moisture estimation has evolved. Hajnsek et al. [27] compared different model-
based decompositions and found the results often underestimate soil moisture levels
due to the inadequate estimation of the vegetation layer within agricultural fields, and
a mean Root Mean Square Error (RMSE) of 10 (vol.%) was achieved for all methods.
Jagdhuber et al. [28] investigated the multi-angular polarimetric decomposition to estimate
soil moisture with high inversion rate and low RMSE for fully polarimetric L-band SAR
data. Ballester-Berman et al. [29] presented a two-component polarimetric decomposition
model for sparse vineyards using C-Band RADARSAT-2 data, but no measured ground
truth data were used for validation. A hybrid decomposition method combining both
the model-based and eigen-based decompositions was presented by Jagdhuber et al. [30]
and showed a very high inversion rate for L-band data. However, the surface scattering
models (X-Bragg model) referenced above are only applicable to characterize rough surfaces
with small slopes. Therefore, Huang et al. [4] proposed a two-component model-based
decomposition method to retrieve soil moisture in which the calibrated Integral Equation
Model (IEM) is employed to describe more variable and rough surfaces. Recently, a two-
component model-based decomposition was also proposed by Wang et al. [31] using the
Oh surface scattering model to estimate the soil moisture, achieving a high accuracy with
an RMSE of less than 7.5 (vol.%).

In addition to the evolution of physical RT models and polarimetric model-based
decomposition, machine learning (ML) methods have gained in popularity in recent
years [23,32]. For example, Paloscia et al. [32] applied an artificial neural network using
C-band Sentinel-1 observations to estimate soil moisture and achieve an RMSE of less than
7 (vol.%). Similarly, El Hajj et al. [23] inverted soil moisture using X-band TerraSAR-X and
ML techniques to achieve a relatively high accuracy with an RMSE of 6 (vol.%). In this
research application, we build on this lineage to advance the retrieval of field-scale soil
moisture using L-band polarimetric Phase Array type L-band Synthetic Aperture Radar-2
(PALSAR-2) and compare an improved two-component model-based decomposition (SAR
alone) to a machine learning approach (SAR and optical indices).
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2. Materials and Methods
2.1. Data Preparation and Processing
2.1.1. Study Area

The study area is located outside Osceola, Arkansas, USA (Figure 1). Major crops in
this region include rice, corn, cotton, soybean, winter wheat, sorghum, and peanuts. Ten (10)
soil moisture stations were installed for the entire crop season (field preparation through
harvest) at select locations with local producers within agricultural fields. The Stevens
Water Hydro probes were installed with soil moisture and temperature measurements
obtained at 5 and 10 cm depths. This provides a quantification of volumetric soil moisture
at integrated depths of 3–7 cm and 8–12 cm. Local micrometeorological stations and
regional gridded weather data provided ancillary measurements to evaluate algorithm
performance and dynamic responses. Here, we used the Parameter-elevation Regressions
on Independent Slopes Model (PRISM) precipitation data products to evaluate space–time
responses of derived metrics. From SoilGrids250m (https://www.soilgrids.org/), most
of the soil class is Luvisols with high clay content, and has average clay, sand, and silt
contents of 300 g/kg, 350 g/kg, and 350 g/kg over this region.
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Figure 1. Illustration of (A) moderate spatial resolution (30 m) L-band volume scattering on 18 July
2019 with soil moisture probe locations shown as green dots. (B) USDA Cropland Data Layer (CDL)
shows major crops in this agricultural production hot spot with dense patches of major row crops.
(C) Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation (blue line
= study domain mean) shows diverse conditions and provided assistance in evaluating algorithm
performance in relation to derived space–time patterns (PALSAR-2 time series satellite overpass
dates = red lines).
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2.1.2. SAR and Optical Data Processing

This study used time series fine beam quad polarization PALSAR-2 data acquired on
20190718, 20190801, 20190815, 20190829, and 20190912, and only those five quad polariza-
tion datasets acquired by JAXA in 2019 are used in this study. Our team had the study
area designated as a research “super site” and time series, fine beam, quad polarization
observations are historically very challenging tasks. The nominal incidence angle centers
on 30 degrees over the study footprint with only slight, negligible variation in incident
angle in the range direction. The polarimetric PALSAR-2 SAR data were first converted to
a three by three coherency matrix, and a boxcar filter was applied to reduce the inherent
speckle noise with a five by five window size. The filtered coherency matrix was then
terrain geocoded to the Earth’s surface with a resultant 30 m spatial resolution using an
external 90 m SRTM Digital Elevation Model (DEM). Generally, the landscape is extremely
flat with relatively little slope relative to the scale of a pixel. The two-component model-
based decomposition is applied to the geocoded coherency matrix to physically retrieve
the soil moisture at moderate spatial resolution. Each period is processed independent
from other time periods with no dependencies. In addition, the horizontal transmitting
and vertical receiving (HH), vertical transmitting and horizontal receiving (HV), horizontal
transmitting and vertical receiving (VH), and vertical transmitting and vertical receiving
(VV) backscattering coefficients were generated to use as input parameters for the machine
learning approach.

This study used Harmonized Landsat-8 Sentinel-2 (HLS) data, to generate optical
time series surface reflectance, the Normalized Difference Vegetation Index (NDVI) [33],
and cloud masks [34] to eliminate pixels potentially contaminated with atmospheric at-
tenuation. Additional quality assurance quality control routines were applied to treat
potentially poor-quality pixels (i.e., missed clouds) using a multi-temporal module [35]
that allows for efficient custom pixel-wise time series calculations on image stacks. In
this case, the multi-temporal module was implemented to remove additional observations
(reflectance and NDVI) that fall between a decrease and increase larger than 0.01 over an
8-day period. However, periods of extended missed clouds (two or more) might remain.
Therefore, weekly composite NDVI and reflectance products were then derived by linearly
interpolating the remaining non-flagged values and applying a smoother. The smoother
selected in this case was a least square penalized smoothing spline similar to the Whittaker
smoother [36].

2.2. Methods
2.2.1. Two-Component Model-Based Decomposition

The framework of the two-component model-based decomposition developed by
Huang et al. [4] is written as

T33 = fs × Ts + fv × Tv (1)

in which T33 is the three by three coherency matrix, and fs and fv represent the scatter-
ing intensity of the surface and volume scattering components, while Ts and Tv are the
coherency matrices of the surface and volume scattering. The volume scattering model
used here leverages Huang et al. [4], which is written as

Tv(n) =

 Tv11 Tv12 0
Tv12 Tv22 0

0 0 Tv33

 (2)
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The n is the randomness factor characterizing the probability distribution of the
scatterer ranging from 0 to infinity. When n = 0, it represents the uniform distribution
which is the Freeman volume scattering [26]. When n = 1, it is equal to the Yamaguchi
volume scattering model [37]. Therefore, the improved volume scattering model would
be a generalized model to characterize the scattering from the canopy. To determine
the contribution of the volume scattering, the Non-Negative Eigenvalue Decomposition
(NNED) is used [38] and the randomness factor n will be determined by minimizing the
Radar Vegetation Index (RVI) derived from the PALSAR-2 data and the RVI [39] from the
improved volume scattering model in Equation (2). Removing the contribution of the
volume scattering, the remaining coherency matrix dominated by the surface scattering will
be converted to the covariance matrix, in which the HH and VV backscattering coefficient
will be extracted and applied to the calibrated IEM for L-band [40] to estimate the soil
moisture under the minimization of the cost function ∆ in Equation (3).

∆ =

√(
σ0

Mhh − σ0
Shh
)2

+
(
σ0

Mvv − σ0
Svv
)2 (3)

where ∆ represents the least square difference between the measured σ0
Mpp from the covari-

ance matrix and the simulated σ0
Spp backscatter coefficients using the calibrated IEM [40].

More details about this volume scattering model and its determination can be found in [4].

2.2.2. Random Forest

We used the Random Forest (RF) [41,42] approach as a baseline machine learning
method. RF is an ensemble learning method for classification and regression, in which
a number of de-correlated decision trees are constructed during calibration. Before each
split, m variables are selected randomly as candidates for splitting while m ≤ p, where p
is the total number of input features. Typically, values for m are the square root of p or
even as low as 1 depending on the value of p. It should be noted that when the number of
variables is large, but the fraction of relevant variables small, RF is likely to perform poorly
with a small m. Compared with other classifiers, such as support vector machine and
neural networks, RF uses the Out-Of-Bag (OOB) error samples, and once the OOB errors
stabilizes, the training can be terminated and the number of trees are determined. RF also
uses the OOB samples to measure the variable importance that represents the prediction
strength of each variable, which might be used for the optimization of the choice of the
input parameters. In this study, the OOB is used for the determination of the number of
trees and set as m =

√
p. During the training processing of the RF, parameters were derived

from both SAR and optical data are used as the inputs for the RF calibration, consisting of
the HH, HV, and VV from SAR and the NDVI, and reflectance of green, red, Near Infrared
(NIR), Short Wave Infrared 1 (SWIR1), and SWIR2 channels from the optical data.

3. Results

To gain insight, a three-component model-based decomposition proposed in [43] was
used to study the surface, double-bounce, and volume scattering components as well
as the randomness factor over time across the crop landscape. Figure 2 shows that the
scattering components change over time for all crops, and, generally, the double-bounce
scattering power is less than that of surface and volume scattering, which confirms our
assumption of the weak double-bounce scattering over agricultural fields. One exception
is the soybean field, in which the double-bounce scattering and the volume scattering have
similar scattering power over time, while both remain dominated by surface scattering
and the influence of the underlying ground conditions. It is also evident that in September
(Day of Year (DoY) around 255), both the double-bounce and volume scattering over corn
fields decrease sharply which might be because the SAR signal can penetrate the dry corn
canopy easily when it was harvested at the end of the August and in early September.
However, the surface scattering is still at a high level, likely due to the underlying soil
moisture and surface roughness. In terms of the randomness factor, Figure 2 depicts that
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its value is ranging from 0 to 6, which demonstrates that both Freeman and Yamaguchi
volume scattering models cannot fully describe the crop canopy since their randomness
factors are constant (i.e., 0 and 1), as explained in Section 2.2.1. In addition, the randomness
factor of soybean tends to be higher than that of other crops, and for the corn at its late
growth stage, the randomness factor is increased due to the majority of scattering being
from the underlying ground.
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The derived temporal soil moisture from the model-based decomposition is shown in
Figure 3. Generally, it is wet on 18 July, and then becomes very dry on 12 September. The
rice field (blue in Figure 1) show higher soil moisture than that of other crops due to its
strong double-bounce backscattering caused by the interaction between the rice stem and
underlying standing water. The cotton (red in Figure 1) shows high soil moisture on 18 July,
but is very dry on 12 September. This trend is consistent with the precipitation data shown
in Figure 1, when on 18 July, there is rain, while there is no rain at all on 12 September.
Figure 4 shows that the RMSE of the retrieved soil moisture is about 9.34% and the R2 is
around 0.37.
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The temporal soil moisture from the RF method shown in Figure 3 shows that the
soil moisture becomes low on 12 September, similar to the model-based decomposition
method. In addition, the soil moisture of the rice field that is inundated from the beginning
of June and middle of September is still higher than that of other crops, such as cotton and
corn, due to the strong backscattering coefficient of HH and VV. The zoomed in region
(Figure 4A) that is outlined in the red dashed rectangular area in Figure 3 shows the
decrease in the soil moisture over time, and the similar spatial pattern between the model-
based decomposition and RF methods. In addition, individual crop fields also show the
decrease in the soil moisture over time, as depicted in Figure 4B. Due to the limited number
of ground measurements, the leave-one-out cross validation is used for the accuracy
assessment, showing that the RMSE is around 7.70% and R2 is around 0.60 (Figure 5).
Since the RF method requires both the SAR and optical data, only the common part of
those two footprints (SAR and HLS) are used for the soil moisture estimation, which
leads to chunked maps, as shown in Figure 3. Compared with the soil moisture from the
model-based decomposition, the ML method show high accuracy, as more information is
added in the RF, while the model-based decomposition makes use of the SAR data alone.
For both the model-based decomposition and the RF methods, the underestimation is
observed when the soil moisture is greater than 40 (vol.%). This is because the soil might
be saturated by water when the soil moisture is higher than 40 (vol.%), which is difficult to
be detected by the SAR signals.
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Figure 5. The Random Forest (RF) machine learning approach achieves lower Root Mean square
Error (RMSE) by an order of magnitude compared to the model-based decomposition which requires
no training data.

In addition, the importance of the input parameters of RF is also derived and shown
in Figure 6, indicating the green, HH, red, and VV are the major contributions of the
soil moisture estimation, showing the importance of the PALSAR polarizations in the
soil moisture estimation. Instead, the HV shows less importance because it is primarily
sensitive to the vegetation canopy other than the underlying surface.
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Finally, instead of the RMSE and R2, an example of the comparison of temporal
soil moisture over the soybean field using both the model-based decomposition and RF
methods is shown in Figure 7. It shows that the estimated SM from the RF shows a high
agreement with the ground measurement when the SM is less than 40 (vol.%), which is
consistent with Figure 4. In addition, the SM from the model-based decomposition has the
mean value of 30 (vol.%) over time, which is lower than the ground measurement with
the mean value of 35 (vol.%). This comparison shows that the RF method outperforms the
model-based decomposition, which might be because more parameters from both SAR and
optical data are used.
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Figure 6. Importance of the input parameters of RF method. NIR: Near Infrared, SWIR: Short 
Wave Infrared. 

Finally, instead of the RMSE and R2, an example of the comparison of temporal soil 
moisture over the soybean field using both the model-based decomposition and RF meth-
ods is shown in Figure 7. It shows that the estimated SM from the RF shows a high agree-
ment with the ground measurement when the SM is less than 40 (vol.%), which is con-
sistent with Figure 4. In addition, the SM from the model-based decomposition has the 
mean value of 30 (vol.%) over time, which is lower than the ground measurement with 
the mean value of 35 (vol.%). This comparison shows that the RF method outperforms the 
model-based decomposition, which might be because more parameters from both SAR 
and optical data are used. 

 

Figure 7. Example of the temporal soil moisture over a selected soybean field using the model-based
decomposition and RF methods showing a high agreement of the estimated SM from the RF with the
ground measurement when the SM is less than 40%.

4. Discussion

This research application aimed to advance the ARL of field-scale soil moisture map-
ping for agricultural monitoring. The mapping science focused on scaling physical and
machine learning algorithms and fusing SAR and optical datacubes with moderate (30 m)
spatial resolution. Getting robust, transparent, and cost-effective field-scale soil moisture
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products will enable many new science applications, such as assessing irrigation regimes,
nutrient management, tillage practices, yield, carbon cycling, and water quantity, that are
all typically managed at field scales. The satellite data used quad polarization L-band,
which provides an opportunity to extract several potentially useful scattering parameters
using a relatively longer wavelength (24 cm) compared to using dual polarization C-band
(5.5 cm) Sentinel-1, for example. In addition, the community will soon have access to
operational and open moderate resolution L-band with the launch of NASA’s NISAR
mission as well as growing archives, such as SAUCOM.

In this study, a model-based decomposition that uses no training data was enhanced
and applied to a cropland production region while comparing it to a popular machine
learning RF method that can robustly integrate multi-modal inputs, such as optical indices
like NDVI and SAR derivatives, like surface scattering, to estimate soil moisture conditions.
Both the model-based decomposition and RF machine learning showed potential for
estimating soil moisture at the field scale across the cropland production region. Generally,
each had moderate accuracy, while RF achieved higher overall accuracy (R2) and precision
(RMSE) when pooling all crops together into a single soil moisture prediction. Each showed
the ability to capture landscape structure (fields and within-field variability) and temporal
change using the time series satellite remote sensing datacubes. For brevity, we succinctly
summarize the differences and strengths and limitations of the approaches.

The model-based decomposition method used in this research application requires as-
sumptions about scattering properties and does not consider the contribution of the double-
bounce scattering since it is rather weak over the agricultural fields [4,29,31]. The double-
bounce scattering assumption is reasonable in this effort given that this scattering pathway
has the least power (Figure 2). However, for some crops or potentially during specific
growth stages, the double-bounce scattering might have an equivalent contribution or per-
haps be even greater than the other scattering component, such as volume scattering over
soybean fields. This can be influenced by the complexity of the canopy or changes in plant
structure, such as large stalks that can develop in corn. As the influence of double-bounce
scattering increases, the decomposition method enhanced in this research application might
decrease in sensitivity and precision for SM estimation.

Another potential limitation of the model-based decomposition is that the attenuation
effect is neglected. However, for the long wavelength L-band, the attenuation should be
rather weak over agricultural fields since sometimes the attenuation can even be neglected
over forestry regions [44]. Therefore, this is likely not a major driver of soil moisture
retrieval performance in this application.

Third, while the decomposition is more automated compared to the machine learning
approach, the IEM requires some calibration to determine the relationship between the
surface roughness and correlation length [40]. These can be used from other studies;
however, the transferability of those parameters might be a limiting factor. Ultimately,
the decomposition is a semi-empirical method that requires tuning for ground conditions
which might be landscape dependent, such as soil texture, for example. On the other
hand, the RF machine learning approach was relatively robust in terms of integrating
diverse data and taking advantage of statistical patterns. As the growth of in-field sensors
continues and low-power wide-area technologies are adopted, these ML approaches will
have more opportunities to source training data. A caution is to promote the consideration
of meaningful, physical parameters of models to understand the underlying drivers.

Overall, the model-based decomposition with its noted limitations shows the ability
to capture landscape features, such as fields with similar conditions and an RMSE of
9.34 (vol.%). The model-based decomposition method also achieves higher accuracy than
that of the RF method, except for soybean. However, due to the limited number and varia-
tion of the observations for each crop, a single “best” recommendation is inappropriate.
Conversely, the RF method shows higher accuracy than that of the model-based decompo-
sition here, in part due to the inclusion of the optical parameters used in combination with
the SAR parameters. Over time, the soil moisture from the model-based decomposition
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tends to decrease from July to September, which is also similar to outcomes derived from
the RF method, and so are their spatial patterns. The importance of the input parameters
shows that the HH and VV show high importance, as shown in Figure 5, demonstrating the
influence of SAR parameters on the soil moisture estimation. The transferability of these
parameters and the RF machine learning method is an area for the next steps in scaling the
ARL of these tools.

5. Conclusions

This paper studies the SM retrieval using the polarimetric model-based decomposition
method and machine learning RF method, showing that both methods show high potential
in the soil moisture retrieval with an RMSE of 9.34 (vol.%) and 7.70 (vol.%), and R2

of 0.37 and 0.60, respectively. The RF method shows higher accuracy than that of the
model-based decomposition due to the addition of the optical parameters. However, the
RF method requires ground measurements for the calibration, while the model-based
decomposition does not need external auxiliary data. The major limitation of the model-
based decomposition is neglecting the double-bounce scattering, which might not be
applicable to stem-based crops such as corn. To scale the RF method to a broad region and
crops, more training samples with a high level of variety will be required. In future, as more
ground measurements are collected, the model-based decomposition will be studied on
more vegetation types, such as wheat, bare ground, forest, etc. In addition, the RF method
can also be trained with more training samples with high variations and broad crop types.
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