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Campylobacter genus is the bacteria responsible for campylobacteriosis infections, and it is the commonest cause of gastroenteritis in
adults and infants. The disease is hyperendemic in children in most parts of developing countries. It is a zoonotic disease that can be
contracted via direct contact, food, and water. In this paper, we formulated a deterministic model for Campylobacteriosis as a zoonotic
disease with optimal control and to determine the best control measure. The nonstandard finite difference scheme was used for the
model analysis. The disease-free equilibrium of the scheme in its explicit form was determined, and it was shown to be both locally
and globally asymptotically stable. The campylobacteriosis model was extended to optimal control using prevention of susceptible
humans contracting the disease and treatment of infected humans and animals. The objective function was optimised, and it was
established that combining prevention of susceptible humans and treatment of infected animals was the effective control measure
in combating campylobacteriosis infections. An analysis of the effects of contact between susceptible and infected animals as well
susceptible and infected humans was conducted. It showed an increase in infected animals and humans whenever the contact rate
increases and decreases otherwise. Biologically, it implies that campylobacteriosis infections can be controlled by ensuring that
interactions among susceptible humans, infected animals, and infected humans is reduced to the barest minimum.

1. Introduction

Campylobacter genus is the bacteria responsible for campylo-
bacteriosis infections. This is solely the commonest cause of gas-
troenteritis in adults andmostly infants [1]. The Campylobacter
bacteria have been confirmed as the leading cause of diarrhea in
the United States of America. Campylobacteriosis is mostly
hyperendemic in children inmost parts of developing countries.
Campylobacteriosis can be spread or contracted through the
fecal-oral path. It is a zoonotic disease that can be contracted
via direct contact, food, and water. The disease is zoonotic in
nature and hence can be spread from animals to humans and
also from humans to humans [2].

A campylobacteriosis-infected person is usually asymp-
tomatic at the incubation period, that is, between one and
three days of infection. Diarrhea, fever, and abdominal cramps

are usually the commonest symptoms of the disease. Symp-
toms of campylobacteriosis can last for at least five to eight
days of infections. Children in developing countries mostly
show symptoms of campylobacteriosis infections while adults
rarely show any symptoms of infections. But on the contrary,
the infection is less common in the developed world [1].

Symptomatic persons can infect others directly and con-
taminate water and food during the infectious period of campy-
lobacteriosis. The mode of infection of campylobacteriosis is
mostly through food, water, and milk that has been infected
by contaminated feces which has been poorly treated. However,
water contamination is basically via water fowl feces, sewage,
and farm animal manure. On the other hand, human contam-
ination is via leaked septic tanks into groundwater supply that is
poorly disinfected or not disinfected at all. The disease is mostly
foodborne and waterborne illness but can also be spread
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through direct contact with infected humans or animals via the
fecal-oral path of transmission. But human-to-human spread is
usually uncommon [3].

Understanding the spread dynamics of campylobacterio-
sis at policy and implementation levels of public health is
necessary to design effective optimal control and cost-
effective strategies at prevention levels. Deterministic models
enhance the general understanding of the disease spread by
the provision of a theoretical frame which underlines factors
that accounts for the spread and control of diseases [4, 5].

The concept of deterministic modelling involves the pro-
cess of constructing, testing, and validating models. These
models are real representations of natural phenomena of sys-
tems or hypothesis in a mathematical perspective [6, 7].

Generally, the intended use of a deterministic model is
paramount in guiding the development of the model since
the model structure has to adequately address its objective.
Hence, understanding the mechanism and causes of patterns
present in an observed data is usually an objective that initiates
a deterministic modelling process [8, 9]. Moreover, epidemio-
logical models explain dynamics of infections and determine
the best optimal control strategies and the most cost effective
among these strategies [10, 11]. However, authors in [12–14]
proposed and formulated models that attempts to explain this
hidden and existing phenomena.

2. Model Formulation and Description

The model diagram in Figure 1 shows the transmission
dynamics of campylobacteriosis in humans and animals.
This diagram is significant as it gives an overview of the dis-
ease transmission pattern in humans and animals.

We divided the model into two parts, the total human and
animal populations. These populations at any time, t are also
divided into six subcompartments with respect to their disease
status in the system. The total human population, represented
by NhðtÞ, is divided into subpopulations of susceptible humans
ShðtÞ, infected humans IhðtÞ, and recovered humans RhðtÞ. Sus-
ceptible humans are recruited through immigration into the pop-
ulation at a rate Λh. They are infected with campylobacteriosis
through ingestion of contaminated water, foods, and direct con-
tact with infected animals and humans at a rate ðIv + IhÞβ:
Infected humans recover from campylobacteriosis at a rate γ.
Campylobacteriosis-related death rate is given byδh. Recovered
individuals may lose immunity and return to the susceptible
group at a rate σh. Campylobacteriosis natural death rate for all
human compartments is μh: Susceptible animals Sv are recruited
through immigration at a rate Λv. Animals can be infected with
campylobacteriosis through ingestion of contaminated food,
water, and contact with infected animals at a rate ðIv + IhÞλ. Sus-
ceptible and infected animal natural death rate is μv. Infected ani-
mal death rate as a result of campylobacteriosis is δv, and animals
may recover at a rate α. Animals may lose immunity at a rate σv.

Hence, total human population is

Nh tð Þ = Sh tð Þ + Ih tð Þ + Rh tð Þ: ð1Þ

Total animal population, NvðtÞ, is divided into subpopu-

lations of susceptible animals SvðtÞ, infectious animals IvðtÞ,
and recovered animals RvðtÞ.

Hence, total animal population is

Nv tð Þ = Sv tð Þ + Iv tð Þ + Rv tð Þ: ð2Þ

System of equations obtained from the model in Figure 1
are as follows:

dSh
dt

=Λh + σhRh − β∗
mβSh − μhSh,

dIh
dt

= β∗
mβSh − γIh − μh + δhð ÞIh,

dRh

dt
= γIh − σh + μhð ÞRh,

dSv
dt

=Λv − β∗
mλSv − μvSv + σvRv,

dIv
dt

= β∗
mλSv − αIv − μv + δvð ÞIv ,

dRv

dt
= αIv − σv + μvð ÞRv ,

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð3Þ

where β∗
m = Ih + Iv.

3. Model Analysis

3.1. Positivity and Boundedness of Solutions. The solution of
the system in (3) is a function of the form

X : t ∈ J ⊂ℝ→ X tð Þ =

Sh tð Þ
Ih tð Þ
Rh tð Þ
Sv tð Þ
Iv tð Þ
Rv tð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

⊂ℝ6: ð4Þ
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Figure 1: Model flow diagram showing the transmission dynamics
of the disease.
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Considering,

F : X ∈ℝ6 → F Xð Þ ∈ℝ6, ð5Þ

where

F Xð Þ =

dSh
dt

= Λh + σhRh − β∗
mβSh − μhSh,

dIh
dt

= β∗
mβSh − γIh − μh + δhð ÞIh,

dRh

dt
= γIh − σh + μhð ÞRh,

dSv
dt

= Λv − β∗
mλSv − μvSv + σvRv,

dIv
dt

= β∗
mλSv − αIv − μv + δvð ÞIv,

dRv

dt
= αIv − σv + μvð ÞRv:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð6Þ

Hence,

dX
dt

= F Xð Þ,

X 0ð Þ = X0 = Sh 0ð Þ, Ih 0ð Þ, Rh 0ð Þ, Sv 0ð Þ, Iv 0ð Þ, Rv 0ð Þ
� �T

:

ð7Þ

Based on the existence and uniqueness theorem, F is C1.
Hence, ∃ a unique global solution of the initial value problem
of (3) and this solution should be nonnegative whenever its
initial conditions are nonnegative.

4. Nonstandard Finite Difference Scheme

This is basically a numerical scheme with step size Δt that is
usually used in the approximation of solution XðtkÞ of auton-
omous system of differential equations of the form

dX
dt

= F Xð Þ, ð8Þ

subject to

X 0ð Þ = X0, ð9Þ

where F is C1 usually of the form

DΔt Xkð Þ = FΔt Xkð Þ, ð10Þ

where

DΔt Xkð Þ ≈ dX tkð Þ
dt

,

Xk ≈ X tkð Þ,

FΔt Xkð Þ ≈ F Xkð Þ,

tk ≈ t0 + kΔt:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð11Þ

The scheme

DΔt Xkð Þ = FΔt Xkð Þ: ð12Þ

Definition 1. The scheme (12) can be referred to as a nonstan-
dard finite difference scheme when it at least satisfies the fol-
lowing conditions:

(i) DΔtðXkÞ = ðXk+1 − ψXkÞ/φðΔtÞ, where ψand φ are
positive functions which depend on parameters of
the differential equations, step size, ðΔtÞ and satisfy

ψ Δtð Þ = 1 + O Δtð Þ,

φ Δtð Þ = Δt + O Δt2
� �

9>>=
>>; ð13Þ

(ii) FΔtðXkÞ = gðXk, Xk+1, ΔtÞ, where g denotes an
approximation of the nonlocal right hand side of
the system

Definition 2. The nonstandard finite difference scheme is
called elementary stable, if, for any value of the step size, its
only fixed points are those of the original differential system,
the linear stability properties of each fixed points being the
same for both the differential system and the discrete scheme.

Based on the definition of the nonstandard finite differ-
ence (NSFD) scheme and the rules governing its construction
in [15–18], the NSFD scheme for the system of (3).

is given by

Sn+1h − Snh
φ1 Δtð Þ = Λh − β Inh + Invð ÞSn+1h − μhS

n+1
h + σhR

n+1
h ,

In+1h − Inh
φ2 Δtð Þ = β Inh + Invð ÞSn+1h − γIn+1h − μh + δhð ÞIn+1h ,

Rn+1
h − Rn

h

φ3 Δtð Þ = γIn+1h − σh + μhð ÞRn+1
h ,

Sn+1v − Snv
φ4 Δtð Þ = Λv − λ Inh + Invð ÞSn+1v − μvS

n+1
v + σvR

n+1
v ,

In+1v − Inv
φ5 Δtð Þ = λ Inh + Invð ÞSn+1v − αIn+1v − μv + δvð ÞIn+1v ,

Rn+1
v − Rn

v

φ6 Δtð Þ = αIn+1v − σv + μvð ÞRn+1
v ,

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;
ð14Þ
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where

φj Δt, k∗j
� �

= 1 − e−k
∗
j Δt

k∗j
,

k∗j =max γij jf g,
j = 1, 2, 3,⋯6,

i = 1, 2, 3,⋯6,

9>>=
>>;

ð15Þ

with

γi = ∂f /∂xijx=�x,
f �xð Þ = 0,

ð16Þ

where;

where,

φ1 Δtð Þ = 1 − e−μhΔt

μh
,

φ2 Δtð Þ = 1−e−∣ βΛh/μhð Þ−γ−μh−δh∣Δt

∣ βΛh/μhð Þ − γ − μh − δh ∣
,

φ3 Δtð Þ = 1 − e− σh+μhð ÞΔt

σh + μhð Þ ,

φ4 Δtð Þ = 1 − e−μvΔt

μv
,

φ5 Δtð Þ = 1−e−∣ λΛv/μvð Þ−α−μv−δv ∣Δt

∣ λΛv/μvð Þ − α − μv − δv ∣
,

φ6 Δtð Þ = 1 − e− σv+μvð ÞΔt

σv + μvð Þ :

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð18Þ

The scheme in its explicit form is given by

Sn+1h = Λh + σhR
n+1
h

� �
φ1 Δtð Þ + Snh

1 + βInh + βInv + μhð Þφ1 Δtð Þ ,

In+1h = βInhS
n+1
h + βInvS

n+1
h

� �
φ2 Δtð Þ + Inh

1 + γ + μh + δhð Þφ2 Δtð Þ ,

Rn+1
h = γIn+1h φ3 Δtð Þ + Rn

h

1 + σh + μhð Þφ3 Δtð Þ ,

Sn+1v = Λv + σvR
n+1
v

� �
φ4 Δtð Þ + Snv

1 + λInh + λInv + μvð Þφ4 Δtð Þ ,

In+1v = λInhS
n+1
v + λInvS

n+1
v

� �
φ5 Δtð Þ + Inv

1 + α + μv + δvð Þφ5 Δtð Þ ,

Rn+1
v = αIn+1v φ6 Δtð Þ + Rn

v

1 + σv + μvð Þφ6 Δtð Þ :

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð19Þ

φ1 Δtð Þ = 1 − e−μhΔt

μh
, −βΛh

μh
, σh, 0,

−βΛh

μh
, 0

� �
,

φ2 Δtð Þ = 1−e−∣ βΛh/μhð Þ−γ−μh−δh∣Δt

∣ βΛh/μhð Þ − γ − μh − δh ∣
, −βΛh

μh
, 0, 0, −βΛh

μh
, 0

� �
,

φ3 Δtð Þ = 1 − e− σh+μhð ÞΔt

σh + μhð Þ , γ,−σh − μh, 0, 0, 0
� �

,

φ4 Δtð Þ = 1 − e−μvΔt

μv
, 0,− λΛv

μv
,−μv,−

λΛv

μv
, σv

� �
,

φ5 Δtð Þ = 1−e−∣ λΛv/μvð Þ−α−μv−δv ∣Δt

∣ λΛv/μvð Þ − α − μv − δv ∣
, 0, λΛv

μv
, 0, 0, λΛv

μv
− α − μv − δv

� �
,

φ6 Δtð Þ = 1 − e− σv+μvð ÞΔt

σv + μvð Þ , 0, 0, 0, α, σv − μv

� �
,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð17Þ
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5. Disease-Free Equilibrium

Given initial conditions,

Sh tð Þ = 0, Ih tð Þ = 0, Rh tð Þ = 0, S tð Þ = 0, Iv tð Þ = 0, Rv tð Þ = 0:
ð20Þ

The disease-free equilibrium of the system of equations
in its explicit form can established by linearising the system
in its explicit form. The Jacobian matrix of the system of
equations is given by

where

1
1 + μhφ1 Δtð Þ P1

σhφ1 Δtð Þ
1 + μhφ1 Δtð Þ 0 P6 0

0 P2 0 0 P7 0

0 P3
1

1 + σh + μhð Þφ3 Δtð Þ 0 0 0

0 P4 0 1
1 + μvφ4 Δtð Þ P8

σvφ Δtð Þ
1 + μvφ4 Δtð Þ

0 P5 0 0 P9 0

0 0 0 0 P10
1

1 + σv + μvð Þφ6 Δtð Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, ð21Þ

P1 =
− βΛh/μhð Þφ1 Δtð Þ
1 + μhφ1 Δtð Þ , P6 =

− βΛh/μhð Þφ1 Δtð Þ
1 + μhφ1 Δtð Þ ,

P2 =
1 + βΛh/μhð Þφ2 Δtð Þ

1 + γ + μh + δhð Þφ2 Δtð Þ , P7 =
βΛh/μhð Þφ2 Δtð Þ

1 + γ + μh + δhð Þφ2 Δtð Þ ,

P3 =
γφ3 Δtð Þ

1 + σh + μhð Þφ3 Δtð Þ , P8 =
− λΛv/μvð Þφ4 Δtð Þ
1 + μvφ4 Δtð Þ ,

P4 =
− λΛv/μvð Þφ4 Δtð Þ
1 + μvφ4 Δtð Þ , P9 =

λΛv/μvð Þφ5 Δtð Þ
1 + α + μv + δvð Þφ5 Δtð Þ ,

P5 =
λΛv/μvð Þφ5 Δtð Þ

1 + α + μv + δvð Þφ5 Δtð Þ , P10 =
αφ6 Δtð Þ

1 + σv + μvð Þφ6 Δtð Þ

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

ð22Þ
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The corresponding eigenvalues of the Jacobian matrix are
obtained as

λ1 =
1

1 + μhφ1 Δtð Þ , λ2 =
1 + βΛh/μhð Þφ2 Δtð Þ

1 + γ + μh + δhð Þφ2 Δtð Þ ,

λ3 =
1

1 + σh + μhð Þφ3 Δtð Þ , λ4 =
1

1 + μvφ4 Δtð Þ ,

λ5 =
1 + λΛv/μvð Þφ5 Δtð Þ

1 + α + μv + δvð Þφ5 Δtð Þ , λ6 =
1

1 + σv + μvð Þφ6 Δtð Þ :

9>>>>>>>>>>>=
>>>>>>>>>>>;
ð23Þ

5.1. Local Stability of the Disease-Free Equilibrium

Theorem 3. The DFE is locally asymptotically stable for every
value of ðΔtÞ if the following conditions are satisfied:

(i) βΛh/μhðγ + μh + δhÞ < 1

(ii) λΛv/μvðα + μv + δvÞ < 1

Proof. The sequence

Snh , Inh, Rn
h, Snv , Inv , Rn

vð Þ, ð24Þ

should converge to the disease-free equilibrium

DFE = Λh

μh
, 0, 0, Λv

μv
, 0, 0

� �
, ð25Þ

for any positive initial conditions when conditions (i) and (ii)
are satisfied for every value of ðΔtÞ.

Linearising system (3) at the DFE, the eigenvalues of the
corresponding Jacobian matrix are given by

λ1 =
1

1 + μhφ1 Δtð Þ , λ2 =
1 + βΛh/μhð Þφ2 Δtð Þ

1 + γ + μh + δhð Þφ2 Δtð Þ ,

λ3 =
1

1 + σh + μhð Þφ3 Δtð Þ , λ4 =
1

1 + μvφ4 Δtð Þ ,

λ5 =
1 + λΛv/μvð Þφ5 Δtð Þ

1 + α + μv + δvð Þφ5 Δtð Þ , λ6 =
1

1 + σv + μvð Þφ6 Δtð Þ :

9>>>>>>>>>>>=
>>>>>>>>>>>;
ð26Þ

It shows that the DFE is locally asymptotically stable for
every value of ðΔtÞ if the conditions (i) and (ii) of Definition
1 are satisfied.

For λ1,

λ1j j = 1
1 + μhφ1 Δtð Þ
����

����, ð27Þ

jλ1j < 1 since 1 + μhφ1ðΔtÞ > 1.

For λ2,

λ2j j = 1 + βΛh/μhð Þφ2 Δtð Þ
1 + γ + μh + δhð Þφ2 Δtð Þ
����

����, ð28Þ

jλ2j < 1 if and only if 1 + ðβΛh/μhÞφ2ðΔtÞ < 1 + ðγ + μh
+ δhÞφ2ðΔtÞ.

For λ3,

λ3j j = 1
1 + σh + μhð Þφ3 Δtð Þ
����

����, ð29Þ

jλ3j < 1 since 1 + ðσh + μhÞφ3ðΔtÞ > 1
For λ4,

λ4j j = 1
1 + μvφ4 Δtð Þ
����

����, ð30Þ

jλ4j < 1 since 1 + μvφ4ðΔtÞ > 1.
For λ5,

λ5j j = 1 + λΛv/μvð Þφ5 Δtð Þ
1 + α + μv + δvð Þφ5 Δtð Þ
����

����, ð31Þ

jλ5j ≤ 1 on condition that 1 + ðλΛv/μvÞφ5ðΔtÞ < 1 + ðα
+ μv + δvÞφ5ðΔtÞ.

For λ6,

λ6j j = 1
1 + σv + μvð Þφ6 Δtð Þ
����

����, ð32Þ

jλ6j < 1 since 1 + ðσv + μvÞφ6ðΔtÞ > 1.

5.2. Global Stability of the Disease-Free Equilibrium

Theorem 4. The disease-free equilibrium is globally asymptot-
ically stable if the conditions stated in Theorem3are satisfied.

Proof. The sequence;

Snh, Inh, Rn
h , Snv , Inv , Rn

vð Þ, ð33Þ

should converge to the disease-free equilibrium

Λh

μh
, 0, 0, Λv

μv
, 0, 0

� �
, ð34Þ
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for any positive initial condition whenever conditions (i) and
(ii) of Definition 1 are satisfied for every value of Δt.

From Definition 1, the DFE is LAS for every value of Δt
whenever conditions (i) and (ii) of Definition 1 hold.

Suppose that for n > 0,
ðSnh , Inh, Rn

h, Snv , Inv , Rn
vÞ converges to ðΛh/μh, 0, 0,Λv/μv, 0,

0Þ.
Then, it can be shown that

Sn+1h , In+1h , Rn+1
h , Sn+1v , In+1v , Rn+1

v

� �
, ð35Þ

converges to

Λh

μh
, 0, 0, Λv

μv
, 0, 0

� �
: ð36Þ

Considering the system of equation in (19), we prove that the
disease-free equilibrium is globally asymptotically stable
using the conditions in Definition 1.

For In+1h ,

In+1h = βInhS
n+1
h + βInvS

n+1
h

� �
φ2 Δtð Þ + Inh

1 + γ + μh + δhð Þφ2 Δtð Þ , ð37Þ

then, In+1h → 0,as n→∞.
For Rn+1

h ,

Rn+1
h = γIn+1h φ3 Δtð Þ + Rn

h

1 + σh + μhð Þφ3 Δtð Þ , ð38Þ

then, Rn+1
h → 0 as n→∞.

For Sn+1h ,

Sn+1h = Λh + σhR
n+1
h

� �
φ1 Δtð Þ + Snh

1 + βInh + βInv + μhð Þφ1 Δtð Þ , ð39Þ

then, Sn+1h →Λh/μh as n→∞.
For In+1v ,

In+1v = λInhS
n+1
v + λInv S

n+1
v

� �
φ5 Δtð Þ + Inv

1 + α + μv + δvð Þφ5 Δtð Þ , ð40Þ

then, In+1v → 0 as n→∞.
For Rn+1

v ,

Rn+1
v = αIn+1v φ6 Δtð Þ + Rn

v

1 + σv + μvð Þφ6 Δtð Þ , ð41Þ

then, Rn+1
v → 0 as n→∞.

For Sn+1v ,

Sn+1v = Λv + σvR
n+1
v

� �
φ4 Δtð Þ + Snv

1 + λInh + λInv + μvð Þφ4 Δtð Þ , ð42Þ

then, Sn+1v →Λv/μv as n→∞.

Hence, the DFE is GAS since conditions (i) and (ii) are
satisfied for every value of ðΔtÞ.

6. Optimal Control Analysis of the Model

In this section, we carried out an analysis of optimal control
to determine the impact of all intervention of the control
schemes. This is derived by incorporating the following con-
trols into the model in Figure 1 and the introduction of an
objective functional that seeks to minimise: ðu1, u2, u3Þ,
where u1 denotes prevention of Sh, u2 denotes treatment of
Ih, and u3 denotes treatment of Iv .

By introducing all controls, the system in equation (3)
becomes

dSh
dt

= Λh + σh − 1 − u1ð Þβ Iv + Ihð ÞSh − μhSh,

dIh
dt

= 1 − u1ð Þβ Iv + Ihð ÞSh − u2 + γð ÞIh − δh + μhð ÞIh,
dRh

dt
= u2 + γð ÞIh − σh + μhð ÞRh,

dSv
dt

= Λv − 1 − u1ð Þλ Iv + Ihð ÞSv − μvSv + σvRvð Þ,
dIv
dt

= 1 − u1ð Þλ Iv + Ihð ÞSv − αIv − δv + μvð ÞIv,
dRv

dt
= αIv − σv + μvð ÞRv:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð43Þ

In epidemiological models, the essence of optimal control
analysis is to minimise the spread or number of infections
and cost associated with treatment and prevention controls.
The objective functional required to achieve this is formu-
lated by

J =min u1,u2,u3ð Þ

ðt f
0

B1Iv + B2Ih + B3u
2
1 + B4u

2
2 + B5u

2
3

� �
dt,

ð44Þ

subject to the system of equations in (3).
Control efforts of model in (3) is by linear combination of

u2i ðtÞ, ði = 1, 2Þ. It is assumed to be a quadratic in nature by
the assumption that cost is generally nonlinear in nature.
Thus, the aim is to minimise the number of infection and
reduce the cost of treatment.

In (44), B1, B2, B3, B4, and B5 denote weight constants
to facilitate balance terms in the integral to avoid domi-
nance of one another. B1Ih, B2Iv are costs associated with
Ih and Iv, respectively. B3u

2
1, is cost associated with pre-

vention of Sh. B4u
2
2, is cost of treatment of Ih, and B5u

2
3

is cost associated with treatment of Iv. t f , is the period
of intervention. Hence, ðB1Ih, B2IvÞ denotes a linear func-
tion for cost associated with infections and ðB3u

2
1, B4u

2
2,
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B5u
2
3Þ, denotes a quadratic function for the cost associated

with controls [19, 20].
The objective is to find the optimal functions ðu∗1 ðtÞ, u∗2

ðtÞ, u∗3 ðtÞÞ such that

J u∗1 tð Þ, u∗2 tð Þ, u∗3 tð Þð Þ = min u1,u2,u3ð Þ∈∪J u1, u2, u3ð Þ ,
ð45Þ

where ∪ =
u : u, 0 ≤ uiðtÞ ≤ 1 , tε½0, t f �, i = 1, 2, 3	 


denotes
the control set.

6.1. Pontryagin’s Maximum Principle. This principle provides
the necessary conditions that an optimalmust satisfy. It changes
the system in equations (3) and (44) intominimisation problem

pointwise Hamiltonian ðHÞ, with respect to ðu1, u2, u3Þ.

H = B1Iv + B2Ih + B3u
2
1 + B4u

2
2 + B5u

2
3 +MIh

� 1 − u1ð Þβ Iv + Ihð ÞSh − u2 + γð ÞIh − δh + μhð ÞIhf g
+MRh

u2 + γð ÞIh − σh + μhð ÞRhf g +MSv

� Λv − 1 − u1ð Þλ Iv + Ihð ÞSv − μvSv + σvRvð Þf g
+MIv

1 − u1ð Þλ Iv + Ihð ÞSv − u3 + αð ÞIvf
− δv + μvð ÞIvgMRv

u3 + αð ÞIv − σv + μvð ÞRvf g,

ð46Þ

where
MSh

, MIh
, MRh

, MSv
, MIv

, and MRv
are referred to as the

adjoint variables.
The adjoint (costate) variables are solutions of adjoint

systems below:

This satisfies the transversality condition

MSh
t f
� �

=MIh
t f
� �

=MRh
t f
� �

=MSv
t f
� �

=MIv
t f
� �

=MRv
t f
� �

= 0,
ð48Þ

by combining the Pontryagin’s maximum principle and
the existence of the optimal control.

Theorem 5. The optimal control vector ðu∗1 ðtÞ, u∗2 ðtÞ, and u∗3 ð
tÞÞ that maximises the objective function ðJÞ over ∪ is given by

dMSh

dt
= 1 − u1ð Þ Iv + Ihð Þβ MSh

−MIh

� �
+ μhMSh

� �
,

dMIh

dt
= −B2 + 1 − u1ð ÞβSh MSh

−MIh

� �
+ u2 + γð Þ MIh

−MRh

� �
+ μh + δhð ÞMIh

+ 1 − u1ð ÞλSv MSv
−MIv

� �
+ bλVv MVv

−MIv

� �
,

dMRh

dt
= −σhMSh

+ σh + μhð ÞMRh
,

dMSv

dt
= 1 − u1ð Þλ Iv + Ihð Þ MSv

−MIv

� �
+ μvMSv

,

dMIv

dt
= −B1 + 1 − u1ð ÞβSh MSh

−MIh

� �
+ 1 − u1ð ÞλSv MSv

−MIv

� �
+ μv + δvð ÞMIv

+ u4 + αð Þ MIv
−MRv

� �
,

dMRv

dt
= −σhMSv

+ σv + μvð ÞMRv
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð47Þ

u∗1 tð Þ =max 0, min 1,
β MIh

−MSh

� �
Iv + Ihð ÞS∗h

2B3
+
λ MIv

−MSv

� �
Iv + Ihð ÞS∗v

2B3

!)
,

 (

u∗2 tð Þ =max 0, min 1,
MIh

−MRh

� �
I∗h

2B4

 !( )
,

u∗3 tð Þ =max 0, min 1,
MIv

−MRv

� �
I∗v

2B5

 !( )
,

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð49Þ
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where
MSh

, MIh
, MRh

, MSv
, MIv

, and MRv
are the solutions of

equation (47) and (48):

Proof. The existence of an optimal control is as a result the
convexity of the integral of J with respect to u1, u2, and u3,
the Lipschitz property of the state system with respect to the
state variables, and a priori boundedness of the state solutions
[21, 22]. The system in (47) was obtained by differentiating the
Hamiltonian function and evaluated at optimal control. How-
ever, by equating the derivatives of the Hamiltonian with
respect to the controls to zero, the following are obtained:

u1 = ~u1 ≔
β MIh

−MSh

� �
Iv + Ihð ÞS∗h

2B3

 
+
λ MIv

−MSv

� �
Iv + Ihð ÞS∗v

2B3

!)(

u2 = ~u2 ≔
MIh

−MRh

� �
I∗h

2B4

 !( )
,

u3 = ~u3 ≔
MIv

−MRv

� �
I∗v

2B5

 !( )
:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð50Þ

In conclusion, by standard control arguments involving
bounds on controls,

u∗1 =
0, if ~u1 ≤ 0,
~u1 if 0 < ~u1 < 1,
1 if ~u1 ≥ 1,

8>><
>>: u∗2 =

0, if ~u2 ≤ 0,
~u2 if 0 < ~u2 < 1,
1 if ~u2 ≥ 1,

8>><
>>:

u∗3 =
0, if ~u3 ≤ 0,
~u3 if 0 < ~u3 < 1,
1 if ~u3 ≥ 1:

8>><
>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
ð51Þ

The system in (49) leads to system in (48). The optimal
control uniqueness for small t f was obtained as a result of
the Lipschitz structure of system of equations and the priori
boundedness of the state solutions and adjoint functions. Exis-
tence of optimal control uniqueness is in line with uniqueness
of optimal system that comprises equations (3), (47), (48), and
(49) [22–24].

7. Numerical Analysis

In this section, we solved the optimal system by employing
the Range-Kutta fourth-order scheme. We solved the state
systems, adjoint equations, and the transversality conditions
by considering it as a two-point boundary value problem
with boundary conditions at t = 0 and t = t f . Our goal is to
solve for t f = 90 days or three months. At this value, it is
assumed that campylobacteriosis can easily spread. System
of equations of the model in Figure 1 is solved numerically
using the Range-Kutta fourth-order scheme with a guess on
controls over a period of time. Moreover, we used curent iter-

ations of the model equations in Figure 1, the costate equa-
tions, and transversality conditions by backward approach.
Convex combinations of controls in previous iteratons and
charaterisations of values from the system are then updated.
The process is repeated continuously, and iteration stops if
values of unknowns at previous iteration is as close as those
at present iteration [25, 26]. A number of combination of
controls were considered and the best and most effective
selected.

7.1. Analysis of Contact Rate ðβÞ on Infected Humans.
Figure 2 shows the analysis of contact rate ðβÞ on infected
humans. As the contact rate ðβÞ increases, there seem to be
an increase in the number of infections. As the contact rate
ðβÞ decreases, there is a corresponding decrease in the num-
ber of infected humans. This confirms the effects of contact
rate ðβÞ on infected humans. Hence, infections can be curbed
by ensuring that the value of contact rate ðβÞ reduces to the
bearest minimum.

7.2. Analysis of Contact Rate ðλÞ on Infected Animals.
Figure 3 shows the analysis of contact rate ðλÞ on infected
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Figure 2: Effects of contact rate on infected humans.
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Figure 3: Effects of contact rate on infected animals.
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Figure 4: Population dynamics of infected animals and humans with and without optimal control.
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Figure 5: Population dynamics of recovered animals and humans with and without optimal control.
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Figure 6: Population dynamics of infected animals and humans with and without optimal control.
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animals. As the contact rate increases, there seem to be an
increase in the number of infections. As the contact rate
decreases, there is a corresponding decrease in the number
of infected animals. This confirms the effects of contact rate
ðλÞ on infected animals. Hence, infections can be curbed by
ensuring that the value of contact rate ðλÞ reduces to the
bearest minimum.

7.3. Strategy 1: Optimal Prevention of Sh and Treatment of Iv.
We optimised the objective function using prevention of Sh
and treatment of Iv as control measures. This was done by
setting the treatment of infected humans, u2, to zero.
Figure 4 indicates a reduction in number of
campylobacteriosis-infected animals and humans. Figure 5
indicates an increase in campylobacteriosis recovery in both
animal and human populations.

Biologically, the implication is that campylobacteriosis
infections can be controlled effectively by prevention of
humans and treatment of infected animals.

7.4. Strategy 2: Optimal Prevention of Sh and Treatment of Ih.
We optimised the objective function using prevention of Sh
and treatment of Ih as control measures. This was done by

setting the treatment of infected humans, u3, to zero.
Figure 6 indicates a reduction in number of
campylobacteriosis-infected animals and humans. Figure 7
indicates an increase in campylobacteriosis recovery in both
animal and human populations.

Biologically, the implication is that campylobacteriosis
infections can be curbed effectively by prevention of humans
and treatment of infected animals.

8. Conclusion

A deterministic model that explains the spread dynamics of
campylobacteriosis infection was formulated and analysed
for its qualitative and quantitative solutions. The qualitative
analysis of the model was carried out using the nonstandard
finite difference scheme for boundedness of solution, disease-
free equilibrium, and its local and global stability. Campylo-
bacteriosis disease-free equilibrium of the scheme in its
explicit form was established. Analysis of the scheme estab-
lished that the disease-free equilibrium was both locally and
globally asymptotically stable.

The campylobacteriosis model was extended to optimal
control using prevention of susceptible humans, treatment
of infected humans, and treatment of infected animals. The
objective functional was optimised, and it was established
that combining prevention of susceptible humans and treat-
ment of infected animals was the effective control measure in
combating campylobacteriosis infections.

An analysis of the effects of contact rate between suscep-
tible and infected animals as well as susceptible and infected
humans was conducted. This showed an increase in infected
animals and humans whenever the contact rate increases and
decreases otherwise. Biologically, campylobacteriosis infec-
tions can be controlled by ensuring that interactions between
susceptible humans, infected animals, and infected humans
is reduced to the bearest minimum.

Data Availability

The parameter values supporting this deterministic model
simulations were assumed and others taken from some pub-
lished articles. All these were dully acknowledged and cited in
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Figure 7: Population dynamics of recovered animals and humans with and without optimal control.

Table 1: Shows the parameter values used in the model simulation.

Parameter Value References

β 0:03 Assumed

λ 0:004 [4]

Λv 0:005 Assumed

Λh 0:002 Assumed

μv 0:0002 [4]

δv 0:003 Assumed

α 0:05 [4]

μh 0:0001 Assumed

δh 0:001 Assumed

σh 0:004 Assumed

σv 0:007 [4]....
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this paper. These published articles are also cited at relevant
places within the text as references.
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